Skip to main content

Bacterial Mediated Plant Protection: Induced Systemic Resistance in Soybean

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Soybean (Glycine max L. Merrill) is world’s most important source of the highest protein content among leguminous crops. Several pathogens like fungi, bacteria and viruses attack on the soybean plant and cause different diseases leading to the great losses in the yield. At global level a wide-ranging research has been done to build up resistance varieties against biotic stresses by means of genetic engineering. In the present scenario an alternative strategy has developed wherein bacteria played a key role to the plants successful survival against pathogen stress. Plant growth promoting rhizobacteria (PGPR) elicited a higher level of resistance in addition to indigenous immune system in the form of induced systemic resistance (ISR) in plants and offers heightened level of protection. ISR is the prior activation of induced resistance in plants leading to triggering of jasmonic acid and ethylene mediated signaling pathways. Nonexpressor of pathogenesis related protein 1 (NPR1) work as a master regulator of hormonal defense signaling pathway leading to activation of pathogenesis related and defense related protein depend on the preceding signals. This review chapter will focus on research study done on soybean concerning interaction between PGPRs and plants under biotic stress condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abawi GS, Grogan RG (1979) Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69(8):899–904

    Article  Google Scholar 

  • Al-Ani RA, Adhab MA, Mahdi MH, Abood HM (2012) Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Prot Sci 48:149–155

    Article  Google Scholar 

  • Angelique JP, Carl AB, Martin IC, Dean KM, Daren SM, Kiersten AW, Paul DE (2012) Biology yield loss and control of sclerotinia stem rot of soybean. J Integr Pest Manage 3(2):B1–B7

    Google Scholar 

  • Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21(8–9):1639–1645

    Article  CAS  Google Scholar 

  • Arfaoui A, El Hadrami A, Adam LR, Daayf F (2016) Pre-treatment with calcium enhanced defense-related genes’ expression in the soybean’s isoflavones pathway in response to Sclerotinia sclerotiorum. Physiol Mol Plant Pathol 93:12–21

    Article  CAS  Google Scholar 

  • Arias MMD (2012) Fusarium species infecting soybean roots: frequency, aggressiveness, yield impact and interaction with the soybean cyst nematode. Graduate theses and dissertations. 12314

    Google Scholar 

  • Batool H, Fatima N, Hira K, Sultana V, Ara J, Ehteshamul-Haque S (2013) Role of fluorescent Pseudomonas associated with root nodules of soybean in suppressing the root rotting fungi and root knot nematode of soybean in soil amended with seeds of Vernonia antihelmenthica. Inter J Biol Res (Pak) 1:75–81

    Google Scholar 

  • Baysal T, Demirdöven A (2007) Lipoxygenase in fruits and vegetables: a review. Enzym Microb Technol 40(4):491–496

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  • Bolton MD, Thomma B, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology, and molecular traits of cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  CAS  Google Scholar 

  • Borges AA, Sandalio LM (2015) Induced resistance for plant defense. Front Plant Sci 6:109

    Article  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren Van The maat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  Google Scholar 

  • Burketová L, Trdá L, Ott P, Valentova O (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv 33(6):994–1004

    Article  Google Scholar 

  • Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, ViĂ©gas RA, Silveira JAG (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt stressed cowpea leaves. New Phytol 163:563–571

    Article  CAS  Google Scholar 

  • Chauhan OP, Chauhan GS, Singh G, Kumbhar BK, Mishra DP (2002) Varietal variability in the contents of nutrients and anti-nutrients in different parts of soybean seeds. J Rural Agric Res 2(2):42–50

    Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35(1):276–300

    Article  CAS  Google Scholar 

  • Chunhua S, Ya D, Bingle X, Xiao L, Yonshu X, Qinguang L (2001) The purification and spectral properties of PPO I from Nicotianan tababcum. Plant Mol Biol 19:301–314

    Google Scholar 

  • Coley-Smith JR, Cooke RC (1971) Survival and germination of fungal sclerotia. Annu Rev Phytopathol 9(1):65–92

    Article  Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  Google Scholar 

  • Dalal J, Kulkarni N (2015) Effect of endophytic treatments on plant growth performance and disease incidences in soybean (Glycine max (L.) Merril) Cultivar JS-335 against challenge inoculation with R. solani. Am J Agri Biol Sci 10(2):99

    Article  Google Scholar 

  • Danielson GA, Nelson BD, Helms TC (2004) Effect of sclerotinia stem rot on yield of soybean inoculated at different growth stages. Plant Dis 88:297–300

    Article  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, RodrĂ­guez-Carvajal MA, Gil-Serrano AM, Espuny MR, LĂłpez-Baena FJ, BellogĂ­n RA, MegĂ­as M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328(1–2):483–493

