Skip to main content

Plant Microbiomes: Understanding the Aboveground Benefits

  • Chapter
  • First Online:
Phytobiomes: Current Insights and Future Vistas

Abstract

Soil and plant root are known as the microbial reservoir, and these microbes are found broadly in the plant rhizosphere and tissues. Phytobiome generally exists as epiphytic, endophytic, and rhizospheric that undertakes a critical role in plant development. These microbiomes may shape networks, to stabilize the function among different kinds of plant-associated factors to propagate or transmit in a different part of the plant. Microbial networks linked with plant health give crucial beneficial insights to look upon. The present section covers the features of such microbial networks that build the phytobiome. The chapter highlights their ability to better uptake nutrients or plant growth regulators in a stressed environment and further extends an evolution of studies depicting the supporting components that shape the phylogenetic and plant-related networks. The chapter advocates the possibility to understand the techniques by which plants select and connect with their microbiomes and affect plant improvement and well-being, thereby laying the foundation of novel microbiome-driven systems to the advancement of sustainable agriculture. The microbiome is unpredictably engaged with plant well-being providing extra qualities to the plant. To understand the guideline of plant characteristic articulation, henceforth plant execution, and how this impacts the biological systemic network, it is required to get well versed with phytobiome and its usefulness. In the present section, the significance of the phytobiome to plant genomics is tended to describe the phytobiome in assembly to the environment of the outline with attention on natural surroundings happening subterranean at the plant-soil between face, where the center is around the job of exudates as currency in this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to phytobiome variation. PLoS Biol 14(1):e1002352

    PubMed  PubMed Central  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    PubMed  PubMed Central  Google Scholar 

  • Amador CI, Canosa I, Govantes F, Santero G (2010) Lack of CbrB in Pseudomonas putida affects not only amino acids metabolism but also different stress responses and bio-film development. Environ Microbiol 12:1748–1761

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andreote FD, Azevedo JL, Araújo WL (2009) Assessing the diversity of bacterial communities associated with plants. Braz J Microbiol 40:417–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    PubMed  Google Scholar 

  • Bacilio-Jimenez M, Aguilar-Flores S, Ventura-Zapata E, Perez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    CAS  PubMed  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim K, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Muller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    CAS  Google Scholar 

  • Baig KS, Arshad M, Shaharoona B, Khalid A, Ahmed I (2012) Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Ann Microbiol 62:1109–1119

    Google Scholar 

  • Bakker MG, Schlatter DC, Otto-Hanson L, Kinkel LL (2014) Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol Ecol 23:1571–1583

    PubMed  Google Scholar 

  • Bashiardes S, Godneva A, Elinav E, Segal E (2018) Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol 51:57–63

    CAS  PubMed  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, Burmølle M, Herschend J, Bakker AHM, Pieterse CMJ (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg M, Koskella B (2018) Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr Biol 28:2487–2492

    CAS  PubMed  Google Scholar 

  • Bernedsen RL, Pieterse CMJ, Bakker AHM (2012) The rhizosphere micro-biome and plant health. Trends Plant Sci 17:478–486

    Google Scholar 

  • Bohm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 20:526–533

    PubMed  Google Scholar 

  • Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T (2014) Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 20:47–54

    PubMed  Google Scholar 

  • Bokulich NA, Thorngate JH, Richardson PM, Mills DA (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci 111:E139–E148

    CAS  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG (2014) Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 38:90–118

    CAS  PubMed  Google Scholar 

  • Bulgarelli D, Spaepen SS, Themaat EVL, Shulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    CAS  PubMed  Google Scholar 

  • Cao Y, Halane MK, Gassmann W, Stacey G (2017) The role of plant innate immunity in the legume-rhizobium symbiosis. Annu Rev Plant Biol 68:535–561

    CAS  PubMed  Google Scholar 

  • Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    CAS  PubMed  Google Scholar 

  • Cheng W, Gershenson A (2007) Carbon fluxes in the rhizosphere. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere – an ecological perspective. Academic, San Diego, pp 31–56

    Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Google Scholar 

  • Coince A, Cordier T, Lengelle J, Defossez E, Vacher C, Robin C, Buée M, Marçais B (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One 9:e100668

    PubMed  PubMed Central  Google Scholar 

  • Coleman JJ, Ghosh S, Okoli I, Mylonakis E (2011) Antifungal activity of microbial secondary metabolites. PLoS One 6:e25321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Kaplan H, Sessitsch A, Nowak J, Barka EA, Clement C (2008) Endo-phytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    CAS  PubMed  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the phytobiome: ecology, functions, and emerging trends in microbial application. J Adv Res: 1–9

    Google Scholar 

  • Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant-Microbe Interact 28:274–285

    CAS  PubMed  Google Scholar 

  • Czaran TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci 99:786–790

    CAS  PubMed  Google Scholar 

  • deBello F, Lavorel S, Diaz S, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Google Scholar 

  • De Boer W, Leveau JH, Kowalchuk GA, Gunnewiek PJK, Abeln EC, Figge MJ, Sjollema K, Janse JD, van Veen JA (2004) Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int J Syst Evol Microbiol 54:857–864

    PubMed  Google Scholar 

  • de Vrieze M, Germanier F, Vuille N, Weisskopf L (2018) Combining different potato associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Front Microbiol 9:2573

    PubMed  PubMed Central  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, Mot RD, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    PubMed  Google Scholar 

  • Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg JJ (1998) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci 95:7051–7056

    CAS  PubMed  Google Scholar 

  • Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P, Mahenthiralingam E (2016) Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 100:5215–5229

    CAS  PubMed  Google Scholar 

  • diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A (2019) Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 65:1–33

    CAS  PubMed  Google Scholar 

  • Dini-Andreote F, van Elsas JD (2013) Back to the basics: the need for ecophysiological insights to enhance our understanding of microbial behaviour in the rhizosphere. Plant Soil 373:1–15

    CAS  Google Scholar 

  • Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621

    PubMed  Google Scholar 

  • Doornbos R, van Loon L, Bakker P (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–234

    Google Scholar 

  • Dudenhöffer JH, Scheu S, Jousset A (2016) Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J Ecol 104:1566–1575

    Google Scholar 

  • Eberl L (1999) N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22:493–506

    CAS  PubMed  Google Scholar 

  • Edwards J, Johnson C, Santos-medellın C, Lurie E, Kumar N (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112:E911–E920

    CAS  PubMed  Google Scholar 

  • Fitzpatrick CR, Copelandc J, Wang PW, Guttman DS, Peter M, Kotanen PM, Johnson MTJ (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 115:E1157–E1165

    CAS  PubMed  Google Scholar 

  • Flues S, Bass D, Bonkowski M (2017) Grazing of leaf associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function. Environ Microbiol 19:3297–3309

    CAS  PubMed  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Google Scholar 

  • Garbaye J (1994) Helper bacteria – a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Gimsing AL, Blum J, Dyan FE, Locke MA, Sejer LH, Jacobsen CS (2009) Mineralization of the allelochemical sorgoleone in soil. Chemosphere 76:1041–1047

    CAS  PubMed  Google Scholar 

  • Glick BR (1999) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Google Scholar 

  • Guennoc CM, Rose C, Labbe J, Deveau A (2017) Bacterial biofilm formation on soil fungi: a widespread ability under controls. Biol Res 130740

    Google Scholar 

  • Gupta VV (2012) Beneficial microorganisms for sustainable agriculture. Microbiol Aust 3:113–115

    Google Scholar 

  • Guyomar C, Legeai F, Jousselin E, Mougel C, Lemaitre C, Simon J-C (2018) Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches. Microbiome 6(1):181

    PubMed  PubMed Central  Google Scholar 

  • Hacquard S (2016) Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytol 209:454–457

    PubMed  Google Scholar 

  • Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, McHardy AC, Dangl JL, Knight R, Ley R, Schulze-Lefert P (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616

