Skip to main content

Marine Microbial Pharmacognosy: Prospects and Perspectives

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences

Abstract

Modern scientific advancements and research on marine microbes has revealed their significance as producers of therapeutic products useful in treating various human diseases. Microbes in marine habitat have evolved to adapt to the harsh condition that prevails in the ocean. Their struggle to compete for space and nutrients has paved way for the synthesis of different novel enzymes possessing distinctive characteristics. Thus, marine habitat hosts many remarkable microorganisms that offer unique biologically active compounds, enzymes endowed with astonishing properties, and mechanism to survive in extreme environmental conditions. The utilization of marine biotic resources grows at an extraordinary growth rate of 12% per annum and is evident from about 4900 patents filed connected with marine genetic resources and 18,000 natural compounds. This concern has boosted research all over the world to explore the untapped potential hidden in marine microbes, which has lot of biotechnological applications that includes bioactive compounds (metabolites) for therapeutics, novel enzymes, cosmetics, and nutraceuticals. This book chapter will meticulously deliberate the utilization of marine resources by biotechnological applications for therapeutics like antibiotics, chemical compounds, biopolymer, enzymes, and various microbial biomedical purposes such as drug delivery and tissue engineering from marine biota (bacteria, fungi, and algae).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49:6398–6400

    Article  CAS  Google Scholar 

  • Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P, Pathom-aree W, Goodfellow M, Bull AT, Horikoshi K, Ebel R, Diederich M (2010) Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org Biomol Chem 8:2352–2362

    Article  CAS  PubMed  Google Scholar 

  • Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S et al (2010) Isolation, phylogenetic analysis and anti-infective activity screen-ing of marine sponge-associated actinomycetes. Mar Drugs 8:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adinaryan G, Venkateshan MR, Bpiraju VV, Sujatha P, Premkumar J, Ellaiah P, Zeeck A (2006) Cytotoxic compounds from the marine actinobacterium. Bio Org Khim 32:328–334

    Google Scholar 

  • Antoszczak M, Steverding D, Huczyński A (2019) Anti-parasitic activity of polyether ionophores. Eur J Med Chem 166:32–47

    Article  CAS  PubMed  Google Scholar 

  • Arumugam M, Mitra A, Jaisankar P, Dasgupta S, Sen T, Gachhui R, Mukhopadhyay UK, Mukherjee J (2010) Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Appl Microbiol Biotechnol 86:109–117

    Article  CAS  PubMed  Google Scholar 

  • Arun A, Murrugappan R, Ravindran AD, Veeramanikandan V, Balaji S (2006) Utilization of various industrial wastes for the production of poly-b-hydroxy butyrate (PHB) by Alcaligenes eutrophus. Afr J Biotechnol 5(17)

    Google Scholar 

  • Asolkar RN, Freel KC, Jensen PR, Fenical W, Kondratyuk TP, Park E-J, Pezzuto JM (2008) ArenamidesA-C, cytotoxic NF B inhibitors from the marine Actinomycete Salinispora areni-cola. J Nat Prod 72:396–402

    Article  CAS  Google Scholar 

  • Awad NE (2000) Biologically active steroid fromthe green alga Ulva lactuca. Phytother Res 14:641–643

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AB, Usman M, Kandi V (2016) Current scenario of HIV/AIDS, treatment options, and major challenges with compliance to antiretroviral therapy. Cureus 8:1–12

    Google Scholar 

  • Biscoe TJ, Evans RH, Headley PM, Martin M, Watkins JC (1975) Domic and quisqualic acids as potent amino acids excitants of frog and rat spinal neurons. Nature 255:166–167

    Article  CAS  PubMed  Google Scholar 

  • Bister B, Bischoff D, Ströbele M, Riedlinger J, Reicke A, Wolter F, Bull AT, Zähner H, Fiedler HP, Süssmuth RD (2004) Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl 43:2574–2576

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35:8–53

    Article  CAS  PubMed  Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae: structure and reproduction, 2nd edn. Prentice-Hall Inc., Englewood Cliffs, NJ, pp 1–33

