Skip to main content

Role of Metagenomics in Plant Disease Management

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Abstract

Metagenomics employs present-day genomics mechanization to microbial communities in their innate habitats, omitting the obligation of culturing. Assembly of metagenomics sequence components is an arduous step, which involves quality check, assembly, binning, mapping, re-assembly, gene annotation and visualization. Numerous metagenomics scrutiny conduits along with visualization means are being refined from time to time to aid aforementioned process. This chapter furnishes a compendium of metagenomics applications in crop improvement via understanding and mitigating plant diseases through their appropriate management and control. Here, the role of metagenomics for plant disease management is illustrated with suitable examples for understanding microbial systems and microbiomes, plant-microbial interactions, disease diagnostics and phytopathology studies. Also, applications of metagenomics in isolation of novel microbial species for disease control, production of protective compounds for exogenous application and plant breeding for disease resistance and for production of disease-resistant genetically modified crops are elaborated. The chapter will be efficacious for students and researchers involved in plant stress and genomic studies and also to the coterie of scientists who have discerned the potentiality of metagenomics and are traversing the strategies involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelfattah A, Wisniewski M, Nicosia MGLD, Cacciola SO, Schena L (2016) Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs. PLoS One 11(8):e0160470

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10(4):537–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams IP, Glover RH, Monger WA, Thwaites R, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2011) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant pathology. In: Handbook of molecular microbial ecology II: Metagenomics in different habitats, pp 63–72

    Chapter  Google Scholar 

  • Agrios GN (2005) Plant pathology. Academic press, Cambridge

    Google Scholar 

  • Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt. Front Plant Sci 7:498

    Article  PubMed  PubMed Central  Google Scholar 

  • Al Rwahnih M, Daubert S, Golino D, Rowhani A (2009) Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387(2):395–401

    Article  PubMed  Google Scholar 

  • Andrews S (2017) FastQC: a quality control tool for high throughput sequence data, p 2010

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1986) Ecology. Individuals, populations and communities. Blackwell scientific publications, Hoboken

    Google Scholar 

  • Benítez MS, Gardener BBM (2009) Linking sequence to function in soil bacteria: sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression. Appl Environ Microbiol 75(4):915–924

    Article  PubMed  Google Scholar 

  • Berg G, Opelt K, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56(2):250–261

    Article  CAS  PubMed  Google Scholar 

  • Bernardo P, Albina E, Eloit M, Roumagnac P (2013) Pathology and viral metagenomics, a recent history. Medecine sciences: M/S 29(5):501–508

    Article  Google Scholar 

  • van der Biezen EA (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci 6(3):89–91

    Article  PubMed  Google Scholar 

  • Biffen RH (1905) Mendel's laws of inheritance and wheat breeding. J Agric Sci 1(1):4–48

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016a) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP (2016b) Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000 Research:5

    Google Scholar 

  • Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G (2015) Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 17(1):239–252

    Article  CAS  PubMed  Google Scholar 

  • Chang HX, Haudenshield JS, Bowen CR, Hartman GL (2017) Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front Microbiol 8:519

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapelle-Pineau E, Mendes R, Bakker PA, Raaijmakers JM (2015) Fungal invasion of the rhizosphere microbiome. In: Embrapa Meio Ambiente-Resumo em anais de congresso (ALICE), RHIZOSPHERE, vol 4. Wageningen University & Research Centre and the Netherlands Institute of Ecology, 2015, Maastricht. Stretching the interface of life: abstracts

    Google Scholar 

  • Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7(13):11

    PubMed  PubMed Central  Google Scholar 

  • Demanèche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P, Wildi W, Vogel TM, Simonet P (2008) Antibiotic-resistant soil bacteria in transgenic plant fields. Proc Natl Acad Sci 105(10):3957–3962

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L, McDaniel L (2008) Functional metagenomic profiling of nine biomes. Nature 452(7187):629

    Article  CAS  PubMed  Google Scholar 

  • Dumroese RK, Mee-sook K, James RL (2012) Fusarium oxysporum protects douglas-fir (Pseudotsuga menziesii) seedlings from root disease caused by fusarium commune. Plant Pathol J. 28(3):311–316