    CAS  PubMed  Google Scholar 

  • Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plant 1:15051

    CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  • Haron MH, Tyler HL, Chandra S, Moraes RM, Jackson CR, Pugh ND, Pasco DS (2019) Plant microbiome-dependent immune enhancing action of echinacea purpurea is enhanced by soil organic matter content. Sci Rep 9(1):136

    PubMed  PubMed Central  Google Scholar 

  • Hartman K, Van der Heijden MGA, Wittwer RA, Banerjee S, Walser JC, Schlaeppi K (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6:14

    PubMed  PubMed Central  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58

    PubMed  PubMed Central  Google Scholar 

  • Hendgen M, Hoppe B, Döring J, Friedel M, Kauer R, Frisch M, Dahl A, Kellner H (2018) Effects of different management regimes on microbial biodiversity in vineyard soils. Science Report 8:9393

    Google Scholar 

  • Hiltner L (1904) Uber neuere erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundungung und brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hirsch PR, Mauchline TH (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30:961–962

    CAS  PubMed  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Horton MW, Bodenhausen N, Beilsmith K, Meng DZ, Muegge BD, Subramanian S, Vetter MM, Vilhjálmsson BJ, Nordborg M, Gordon JI, Bergelson J (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun 5:5320

    PubMed  PubMed Central  Google Scholar 

  • Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982

    CAS  PubMed  Google Scholar 

  • Hu J, Wei Z, Friman VP, Gu SH, Wang XF, Eisenhauer N, Yang TJ, Ma J, Shen QR, Xu YC, Jousset A (2016) Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio 7(6):1790–1816

    Google Scholar 

  • Huang F, Chaparro JM, Reardon KF et al (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities 1 Xing. Botany 92:267–275. https://doi.org/10.1139/cjb-2013-0225

    Article  Google Scholar 

  • Jaeger CHIII, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan IA, Rimando AM, Dyan FE (2003) Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retro biosynthetic NMR analysis. J Biol Chem 278:28607–28611

    PubMed  Google Scholar 

  • Kaplan D, Maymon M, Agapakis CM, Lee A, Wang A, Prigge BA, Volkogon M, Hirsch AM (2013) A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum Boiss. and Atriplex halimus, using cultivation-dependent and -independent methods. Am J Bot 100:1713–1725

    PubMed  Google Scholar 

  • Kavamura VN, Santos SN, Silva JL, Parma MM, Avila LA, Visconti A, Zucchi TD, Taketani RG, Andreote FD, Melo IS (2013) Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 168:183–191

    CAS  PubMed  Google Scholar 

  • Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L, Riedel K, Zechmeister-Boltenstern S (2012) Soil metaproteomics: comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1165

    CAS  PubMed  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    CAS  PubMed  Google Scholar 

  • Kolmeder CA, de Vos WM (2014) Metaproteomics of our microbiome: developing insight in function and activity in man and model systems. J Proteome 97:3–16

    CAS  Google Scholar 

  • Krober M, Wibberg D, Grosch R, Eikmeyer F, Verwaaijen B, Chowdhury SP, Hartmann A, Pühler A, Schlüter A (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:252

    PubMed  PubMed Central  Google Scholar 

  • Kumari B, Mallick MA, Solanki MK et al (2019) Plant growth-promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress, vol II. Springer Netherlands, Dordrecht

    Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambais MR, Crowley DE, Cury JC, Bull RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917

    CAS  PubMed  Google Scholar 

  • Lambais MR, Barrera SE, Santos EC, Crowley DE, Jumpponen A (2017) Phyllosphere metaproteomes of trees from the Brazilian Atlantic forest show high levels of functional redundancy. Microb Ecol 73:123–134

    CAS  PubMed  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) PHYTOBIOME: salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349(6250):860–864

    CAS  PubMed  Google Scholar 

  • Lederberg J, McCray AT (2001) ‘Ome sweet omics’ - a genealogical treasury of words. Scientist 15:8