    Google Scholar 

  • Braña AF, Sarmiento-Vizcaíno A, Pérez-Victoria I, Otero L, Fernández J, Palacios JJ, Martín J, de la Cruz M, Díaz C, Vicente F, Reyes F (2017) Branimycins B and C, antibiotics produced by the abyssal actinobacterium Pseudonocardia carboxydivorans M-227. J Nat Prod 80:569–573

    Article  CAS  PubMed  Google Scholar 

  • Bull AT, Stach JE (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  PubMed  Google Scholar 

  • Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2019) Natural product reports. Nat Prod Rep 36:122–173

    Article  CAS  PubMed  Google Scholar 

  • Carter GT, Rinehart JR, Li LH, Kuentzel SL (1978) Brominated indoles from Laurencia Brongniartii. Tetrahedron Lett 19:4479–4482

    Article  Google Scholar 

  • Chen IL, Gerwick WH, Schatzman R, Laney M (1994) Isorawsonol and related IMO dehydrogenase inhibitors from the tropical alga Avrainvillea rawsoni. J Nat Prod 57:947–952

    Article  CAS  PubMed  Google Scholar 

  • Cho JY, Kwon HC, Williams PG, Kauffman CA, Jensen PR, Fenical W (2006) Actinofuranones A and B, polyketides from a marine derived bacterium related to the genus Streptomyces (Actinomycetales). J Nat Prod 69:425–428

    Article  CAS  PubMed  Google Scholar 

  • Cho JY, Williams PG, Kwon HC, Jensen PR, Fenical W (2007) Lucentamycins AD, cytotoxicpeptides from the marine-derived actinomycete Nocardiopsis lucentensis. J Nat Prod 70:1321–1328

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Park HJ, Jung HA, Chung HY, Jung JH, Choi WC (2000) A cyclohexanonyl bromophenol from the red alga Symphyocladia latiuscula. J Nat Prod 63:1705–1706

    Article  CAS  PubMed  Google Scholar 

  • Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 58:7781–7784

    Article  CAS  Google Scholar 

  • Davyt D, Entz W, Fernandez R, Mariezcurrena R, Mombrú AW, Saldana J et al (1998) A new indol derivative from the red alga Chondra atropurpurea. Isolation, structure determination, and anthelmintic activity. J Nat Prod 61:1560–1563

    Article  CAS  PubMed  Google Scholar 

  • Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ (2007) Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 70:1850–1853

    Article  CAS  PubMed  Google Scholar 

  • Dharmaraj S (2010) Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 26:2123–2139

    Article  CAS  Google Scholar 

  • El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008a) Ess-ramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157

    Article  CAS  Google Scholar 

  • El-Gendy MM, Hawas UW, Jaspars M (2008b) Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. J Antibiot 6:379

    Article  Google Scholar 

  • Eltamany EE, Abdelmohsen UR, Ibrahim AK, Hassanean HA, Hentschel U, Ahmed SA (2014) New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorg Med Chem Lett 24:4939–4942

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjærvik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotchev SB (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl Environ Microbiol 76:4969–4976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora. Angew Chem Int End Engl 42:355–357

    Article  CAS  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  CAS  PubMed  Google Scholar 

  • Fenical W, Sims JJ (1974) Cycloeudesmol, an antibiotic cyclopropane conatinnin sequiterpene from the marine alga, Chondriaoppositiclada Dawson. Tetrahedron Lett 13:1137–1140

    Article  Google Scholar 

  • Ferkany JW, Coyle JT (1985) Kainic acid selectivelystimulates the release of endogenous excitatory acidic amino acids. J Pharmacol Exp Ther 225:399–406

    Google Scholar 

  • Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-Aree W, Beil W, Schneider K (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158

    Article  CAS  Google Scholar 

  • Finer I, Clardy I, Fenical W, Finer J, Clardy J, Fenical W et al (1979) Structures of dictyodial and dictyolactone, unusual marine diterpenoids. J Org Chem 44:2044–2047