    Google Scholar 

  • Dupré J, O’Malley MA (2007) Metagenomics and biological ontology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 38(4):834–846

    Article  Google Scholar 

  • El-Banna N, Winkelmann G (1998) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Evans MR, Bithell M, Cornell SJ, Dall SR, Díaz S, Emmott S, Ernande B, Grimm V, Hodgson DJ, Lewis SL, Mace GM (2013) Predictive systems ecology. Proc R Soc B Biol Sci 280(1771):20131452

    Article  Google Scholar 

  • Fletcher J, Melcher U, Luster DG, Sherwood JL (2008) Microbial forensics and plant pathogens: attribution of agricultural crime. In: Wiley handbook of science and technology for homeland security, pp 1–24

    Google Scholar 

  • Fletcher J, Barnaby NG, Burans JP, Melcher U, Nutter FW Jr, Thomas C, Corona FMO (2011) Forensic plant pathology. In: Microbial forensics. Academic Press, Cambridge, pp 89–724

    Chapter  Google Scholar 

  • Frasz SL, Walker AK, Nsiama TK, Adams GW, Miller JD (2014) Distribution of the foliar fungal endophyte Phialocephala scopiformis and its toxin in the crown of a mature white spruce tree as revealed by chemical and qPCR analyses. Can J For Res 44(9):1138–1143

    Article  CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26(1):75–91

    Article  CAS  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, Von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Article  Google Scholar 

  • Garrett KA, Hulbert SH, Leach JE, Travers SE (2006) Ecological genomics and epidemiology. Eur J Plant Pathol 115(1):35–51

    Article  CAS  Google Scholar 

  • Garrett KA, Jumpponen A, Toomajian C, Gomez-Montano L (2012) Climate change and plant health: designing research spillover from plant genomics for understanding the role of microbial communities. Can J Plant Pathol 34(3):349–361

    Article  Google Scholar 

  • Gazis R, Chaverri P (2015) Wild trees in the Amazon basin harbor a great diversity of beneficial endosymbiotic fungi: is this evidence of protective mutualism? Fungal Ecol 17:18–29

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307

    Article  CAS  PubMed  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54(1):1–10

    Article  Google Scholar 

  • Hjort K, Presti I, Elväng A, Marinelli F, Sjöling S (2014) Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol 98(6):2819–2828

    Article  CAS  PubMed  Google Scholar 

  • Ho NH, Baisakh N, Oliva N, Datta K, Frutos R, Datta SK (2006) Translational fusion hybrid Bt genes confer resistance against yellow stem borer in transgenic elite Vietnamese rice (Oryza sativa L.) cultivars. Crop Sci 46(2):781–789

    Article  CAS  Google Scholar 

  • Holdenrieder O, Pautasso M, Weisberg PJ, Lonsdale D (2004) Tree diseases and landscape processes: the challenge of landscape pathology. Trends Ecol Evol 19(8):446–452

    Article  PubMed  Google Scholar 

  • Ibrahim M, Schlegel M, Sieber TN (2016) Venturia orni sp. nov., a species distinct from Venturia fraxini, living in the leaves of Fraxinus ornus. Mycol Prog 15(3):29

    Article  Google Scholar 

  • Jain S, Choudhary DK, Sharma KP, Aggarwal R (2018) Bacterial mediated plant protection: induced systemic resistance in soybean. In: Microbial biotechnology. Springer, Singapore, pp 193–206

    Chapter  Google Scholar 

  • Jumpponen A, Keating K, Gadbury G, Jones KL, Mattox JD (2010) Multi-element fingerprinting and high throughput sequencing identify multiple elements that affect fungal communities in Quercus macrocarpa foliage. Plant Signal Behav 5(9):1157–1161

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung BK, Hong SJ, Park GS, Kim MC, Shin JH (2018) Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl Biol Chem 61(2):173–180

    Article  CAS  Google Scholar 

  • Kim SH, Olson TN, Schaad N (2002) Ralstonia solanacearum Biovar 2, race 3 in geraniums imported from Guatemala to Pennsylvania in 1999. Phytopathology 92(6):S42