    Google Scholar 

  • Leff JW, Del Tredici P, Friedman WE, Fierer N (2015) Spatial structuring of bacterial communities within individual Ginkgo biloba trees. Environ Microbiol 17:2352–2361

    PubMed  Google Scholar 

  • Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. In: Beards G (ed) How plants communicate with their biotic environment. Academic, London, pp 101–133

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401

    CAS  PubMed  Google Scholar 

  • Longa CMO, Nicola L, Antonielli L, Mescalchin E, Zanzotti R, Turco E, Pertot I (2017) Soil microbiota respond to green manure in organic vineyards. J Appl Microbiol 123:1547–1560

    CAS  PubMed  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial source of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389

    CAS  Google Scholar 

  • Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT (2009) Fungi evolved right on track. Mycologia 101:810–822

    PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mader U, Antelmann H, Buder T, Dahl MK, Hecker M, Homuth G (2002) Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Genet Genomics 268:455–467

    CAS  PubMed  Google Scholar 

  • Maida I, Chiellini C, Mengoni A, Bosi E, Firenzuoli F, Fondi M, Fani R (2016) Antagonistic interactions between endophytic cultivable bacterial communities isolated from the medicinal plant Echinacea purpurea. Environ Microbiol 18:2357–2365

    CAS  PubMed  Google Scholar 

  • Malviya MK, Solanki MK, Li C-N et al (2019) Beneficial linkages of endophytic Burkholderia anthina MYSP113 towards sugarcane growth promotion. Sugar Tech:1–12. https://doi.org/10.1007/s12355-019-00703-2

  • Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822

    CAS  PubMed  Google Scholar 

  • Martinez-Romero E (2006) Dinitrogen-fixing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 793–817

    Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA, Weller DM, Thomashow LS (2011) The role of 2,4-diacetylphloroglucinol- and phenazine-1-carboxylic acid-producing Pseudomonas spp. in natural protection of wheat from soilborne pathogens. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 60–63

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    CAS  Google Scholar 

  • Meng A, Marchet C, Corre E, Peterlongo P, Alberti A, Da Silva C, Wincker P, Pelletier E, Probert I, Decelle J, Le Crom S, Not F, Bittner L (2018) A de novo approach to disentangle partner identity and function in holobiont systems. Microbiome 6(1):105

    PubMed  PubMed Central  Google Scholar 

  • Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389

    PubMed  Google Scholar 

  • Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MDR, Rodríguez-Andrade O, Morales-García YE, Munive A, Muñoz-Rojas J (2017) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 12(11):e0187913

    PubMed  PubMed Central  Google Scholar 

  • Moreno R, Martines-Gomariz M, Yuste L, Gil C, Rojo F (2009) The Pseudomonas putida Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: evidence from proteomic and genomic analyses. Proteomics 9:2910–2928

    CAS  PubMed  Google Scholar 

  • Mousa WK, Shearer C, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat Microbiol 1:16167

    CAS  PubMed  Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    PubMed  PubMed Central  Google Scholar 

  • Mullis KB, Erlich HA, Arnheim N, Horn GT, Saiki RK, Scharf SJ (1987) Process for amplifying, detecting, and/or-cloning nucleic acid sequences. US Patent Application No. US4683195A

    Google Scholar 

  • Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224

    CAS  PubMed  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:e35498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Netzker T, Fischer J, Weber J, Mattern DJ, Konig CC, Valiante V, Schroeckh V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299

    PubMed  PubMed Central  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    CAS  PubMed  Google Scholar 

  • Oh KB, Miyazawa H, Naito T, Matsuoka H (2001) Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci 98:4664–4668

    CAS  PubMed  Google Scholar 

  • Palumbo JD, Kado CI, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Donose BC, Webb RI, Parsons J, Liao W, Sagulenko E, Lakshmanan P, Hugenholtz P, Schmidt S, Ragan MA (2016) Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 6:37389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol 14:434

    CAS  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110(16):6548–6653

    CAS  PubMed  Google Scholar 

  • Phillips DA, Fow TC, Six J (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Glob Chang Biol 12:561–567