    Article  CAS  Google Scholar 

  • Fu P, MacMillan JB (2015) Thiasporines A–C, thiazine and thiazole derivatives from a marine-derived Actinomycetospora chlora. J Nat Prod 78:548–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuyama Y, Kodaama M, Miura I, Fukuyama Y, Kodama M, Miura I et al (1989) Antiplasmin inhibitor. V. Structures of novel dimeric eckols isolated from the brown alga Ecklonia kurome Okamura. Chem Pharm Bull 37:2438–2440

    Article  CAS  Google Scholar 

  • Fukuzawa A, Masamune T (1981) Laurepinnacin and isolaurepinnacin: new acetylenic cyclic ethers from the marine alga Laurencia pinnata Yamada. Tetrahedron Lett 22:4081–4084

    Article  CAS  Google Scholar 

  • Fuller RW, Cardellina JH, Kato Y, Brinen LS, Clardy J, Snader KM et al (1992) A pentahalogenated monoterepene from the red alga Portieria hornemannii produced a novel cytotoxicity profile against a diverse panel of human tumor celllin. J Med Chem 35:3007–3011

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W, Wang Y, Xi TA (2012) A novel anticancer and antifun-gus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 167:616–622

    Article  CAS  PubMed  Google Scholar 

  • Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillet J-P, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta (BBA) – Rev Cancer 1775:237–262

    Article  CAS  Google Scholar 

  • Han Y, Yang B, Zhang F, Miao X, Li Z (2009) Characterization of antifungal chitinase from marine Streptomyces sp., DA11 associated with South China Sea sponge Craniellaaustraliensis. Mar Biotechnol 11(1):132–140

    Article  CAS  Google Scholar 

  • Hawas UW, Shaaban M, Shaaban KA, Speitling M, Maier A, Kelter G, Fiebig HH, Meiners M, Helmke E, Laatsch H (2009) Mansouramycins A− D, cytotoxic isoquinolinequinones from a marine Streptomycete. J Nat Prod 72:2120–2124

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Shirasaki S, Kawasaki T, Matsuo Y, Adachi K, Shizuri Y (2007) Structures of new cytotoxic antibiotics, piericidins C 7 and C 8. J Antibiot 60:201

    Article  CAS  Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Brown R, Jones AL, Goodfellow M, Krämer M, Imhoff JF, Nicholson G, Fiedler HP, Süssmuth RD (2009a) Albidopyrone, a new α-pyrone-containing metabolite from marine-derived Streptomyces sp. NTK 227⋆. J Antibiot 62:75

    Article  CAS  Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach JE, Goodfellow M, Beil W (2009b) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99

    Article  CAS  Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach JE, Goodfellow M, Beil W (2009c) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp NTK 937& ast. J Antibiot 62:99–104

    Article  CAS  Google Scholar 

  • Huang H, Yao Y, He Z, Yang T, Ma J, Tian X, Li Y, Huang C, Chen X, Li W, Zhang S (2011) Antimalarial β-carboline and indolactam alkaloids from Marinactinospora thermotolerans, a deep sea isolate. J Nat Prod 74:2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Xie F, Ren B, Wang Q, Wang J, Wang Q, Abdel-Mageed WM, Liu M, Han J, Oyeleye A, Shen J (2016) Anti-MRSA and anti-TB metabolites from marine-derived Verrucosispora sp. MS100047. Appl Microbiol Biotechnol 100:7437–7447

    Article  CAS  PubMed  Google Scholar 

  • Hughes CC, Prieto-Davo A, Jensen PR, Fenical W (2008) The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10:629–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2016) Natural products from marine fungi - still an underrepresented resource. Mar Drugs 14(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, OKino T, Suzuki M, Machiguchi M (2004) Tichocarpols A and B, two novel phenylpropanoids with feeding-deterrent activity from the red alga Tichocarpus crinitus. J Nat Prod 67:1764–1766

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Kinoshita M, Aoki S, Kobayashi M (2003) Komodoquinone A, a novel neuritogenic anthracycline, from marine Streptomyces sp. KS3. J Nat Prod 66:1373–1377

    Article  CAS  Google Scholar 

  • Janardhan A, Kumar AP, Viswanath B, Saigopal DVR, Narasimha G (2014) Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnol Res Int:1–8

    Google Scholar 

  • Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73(4):1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, Shin HJ, Kim TS, Lee HS, Park SK, Kim HM (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot 5:234