    Article  CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200(2):205–213

    Article  CAS  Google Scholar 

  • Diniz FO, Reis MS, AraĂşjo EF, dos Santos Dias LA, Sediyama T, Sediyama-Bhering CAZ (2013) Incidence of pathogens and field emergence of soybean seeds subjected to harvest delay. J Seed Sci 35:478–484

    Article  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  Google Scholar 

  • Ebtehag E-B, Nemat MA, Azza ST, Hoda AH (2009) Antagonistic activity of selected strains of rhizobacteria against Macrophomina phaseolina of soybean plants. Am Eurasian J Agric Environ Sci 5:337–347

    Google Scholar 

  • FAOSTAT (2014) http://faostat3.fao.org/browse/rankings/countries_by_commodity/E

  • Fernando WGD, Nakkeeran S, Zhang Y (2004) Ecofriendly methods in combating Sclerotinia sclerotiorum (Lib.) de Bary. Dev Toxicol Environ Sci 1:329–347

    Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53(1):275–297

    Article  CAS  Google Scholar 

  • Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and GmSGT1 are required for basal, R gene–mediated and systemic acquired resistance in soybean. Mole Plant-Microbe Inter 22(1):86–95

    Article  CAS  Google Scholar 

  • Gao Q-M, Zhu S, Kachroo P, Kachroo A (2015) Signal regulators of systemic acquired resistance. Front Plant Sci 6:228

    PubMed  PubMed Central  Google Scholar 

  • GarcĂ­a VG, Onco MP, Susan VR (2006) Review. Biology and systematics of the form genus Rhizoctonia. Spanish J Agri Res 4(1):55–79

    Article  Google Scholar 

  • Goellner K, Loehrer M, Langenbach C, Conrath U, Koch E, Schaffrath U (2010) Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Mol Plant Pathol 11:169–177

    Article  CAS  Google Scholar 

  • Grau CR, Hartman GL (1999) Sclerotinia stem rot. In: Hartman GL, Sinclair JB, Rupe JC (eds) Compendium of soybean diseases, vol 4. APS Press, St. Paul, pp 46–48

    Google Scholar 

  • Han HS, Lee KD (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1(3):216–221

    Google Scholar 

  • Hoffman DD, Hartman GL, Mueller DS, Leitz RA, Nickell CD, Pedersen WL (1998) Yield and seed quality of soybean cultivars infected with Sclerotinia sclerotiorum. Plant Dis 82:826–829

    Article  CAS  Google Scholar 

  • Inam-Ul-Haq M, Mehmood S, Rehman HM, Ali Z, Tahir MI (2012) Incidence of root rot diseases of soybean in Multan Pakistan and its management by the use of plant growth promoting rhizobacteria. Pak J Bot 44:2077–2080

    Google Scholar 

  • Jain S, Varma A, Tuteja N, Choudhary DK (2016) Plant growth promoting microbial-mediated induced systemic resistance in plants: induction, mechanism and expression. In: Choudhary DK, Varma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 213–226

    Chapter  Google Scholar 

  • Jain S, Vaishnav A, Kumari S, Varma A, Tuteja N, Choudhary DK (2017) Chitinolytic Bacillus-mediated induction of jasmonic acid and defense-related proteins in soybean (Glycine max L. Merrill) plant against Rhizoctonia solani and Fusarium oxysporum. J Plant Growth Regul 36(1):200–214

    Article  CAS  Google Scholar 

  • Jiang L, Wu J, Fan S, Li W, Dong L, Cheng Q, Xu P, Zhang S (2015) Isolation and characterization of a novel pathogenesis-related protein gene (GmPRP) with induced expression in soybean (Glycine max) during Infection with Phytophthora sojae. PLoS One 10(6):e0129932

    Article  Google Scholar 

  • Juge C, PrĂ©vost D, Bertrand A, Bipfubusa M, Chalifour FP (2012) Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Appl Soil Ecol 61:147–157

    Article  Google Scholar 

  • Jung WJ, Mabood F, Kim TH, Smith DL (2007) Induction of pathogenesis-related proteins during biocontrol of Rhizoctonia solani with Pseudomonas aureofaciens in soybean (Glycine max L. Merr.) plants. Biol Control 52(6):895–904

    CAS  Google Scholar 

  • Khan MH, Tyagi SD (2013) A review on induced mutagenesis in soybean. J Cereals Oilseed 4(2):19–25

    Article  CAS  Google Scholar 

  • Kumar PL, Sharma K, Boahen S, Tefera H, Tamo M (2015) First report of soybean witches’-broom disease caused by group 16SrII phytoplasma in soybean in Malawi and Mozambique. Plant Dis 99(6):886

