Skip to main content

Application of Protists to Improve Plant Growth in Sustainable Agriculture

  • Chapter
  • First Online:
Rhizotrophs: Plant Growth Promotion to Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

Plant health and growth are largely dependent on root-associated microbiota. Several bacteria and fungi can provide important services to plants, such as nutrient mineralization or protection against diseases. To date, most of our knowledge is centered on bacterial and fungal taxa. This chapter presents protists as an essential yet often overlooked component of the rhizosphere microbiome, where they play a crucial role in structuring microbial populations. Protists are a keystone group, functioning as predators of bacteria and fungi. They exert a strong pressure on plant-associated microbial communities and shape their functional and phylogenetic composition. They further enhance nutrient turnover and activate bacterial genes needed for pathogen suppression. Protists offer thus new venues to manage plant-associated microbial communities to enhance their functionality and ability to support a high plant growth in agricultural context. This chapter presents the main functional groups of soil protists and explains their distribution and importance for soil fertility. Finally, their applications in biotechnological settings aiming at reducing pesticide and fertilizer input in sustainable agriculture, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adl SM, Simpson AG, Lane CE et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59(5):429–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Alphei J, Bonkowski M, Scheu S (1996) Protozoa, nematoda and lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106:111–126

    Article  PubMed  Google Scholar 

  • Altermatt F, Fronhofer EA, Garnier A et al (2015) Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol Evol 6:218–231

    Article  Google Scholar 

  • Andersen KS, Winding A (2004) Non-target effect of bacterial biological control agents on soil protozoa. Biol Fertil Soils 40:230–236

    Article  CAS  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709–1715

    Article  CAS  Google Scholar 

  • Chen X, Liu M, Hu F, Mao X, Li H (2007) Contributions of soil micro-fauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecol Sin 27:3132–3143

    Article  CAS  Google Scholar 

  • Corno G, Jurgens K (2006) Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol 72:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darbyshire JF, Griffiths BS, Davidson MS, Mchardy WJ (1989) Ciliate distribution amongst soil aggregates. Eur J Soil Biol 26:47–56

    Google Scholar 

  • Ekelund F, Ronn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15:321–353

    Article  CAS  PubMed  Google Scholar 

  • Foissner W (1987) Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Prog Protistol 2:69–212

    Google Scholar 

  • Foissner W, Berger H, Xu K, Zechmeister-Boltenstern S (2004) A huge, undescribed soil ciliate (Protozoa: Ciliophora) diversity in natural forest stands of central Europe. Biodivers Conserv 14:617–701

    Article  Google Scholar 

  • Fritz-Laylin LK, Fulton C (2016) Naegleria: a classic model for de novo basal body assembly. Cilia 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Fussmann KE, Schwarzmuller F, Brose U, Jousset A, Rall BC (2014) Ecological stability in response to warming. Nat Clim Chang 4:206–210

    Article  Google Scholar 

  • Geisen S (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biol Biochem (in press)

    Google Scholar 

  • Geisen S, Rosengarten J, Koller R et al (2015) Pack hunting by a common soil amoeba on nematodes. Environ Microbiol 17:4538–4546

    Article  CAS  PubMed  Google Scholar 

  • Glucksman E, Bell T, Griffiths RI, Bass D (2010) Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol 12:3105–3113

    Article  PubMed  Google Scholar 

  • Gomez W, Buela L, Castro LT et al (2010) Evidence for gluconic acid production by Enterobacter intermedium as an efficient strategy to avoid protozoan grazing. Soil Biol Biochem 42:822–830

    Article  CAS  Google Scholar 

  • Jousset A (2012) Ecological and evolutive implications of bacterial defences against predators. Environ Microbiol 14:1830–1843

    Article  PubMed  Google Scholar 

  • Jousset A, Bonkowski M (2010) The model predator Acanthamoeba castellanii induces the production of 2,4- DAPG by the biocontrol strain Pseudomonas fluorescens Q2-87. Soil Biol Biochem 42:1647–1649

    Article  CAS  Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jousset A, Scheu S, Bonkowski M (2008) Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol 22:714–719