    Article  Google Scholar 

  • Jiang Z-D, Jensen PR, Fenical W (1999) Lobophorins A and B, new anti-inflammatory macrolides produced by a tropical marine bacterium. Bioorg Med Chem Lett 9:2003–2006

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Li J, Han F, Duan G, Lu X (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 6:1–11

    Google Scholar 

  • Jørgensen H, Degnes KF, Dikiy A, Fjærvik E, Klinkenberg G, Zotchev SB (2010) Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Appl Environ Microbiol 76:283–293

    Article  CAS  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL et al (2008) Global trendsin emerging infectious diseases. Nature 451(7181):990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y (2005) Mechercharmycins A and B, cytotoxic substances from marine-derived Thermo actinomyces sp. YM3-251. J Antibiot 58:289

    Article  CAS  Google Scholar 

  • Karthik L, Kumar G, Keswan T, Bhattacharyya CSS, Rao KB (2014) Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 9:1–13

    Article  CAS  Google Scholar 

  • Kawahara T, Itoh M, Izumikawa M, Kozone I, Sakata N, Tsuchida T, Shin-ya K (2014) New hydroxamate metabolite, MBJ-0003, from Micromonospora sp. 29867. J Antibiot 67:261

    Article  CAS  Google Scholar 

  • Khan S, Kong C, Kim J, Kim S (2015) Protective effect of Amphiroa dilatata on ROS induced oxidative damage and MMP expressions in HT1080 cells. Biotechnol Bioprocess Eng 1:191–198

    Google Scholar 

  • Kijjoa A, Sawangwong P (2004) Drugs and cosmetics from the sea. Mar Drugs 2:73–82

    Article  CAS  PubMed Central  Google Scholar 

  • Kim SK, Pangestuti R (2011) Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. In: Advances in food and nutrition research, vol 64. Academic Press, Cambridge, MA, pp 111–128

    Google Scholar 

  • Kim Y, Ogura H, Akasaka K, Oikawa T, Matsuura N, Imada C, Yasuda H, Igarashi Y (2014) Nocapyrones: α-and γ-Pyrones from a Marine-Derived Nocardiopsis sp. Mar Drugs 12:4110–4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Fukuda T, Terahara T, Harunari E, Imada C, Tomoda H (2015) Diketopiperazines, inhibitors of sterol O-acyltransferase, produced by a marine-derived Nocardiopsis sp. KM2-16. J Antibiot 68:638

    Article  CAS  Google Scholar 

  • Koehn E, Gunasekera SP, Niel DN, Cross SS (1991) Halitunal, an unusual diterpene Aldehyde from the marine alga Halimeda tuna. Tetrahedron Lett 32:169–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerma N (2006) Mycosporines in extremophilic fungi–novel complementary osmolytes? Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Kossuga MH, Romminger S, Xavier C, Milanetto MC, Valle MZ, Pimenta EF et al (2012) Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites. Rev Bras Farm 22(2):257–267

    Article  CAS  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci 100:6916–6921

    Article  CAS  PubMed  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  PubMed  Google Scholar 

  • Leary D, Vierros M, Hamon G, Arico S, Monagle C (2009) Marine genetic resources: a review of scientific and commercial interest. Mar Policy 33:183–194

    Article  Google Scholar 

  • Lee YS, Shin KH, Kim BK, Lee S (2004) Antidiabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res 27:1120–1122

    Article  CAS  PubMed  Google Scholar 

  • Lee J-G, Yoo I-D, Kim W-G (2007) Differential antiviral activity of benzastatin C and its dechlorinated derivative from Streptomyces nitrosporeus. Biol Pharm Bull 30(4):795–797

    Article  CAS  PubMed  Google Scholar 

  • Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045, 1. J Nat Prod 68:349–353

    Article  CAS  PubMed  Google Scholar 

  • Li DH, Zhu TJ, Liu HB, Fang YC, Gu QQ, Zhu WM (2006) Four butenolides are novel cytotoxic compounds isolated from the marine-derived bacterium, Streptoverticillium luteoverticillatum 11014. Arch Pharm Res 29:624–626