    Google Scholar 

  • Piel J (2011) Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol 65:431–453

    CAS  PubMed  Google Scholar 

  • Pineda A, Zheng S, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    CAS  PubMed  Google Scholar 

  • Ploch S, Rose LE, Bass D, Bonkowski M (2016) High diversity revealed in leaf-associated Protists (Rhizaria: Cercozoa) of Brassicaceae. J Eukaryot Microbiol 63:635–641

    PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Radzki W, Gutierrez Mañero FJ, Algar E, Lucas García JA, García-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    CAS  PubMed  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbial Lett 254:1–11

    CAS  Google Scholar 

  • Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant-Microbe Interact 24:751–757

    CAS  PubMed  Google Scholar 

  • Riehl C, Frederickson ME (2016) Cheating and punishment in cooperative animal societies. Philos Trans R Soc Lond Ser B Biol Sci 371:20150090

    Google Scholar 

  • Riera N, Handique U, Zhang Y, Dewdney MM, Wang N (2017) Characterization of antimicrobial-producing beneficial bacteria isolated from Huanglongbing escape citrus trees. Front Microbiol 8:2415

    PubMed  PubMed Central  Google Scholar 

  • Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Metraux JP, L’Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043

    CAS  PubMed  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Pierotti CF, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    CAS  PubMed  Google Scholar 

  • Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil 315:163–172

    CAS  Google Scholar 

  • Rout ME, Chrzanowski TH, DeLuca TH, Westlie TK, Callaway RM, Holben WE (2013) Bacterial endophytes enhance invasive plant competition. Am J Bot 100:1726–1737

    CAS  PubMed  Google Scholar 

  • Rudgers JA, Afkhami MA, Rua MA, Davitt SH, Hammer S, Huguet VM (2009) A fungus among us: broad pattern of endophyte distribution in the grasses. Ecology 90:1531–1539

    PubMed  Google Scholar 

  • Rudnick MB, van Veen JA, de Boer W (2015) Baiting of rhizosphere bacteria with hyphae of common soil fungi reveals a diverse group of potentially mycophagous secondary consumers. Soil Biol Biochem 88:73–82

    CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015) A higher-level classification of all living organisms. PLoS One 10:e0119248

    PubMed  PubMed Central  Google Scholar 

  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160

    PubMed  Google Scholar 

  • Santhanam R, Van LT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci 112:5013–5020

    Google Scholar 

  • Sapp M, Ploch S, Fiore-Donno AM, Bonkowski M, Rose LE (2018) Protists are an integral part of the Arabidopsis thaliana microbiome. Environ Microbiol 20:30–43

    CAS  PubMed  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172:261–269

    CAS  Google Scholar 

  • Schade J, Hobbie SE (2005) Spatial and temporal variation in the islands of fertility in the Sonoran Desert. Biogeochemistry 73:541–553

    Google Scholar 

  • Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, Garbeva P (2016) Microbial small talk: volatiles in fungal-bacterial interactions. Front Microbiol 6:1495

    PubMed  PubMed Central  Google Scholar 

  • Schreiter S, Sandmann M, Smalla K, Grosch R (2014) Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS One 9:e103726

    PubMed  PubMed Central  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of pseudomonads for improving growth, yield and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    CAS  PubMed  Google Scholar 

  • Sharma M, Prasad R (2011) The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother 55:4834–4843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi SJ, Nuccio E, Herman DJ, Rijkers R, Estera K, Li JB, da Rocha UN, He Z, Pett-Ridge J, Brodie EL, Zhou J, Firestone M (2015) Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 6:e00746-15

    PubMed  PubMed Central  Google Scholar 

  • Solanki MK, Kumar S, Pandey AK et al (2012) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Tech 22:203–217. https://doi.org/10.1080/09583157.2011.649713

    Article  Google Scholar 

  • Solanki MK, Wang F-Y, Wang Z et al (2019) Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. J Soils Sediments 19:1911–1927. https://doi.org/10.1007/s11368-018-2156-3