    Article  Google Scholar 

  • Jousset A, Lara E, Nikolausz M, Harms H, Chatzinotas A (2009a) Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil. Sci Total Environ 408:1221–1225

    Article  PubMed  Google Scholar 

  • Jousset A, Rochat L, Keel C, Pechy-Tarr M, Scheu S, Bonkowski M (2009b) Predators promote toxicity of rhizosphere bacterial communities by selective feeding on non-toxic cheaters. ISME J 3:666–674

    Article  CAS  PubMed  Google Scholar 

  • Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C (2010) Predator-prey chemical warfare determines the expression of antifungal genes by rhizosphere pseudomonads. Appl Environ Microbiol 76:5263–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klapper M, Götze S, Barnett R, Willing K, Stallforth P (2016) Bacterial alkaloids prevent amoebal predation. Angew Chem 128(31):9090–9093

    Article  Google Scholar 

  • Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M (2013) Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol 199(1):203–211

    Article  CAS  PubMed  Google Scholar 

  • Krashevska V, Sandmann D, Maraun M, Scheu S (2014) Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages. ISME J 8:1126–1134

    Article  CAS  PubMed  Google Scholar 

  • Kreuzer K, Adamczyk J, Iijima M et al (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.) Soil Biol Biochem 38:1665–1672

    Article  CAS  Google Scholar 

  • Kuikman PJ, Jansen AG, Vanveen JA (1991) 15N-nitrogen mineralization from bacteria by protozoan grazing at different soil-moisture regimes. Soil Biol Biochem 23:193–200

    Google Scholar 

  • Levrat P, Pussard M, Steinberg C, Alabouvette C (1991) Regulation of Fusarium oxysporum populations introduced into soil – the amoebal predation hypothesis. FEMS Microbiol Ecol 86:123–129

    Article  Google Scholar 

  • Levrat P, Pussard M, Alabouvette C (1992) Enhanced bacterial metabolism of a Pseudomonas strain in response to the addition of culture filtrate of a bacteriophagous amoeba. Eur J Protistol 28:79–84

    Article  CAS  PubMed  Google Scholar 

  • Matz C, Kjelleberg S (2005) Off the hook – how bacteria survive protozoan grazing. Trends Microbiol 13:302–307

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, de Bruijn I, Cohen MF, Raaijmakers JM (2009) Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl Environ Microbiol 75:6804–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagnes DJS, Barbosa AB, Boenigk J et al (2008) Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Microb Ecol 53:83–98

    Article  Google Scholar 

  • Moore JC, McCann K, Setälä H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Article  Google Scholar 

  • Neidig N, Jousset A, Nunes F et al (2010) Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity. Funct Ecol 24:1133–1138

    Article  Google Scholar 

  • Pawlowski J (2013) The new micro-kingdoms of eukaryotes. BMC Biol 11:1–3

    Article  Google Scholar 

  • Pedersen AL, Winding A, Altenburger A, Ekelund F (2011) Protozoan growth rates on secondary-metabolite-producing Pseudomonas spp. correlate with high-level protozoan taxonomy. FEMS Microbiol Letters 316:16–22

    Article  CAS  Google Scholar 

  • Rønn R, McCaig A, Griffiths B, Prosser J (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg K, Bertaux J, Scheu S, Bonkowski M (2009) Soil amoeba rapidly change bacterial community composition in Arabidopsis thaliana rhizosphere. ISME J 3:675–684

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Swallow MJB, Quideau SA, Norris CE (2013) Ciliate dependent production of microbial anthranilic acid occurring within aspen litter. Soil Biol Biochem 60:113–121

    Article  CAS  Google Scholar 

  • Weekers PHH, Bodelier PLE, Wijen JPH, Vogels GD (1993) Effects of grazing by the free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis on various bacteria. Appl Environ Microbiol 59:2317–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG (2004) Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci U S A 101:10644–10649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Jousset .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jousset, A. (2017). Application of Protists to Improve Plant Growth in Sustainable Agriculture. In: Mehnaz, S. (eds) Rhizotrophs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-4862-3_13

Download citation

Publish with us

Policies and ethics