    Article  CAS  PubMed  Google Scholar 

  • López Y, Cepas V, Soto SM (2018) The marine ecosystem as a source of antibiotics. In: Rampelotto P, Trincone A (eds) Grand challenges in marine biotechnology. Grand challenges in biology and biotechnology. Springer, Cham

    Google Scholar 

  • Macherla VR, Liu J, Bellows C, Teisan S, Nicholson B, Lam KS, Potts BC (2005) Glaciapyrroles A, B, and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 68:780–783

    Article  CAS  PubMed  Google Scholar 

  • Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S, Lam KS, Potts BC (2007) Lipoxazolidinones A, B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J Nat Prod 70:1454–1457

    Article  CAS  PubMed  Google Scholar 

  • Maneerat S, Phetrong K (2007) Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J Sci Technol 29:781–791

    Google Scholar 

  • Manivasagan P, Kang KH, Sivakumar K, Li-Chan EC, Oh HM, Kim SK (2014a) Marine actinobacteria: an important source of bioactive natural products. Environ Toxicol Pharmacol 38:172–188

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014b) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278

    Article  CAS  PubMed  Google Scholar 

  • Maskey RP, Helmke E, Laatsch H (2003) Himalomycin A and B: isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J Antibiot 25:56

    Google Scholar 

  • Maskey RP, Helmke E, Kayser O, Fiebig HH, Maier A, Busche A, Laatsch H (2004) Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine streptomycete and their absolute stereochemistry. J Antibiot 57:771–779

    Article  CAS  Google Scholar 

  • Mayer AM, Rodríguez AD, Berlinck RG, Fusetani N (2011) Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 153:191–222

    Article  CAS  PubMed  Google Scholar 

  • McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS, Potts BC (2008) Lynamicins A− E, chlorinated bisindole pyrrole antibiotics from a novel marine Actinomycete. J Nat Prod 71:1732–1737

    Article  CAS  Google Scholar 

  • Miller ED, Kauffman CA, Jensen PR, Fenical W (2007) Piperazimycins: cytotoxic hexadep-sipeptides from a marine-derived bacterium of the genus Streptomyces. J Org Chem 72(2):323–330

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BC (2004) Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod 67:1400–1402

    Article  CAS  PubMed  Google Scholar 

  • Mohanrasu K, Premnath N, Prakash GS, Sudhakar M, Boobalan T, Arun A (2018) Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. J Photochem Photobiol 185:55–65

    Article  CAS  Google Scholar 

  • Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept Sci 104:129–147

    Article  CAS  Google Scholar 

  • Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W (1999) Salinamides, antiinflammatory depsipeptides from a marine Streptomycete. J Org Chem 64:1145–1150

    Article  CAS  Google Scholar 

  • Ngo DH, Kim SK (2013) Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 62:70–75

    Article  CAS  PubMed  Google Scholar 

  • Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod 71:570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohata K, Mizushina Y, Hirata N, Ohta K, Mizushima Y, Hirata N et al (1998) Sulphoquinovosyl diacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIVreverse transcriptase type from a marine red alga Gigartina tenella. Chem Pharm Bull 46:684–686

    Article  Google Scholar 

  • Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microb Ecol 12:65–78

    Article  CAS  PubMed  Google Scholar 

  • Okutani K (1984) Antitumor and immunostimulant activities of polysaccharides produced by a marine bacterium of the genus Vibrio. Bull Jap Soc Sci Fish 50:1035–1037

    Article  Google Scholar 

  • Okutani K (1992) Antiviral activities of sulfated derivatives of a fucosamine-containing polysaccharide of marine bacterial origin. Nippon Suisan Gakk 58:927–930

    Article  CAS  Google Scholar 

  • Osterhage C, Kaminsky R, Koeing GM, Wright AD (2000) Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem 65:6412–6417

    Article  CAS  PubMed  Google Scholar 

  • Pathom-aree W, Nogi Y, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Dermacoccus barathri sp. nov. and Dermacoccus profundi sp. nov., novel actinomycetes isolated from deep-sea mud of the Mariana Trench. Int J Syst Evol Microbiol 56(10):2303–2307