    Article  CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen phosphorus, sulphur and micronutrients, 2nd edn. Wiley, New York

    Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    CAS  Google Scholar 

  • Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    CAS  PubMed  Google Scholar 

  • Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME, Peay KG (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci 111:6341–6346

    CAS  PubMed  Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    CAS  PubMed  Google Scholar 

  • Thomson BC, Tisserant E, Plassart P, Uroz S, Griffiths RI, Hannula SE, Buee M, Mougel C, Ranjard L, Van Veen JA, Martin F, Bailey MJ, Lemanceau P (2015) Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol Biochem 88:403–413

    CAS  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    PubMed  Google Scholar 

  • Tkacz A, Cheema J, Chandra G, Grant A, Poole PS (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J 9:2349–2359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toju H, Yamamoto S, Sato H, Tanabe AS (2013) Sharing of diverse mycorrhizal and root-endophytic fungi among plant species in an oak-dominated cool-temperate forest. PLoS One 8:e78248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toussaint JP, Pham TTM, Barriault D, Sylvestre M (2012) Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol 95:1589–1603

    CAS  PubMed  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31:154–165

    CAS  PubMed  Google Scholar 

  • Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22:326–333

    PubMed  Google Scholar 

  • Van Buyten E, Hofte M (2013) Pythium species from rice roots differ in virulence, host colonization and nutritional profile. BMC Plant Biol 13:203

    PubMed  PubMed Central  Google Scholar 

  • Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CM, Ton J (2009) Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytol 183:419–431

    PubMed  Google Scholar 

  • Van der Heijden MG, de Bruin S, Luckerhoff L, van Logtestijn RS, Schlaeppi K (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399

    PubMed  Google Scholar 

  • Van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    PubMed  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev 10:828–840

    CAS  Google Scholar 

  • Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JJ, Shen J, Wu YC, Tu C, Soininen J, Stegen JC, He J, Liu X, Zhang L, Zhang E (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Solanki MK, Pang F et al (2017) Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech 19:492–500. https://doi.org/10.1007/s12355-016-0498-y

    Article  CAS  Google Scholar 

  • Wang Z, Solanki MK, Yu Z-X et al (2018) Draft genome analysis offers insights into the mechanism by which Streptomyces chartreusis WZS021 increases drought tolerance in sugarcane. Front Microbiol 9:3262. https://doi.org/10.3389/fmicb.2018.03262

    Article  PubMed  Google Scholar 

  • Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A (2015) Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun 6:8413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Green CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8(2):344–358

    CAS  PubMed  Google Scholar 

  • Yunshi L, Xiukun W, Tuo C, Wanfu W, Guangxiu L, Wei Z, Shiweng L, Minghao W, Changming Z, Huaizhe Z, Gaosen Z (2018) Plant phenotypic traits eventually shape its microbiota: a common garden test. Front Microbiol 9:2479

    Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    CAS  Google Scholar 

  • Zamioudis C, Korteland J, Van Pelt JA, van Hamersveld M, Dombrowski N, Bai Y, Hanson J, Van Verk MC, Ling HQ, Schulze-Lefert P, Pieterse CM (2015) Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J 84:309–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environ Microbiol 5:539–554

    CAS  PubMed  Google Scholar 

  • Zhang M, Silva MCP, De Mares MC, van Elsas J (2014) The mycosphere constitutes an arena for horizontal gene transfer with strong evolutionary implications for bacterial-fungal interactions. FEMS Microbiol Ecol 89:516–526

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xu J, Riera N, Jin T, Li J, Wang N (2017) Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5:97

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M.P., Singh, P., Singh, R.K., Solanki, M.K., Bazzer, S.K. (2020). Plant Microbiomes: Understanding the Aboveground Benefits. In: Solanki, M., Kashyap, P., Kumari, B. (eds) Phytobiomes: Current Insights and Future Vistas. Springer, Singapore. https://doi.org/10.1007/978-981-15-3151-4_3

Download citation

Publish with us

Policies and ethics