    Google Scholar 

  • Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120

    Article  CAS  PubMed  Google Scholar 

  • Krohn K, Biele C, Drogies KH, Steingrover K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Eur J Org Chem 14:2331–2336

    Article  Google Scholar 

  • Lamichhane JR, Venturi V (2015) Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front Plant Sci 6:385

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawley V, Lewis M, Clarke K, Ostendorf B (2016) Site-based and remote sensing methods for monitoring indicators of vegetation condition: an Australian review. Ecol Indic 60:1273–1283

    Article  Google Scholar 

  • Long SR (2001) Genes and signals in the rhizobium-legume symbiosis. Plant Physiol 125(1):69–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDiarmid R, Rodoni B, Melcher U, Ochoa-Corona F, Roossinck M (2013) Biosecurity implications of new technology and discovery in plant virus research. PLoS Pathog 9(8):e1003337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. Peer J 2:e593

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmuti M, West JS, Watts J, Gladders P, Fitt BD (2009) Controlling crop disease contributes to both food security and climate change mitigation. Int J Agric Sustain 7(3):189–202

    Article  Google Scholar 

  • Marine RL, Nasko DJ, Wray J, Polson SW, Wommack KE (2017) Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology. ISME J 11(11):2479

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  • Mashiane RA, Ezeokoli OT, Adeleke RA, Bezuidenhout CC (2017) Metagenomic analyses of bacterial endophytes associated with the phyllosphere of a Bt maize cultivar and its isogenic parental line from South Africa. World J Microbiol Biotechnol 33(4):80

    Article  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, Voort MVD, Schneider JHM, Piceno MY, DeSantis TZ, Andersen GL, Bakker PHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Google Scholar 

  • Mendes LW, Raaijmakers JM, de Hollander M, Mendes R, Tsai SM (2018) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12(1):212

    Article  PubMed  Google Scholar 

  • Miller JD (2011) Foliar endophytes of spruce species found in the Acadian forest: basis and potential for improving the tolerance of the forest to spruce budworm. In: Endophytes of forest trees. Springer, Dordrecht, pp 237–249

    Chapter  Google Scholar 

  • Miller JD, Mackenzie S, Mark FOTO, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106(4):471–479

    Article  Google Scholar 

  • Miller JD, Sumarah MW, Adams GW (2008) Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol 34(3):362–368

    Article  CAS  PubMed  Google Scholar 

  • Mourgues F, Brisset MN, Chevreau E (1998) Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol 16(5):203–210

    Article  CAS  PubMed  Google Scholar 

  • Myrold DD, Zeglin LH, Jansson JK (2014) The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci Soc Am J 78(1):3–10

    Article  Google Scholar 

  • Nagarajan N, Pop M (2013) Sequence assembly demystified. Nat Rev Genet 14(3):157

    Article  CAS  PubMed  Google Scholar 

  • Neelakanta G, Sultana H (2013) The use of metagenomic approaches to analyze changes in microbial communities. Microbiol Insights 6:MBI-S10819

    Article  Google Scholar 

  • Nogales A, Nobre T, Valadas V, Ragonezi C, Döring M, Polidoros A, Arnholdt-Schmitt B (2015) Can functional hologenomics aid tackling current challenges in plant breeding? Brief Funct Genomics 15(4):288–297

    Article  PubMed  Google Scholar 

  • Nutter RC, Scheets K, Panganiban LC, Lommel SA (1989) The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucleic Acids Res 17(8):3163–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberding L, Gieg L (2016) Metagenomic analyses reveal that energy transfer gene abundances can predict the syntrophic potential of environmental microbial communities. Microorganisms 4(1):5

    Article  PubMed Central  Google Scholar 

  • Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos L (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9:BBI-S12462

    Article  Google Scholar 

  • Park K, Kloepper JW, Ryu CM (2008) Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J Microbiol Biotechnol 18(18):1095–1100