    Article  CAS  PubMed  Google Scholar 

  • Pereira HS, Leao-Ferreira LR, Moussatche N, Pereira H, Leão-Ferreira LR, Moussatché N et al (2004) Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antivir Res 64:69–76

    CAS  PubMed  Google Scholar 

  • Pimentel-Elardo SM, Kozytska S, Bugni TS, Ireland CM, Moll H, Hentschel U (2010) Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Mar Drugs 8(2):373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P et al (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3(6):2335

    Article  CAS  Google Scholar 

  • Puglisi MP, Tan LT, Jensen PR, Fenical W (2004) Capisterones A and B from the tropical green Alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron 60:7035–7039

    Article  CAS  Google Scholar 

  • Rainbow PS (1995) Bio monitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183–192

    Article  CAS  Google Scholar 

  • Rämä T, Davey M, Norden J, Halvorsen R, Blaalid R, Mathiassen G (2016) Fungi sailing the Arctic Ocean: speciose communities in North Atlantic driftwood as revealed by highthroughput amplicon sequencing. Microb Ecol 72:295–304

    Article  CAS  PubMed  Google Scholar 

  • Rangel M, Falkenberg M (2015) An overview of the marine natural products in clinical trials and on the market. J Coast Life Med 3:421–428

    CAS  Google Scholar 

  • Ravikumar S, Gnanadesigan M, Thajuddin N, Chakkaravarthi V, Banerjee B (2010) Anti-cancer property of sponge associated actinomycetes along Palk Strait. J Pharm Res 3(10):2415–2417

    Google Scholar 

  • Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Rl C, Barrow RA, Rochfort S, Capon RJ, Barrow RA, Rochfort S et al (1998) Marine nematodes: tetrahydrofuran from a southern Australian brown alga, Notheia anomala. Tetrahdron 5:2227–2242

    Google Scholar 

  • Riedlinger J, Reicke A, Zähner HA, Krismer B, Bull AT, Maldonado LA, Ward AC, Good fellow M, Bister B, Bischoff D, Süssmuth RD (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279

    Article  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  • Romanenko LA, Uchino M, Tebo BM, Tanaka N, Frolova GM, Mikhailov VV (2008) Pseudomonas marincola sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 58:706–710

    Article  CAS  PubMed  Google Scholar 

  • Romero F, Espliego F, Jp B, De Quesada TG, Grávalos D, De La Calle FE, Fernández-Puentes JL (1997) Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. J Antibiot 5:734–737

    Article  Google Scholar 

  • Roy SS, Pal R (2015) Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Proc Zool Soc 68(1):1–8

    Article  Google Scholar 

  • Saurav K, Kannabiran K (2012) Cytotoxicity and antioxidant activity of 5-(2, 4-dimethylbenzyl) pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi J Biol Sci 19:81–86. Vancouver

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Keller S, Wolter FE, Röglin L, Beil W, Seitz O, Nicholson G, Bruntner C, Riedlinger J, Fiedler HP, Süssmuth RD (2008) Proximicins A, B,and C—antitumor furan analogues of netropsin from the marine actinomycete Verrucosispora induce upregulation of p53 and the cyclin kinase inhibitor p21. Angew Chem Int Ed 47(17):3258–3261

    Article  CAS  Google Scholar 

  • Schultz AW, Oh DC, Carney JR, Williamson RT, Udwary DW, Jensen PR, Gould SJ, Fenical W, Moore BS (2008) Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130:4507–4516

    Article  CAS  PubMed  Google Scholar 

  • Schumacher RW, Talmage SC, Miller SA, Sarris KE, Davidson BS, Goldberg A (2003) Isolation and structure determination of an antimicrobial ester from a marine sediment-derived bacterium. J Nat Prod 66:1291–1293

    Article  CAS  PubMed  Google Scholar 

  • Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer AM, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HJ, Kim TS, Lee HS, Park JY, Choi IK, Kwon HJ (2008) Streptopyrrolidine, an angiogenesis inhibitor from a marine-derived Streptomyces sp. KORDI-3973. Phytochemistry 69:2363–2366

    Article  CAS  PubMed  Google Scholar 

  • Shin HJ, Mondol MM, Yu TK, Lee HS, Lee YJ, Jung HJ, Kim JH, Kwon HJ (2010) An angiogenesis inhibitor isolated from a marine-derived actinomycete, Nocardiopsis sp. 03N67. Phytochem Lett 3:194–197

    Article  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22(3):142–146

    Article  CAS  PubMed  Google Scholar 

  • Solanki R, Khanna M, Lal R (2008) Bioactive compounds from marine actinomycetes. Indian J Microbiol 48:410–431

    Article  CAS  PubMed  Google Scholar 

  • Stritzke K, Schulz S, Laatsch H, Helmke E and Beil W (2004) Novel caprolactones from a marine Streptomycete. J Nat Prod 67:395–401

    Google Scholar 

  • Subramani R, Aalbersberg W (2013) Culturable rare actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 97:9291–9321

    Article  CAS  PubMed  Google Scholar 

  • Subramani R, Sipkema D (2019) Marine rare actinomycetes: a promising source of structurally diverse and unique novel natural products. Mar Drugs 17:249

    Article  CAS  PubMed Central  Google Scholar 

  • Sun M, Chen X, Li W, Lu C, Shen Y (2017) New diketopiperazine derivatives with cytotoxicity from Nocardiopsis sp. YIM M13066. J Antibiot 70:795

    Article  CAS  Google Scholar 

  • Takahashi C, Minoura K, Yamada T, Numata A, Kushida K, Shingu T, Hagishita S, Nakai H, Sato T, Harada H (1995) Potent cytotoxic metabolites from a Leptosphaeria species. Structure determination and conformational analysis. Tetrahedron 51(12):3483–3498

    Article  CAS  Google Scholar 

  • Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thi QV, Tran VH, Mai HDT, Le CV, Hong MLT, Murphy BT, Chau VM, Pham VC (2016) Antimicrobial metabolites from a marine-derived actinomycete in Vietnam's East Sea. Nat Prod Commun 11:49–51

    PubMed  Google Scholar 

  • United States Environmental Protection Agency (2006) Marine ecosystems. http://www.epa.gov/bioiweb1/aquatic/marine.html

    Google Scholar 

  • Uzair B, Ahmed N, Ahmad VU, Mohammad FV, Edwards DH (2008) The isolation, purification and biological activity of a novel antibacterial compound produced by Pseudomonas stutzeri. FEMS Microbiol Lett 279:243–250

    Article  CAS  PubMed  Google Scholar 

  • Wanner LA (2009) A patchwork of Streptomyces species isolated from potato common scablesions in North America. Am J Potato Res 86(4):247–264

    Article  Google Scholar 

  • Weyland H (1969) Actinomycetes in North Sea and Atlantic Ocean sediments. Nature 223:858

    Article  CAS  PubMed  Google Scholar 

  • Williams PG, Asolkar RN, Kondratyuk T, Pezzuto JM, Jensen PR, Fenical W (2007) Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod 70:83–88

    Article  CAS  PubMed  Google Scholar 

  • World Health Organisation (2014) Antimicrobial resistance: 2014 global report on surveillance. World Health Organization, Geneva

    Google Scholar 

  • Wu SJ, Fotso S, Li F, Qin S, Kelter G, Fiebig HH, Laatsch H (2006) N-Carboxamido-staurosporine and Selina-4 (14), 7 (11)-diene-8, 9-diol, New Metabolites from a Marine Streptomyces sp. J Antibiot 59:331

    Article  CAS  Google Scholar 

  • Wyche TP, Piotrowski JS, Hou Y, Braun D, Deshpande R, McIlwain S, Ong IM, Myers CL, Guzei IA, Westler WM, Andes DR (2014) Forazoline A: marine-derived polyketide with antifungal in vivo efficacy. Angew Chem Int Ed 53:11583–11586

    Article  CAS  Google Scholar 

  • Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanrasu, K., Rao, R.G.R., Sudhakar, M., Raja, R., Jeyakanthan, J., Arun, A. (2020). Marine Microbial Pharmacognosy: Prospects and Perspectives. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_5

Download citation

Publish with us

Policies and ethics