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2):341–361

    Article  CAS  Google Scholar 

  • Reinink K (1986) Experimental verification and development of EPIPRE, a supervised disease and pest management system for wheat. Neth J Plant Pathol 92(1):3–14

    Article  Google Scholar 

  • Ridout M, Newcombe G (2015) The frequency of modification of Dothistroma pine needle blight severity by fungi within the native range. For Ecol Manag 337:153–160

    Article  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman ARA (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Choudhary N, Guillermo LM, Shao J, Govindarajulu A, Achor D, Wei G, Picton DD, Levy L, Nakhla MK, Hartung JS (2013) A novel virus of the genus Cilevirus causing symptoms similar to citrus leprosis. Phytopathology 103(5):488–500

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Microbial root endophytes. Springer, Berlin, Heidelberg, pp 1–13

    Chapter  Google Scholar 

  • Siegwald L, Touzet H, Lemoine Y, Hot D, Audebert C, Caboche S (2017) Assessment of common and emerging bioinformatics pipelines for targeted metagenomics. PLoS One 12(1):e0169563

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva DP, Castañeda-Ojeda MP, Moretti C, Buonaurio R, Ramos C, Venturi V (2014) Bacterial multispecies studies and microbiome analysis of a plant disease. Microbiology 160(3):556–566

    Article  Google Scholar 

  • Stewart JE, Kim MS, James RL, Dumroese RK, Klopfenstein NB (2006) Molecular characterization of Fusarium oxysporum and Fusarium commune isolates from a conifer nursery. Phytopathology 96(10):1124–1133

    Article  CAS  PubMed  Google Scholar 

  • Stewart JE, Abdo Z, Dumroese RK, Klopfenstein NB, Kim MS (2012) Virulence of Fusarium oxysporum and F. commune to Douglas-fir (Pseudotsuga menziesii) seedlings. For Pathol 42(3):220–228

    Article  Google Scholar 

  • Stobbe AH, Roossinck MJ (2014) Plant virus metagenomics: what we know and why we need to know more. Front Plant Sci 5:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Stobbe AH, Daniels J, Espindola AS, Verma R, Melcher U, Ochoa-Corona F, Garzon C, Fletcher J, Schneider W (2013) E-probe diagnostic nucleic acid analysis (EDNA): a theoretical approach for handling of next generation sequencing data for diagnostics. J Microbiol Methods 94(3):356–366

    Article  CAS  PubMed  Google Scholar 

  • Studholme DJ, Glover RH, Boonham N (2011) Application of high-throughput DNA sequencing in phytopathology. Annu Rev Phytopathol 49:87–105

    Article  CAS  PubMed  Google Scholar 

  • Syed S, Tollamadugu NP (2019) Microbes in the generation of genetically engineered plants for disease resistance. In: Recent developments in applied microbiology and biochemistry. Academic Press, Cambridge, pp 235–248

    Chapter  Google Scholar 

  • Treangen, T.J., Koren, S., Sommer, D.D., Liu, B., Astrovskaya, I., Ondov, B., Darling, A.E., Phillippy, A.M. and Pop, M., 2013. MetAMOS:

    Google Scholar 

  • Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426

    Article  PubMed  Google Scholar 

  • Wamaitha MJ, Nigam D, Maina S, Stomeo F, Wangai A, Njuguna JN, Holton TA, Wanjala BW, Lucas T, Djikeng A, Gracia-Ruiz H (2018) Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya. Virol J 15:90

    Google Scholar 

  • Wang M, Xing Y, Wang J, Xu Y, Wang G (2014) The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take-all. Can J Microbiol 60(8):533–540

    Article  CAS  PubMed  Google Scholar 

  • Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci 109(26):E1743–E1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40(1):309–348

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. In: Advances in botanical research, vol 26. Academic Press, Cambridge, pp 1–134

    Google Scholar 

  • Wille L, Messmer MM, Studer B, Hohmann P (2019) Insights to plant–microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant Cell Environ 42(1):20–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taunk, J., Goutam, U. (2021). Role of Metagenomics in Plant Disease Management. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_9

Download citation

Publish with us

Policies and ethics