    Google Scholar 

  • La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198(1):267–284

    Article  Google Scholar 

  • Lee JH, Hwang SR, Lee YH, Kim K, Cho KM, Lee YB (2015) Changes occurring in compositions and antioxidant properties of healthy soybean seeds [Glycine max (L.) Merr.] and soybean seeds diseased by Phomopsis longicolla and Cercospora kikuchii fungal pathogens. Food Chem 185:205–211

    Article  CAS  Google Scholar 

  • Liang XW, Dron M, Cramer CL, Dixon RA, Lamb CJ (1989) Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J Biol Chem 264(24):14486–14492

    CAS  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Google Scholar 

  • Malinovsky FG, Fangel JU, Willats WG (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178

    Article  Google Scholar 

  • Mariutto M, Ongena M (2015) Molecular patterns of rhizobacteria involved in plant immunity elicitation. Adv Bot Res 75:21–56

    Article  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, DeBruijn I, Dekkers E, Van Der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  Google Scholar 

  • Mengistu A, Reddy KN, Bellaloui N, Walker ER, Kelly HM (2013) Effect of glyphosate on Macrophomina phaseolina in vitro and its effect on disease severity of soybean in the field. Crop Prot 54:23–28

    Article  CAS  Google Scholar 

  • Mueller DS, Hartman GL, Pedersen WL (1999) Development of sclerotia and apothecia of Sclerotinia sclerotiorum from infected soybean seed and its control by fungicide seed treatment. Plant Dis 83:1113–1115

    Article  CAS  Google Scholar 

  • Naito S, Mohamad D, Nasution A, Purwanti H (1993) Soil-borne diseases and ecology of pathogens on soybean roots in Indonesia. JARQ 26:247–253

    Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep:24, 255–265

    Article  CAS  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  Google Scholar 

  • Ruiz Diaz D, Pedersen P, Sawyer J (2009) Soybean response to inoculation and nitrogen application following long-term grass pasture. Crop Sci 49:1058–1062

    Article  Google Scholar 

  • Sandhu D, Tasma IM, Frasch R, Bhattacharyya MK (2009) Systemic acquired resistance in soybean is regulated by two proteins, orthologous to Arabidopsis NPR1. BMC Plant Biol 9(1):105

    Article  Google Scholar 

  • Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260

    Article  CAS  Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:–30

    Google Scholar 

  • Sharma SK, Ramesh A, Johri BN (2013) Isolation and characterization of plant growth promoting Bacillus amyloliquefaciens strain sks_bnj_1 and its influence on rhizosphere soil properties and nutrition of soybean (Glycine max L. Merrill). J Virol Microbiol 2013:1–9

    Google Scholar 

  • Sharma AN, Gupta GK, Verma RK, Sharma OP, Bhagat S, Amaresan N, Saini MR, Chattopadhyay C, Sushil SN, Asre R, Kapoor KS, Satyagopal K, Jeyakumar P (2014) Integrated pest management for soyabean, p 41

    Google Scholar 

  • Simonetti E, Viso NP, Montecchia M, Zilli C, Balestrasse K, Carmona M (2015) Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiol Res 180:40–48

    Article  CAS  Google Scholar 

  • Sinclair JB, Backman PA (1989) Compendium of soybean diseases, 3rd edn. The American Phytopathological Society, St. Paul, p 106

    Google Scholar 

  • Smith GS, Wyllie TD (1999) Charcoal rot. In: Hartman GL, Sinclair JB, Rupe JC (eds) Compendium of soybean disease, vol 4. American Phytopathological Society, St. Paul, pp 29–31

    Google Scholar 

  • Soybean Processors Association of India (2014) http://www.sopa.org/statistics/soybean-hectares-planted/

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  Google Scholar 

  • Sumida CH, Canteri MG, Peitl DC, Tibolla F, Orsini IP, AraĂşjo FA, Chagas DF, Calvos NS (2015) Chemical and biological control of Sclerotinia stem rot in the soybean crop. CiĂŞncia Rural 45(5):760–766

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2014) Talc based exopolysaccharides formulation enhancing growth and production of Helianthus annus under saline conditions. Cell Mol Biol 60:73–81

    CAS  PubMed  Google Scholar 

  • Tiwari SP, Joshi OP, Vyas AK, Billore SD (2002) Potassium nutrition in yield and quality improvement of soybean. In: Proceedings of the international symposium on potassium for sustainable crop production, pp 307–321

    Google Scholar 

  • Vasebi Y, Safaie N, Alizadeh A (2013) Biological control of soybean charcoal root rot disease using bacterial and fungal antagonists In Vitro and greenhouse condition. J Crop Prote 2(2):139–150

    Google Scholar 

  • Vyas SC (1994) Integrated biological and chemical control of dry root rot on soybean. Indian J Mycol Plant Pathol 24:132–134

    CAS  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3(2):34–40

    Google Scholar 

  • Wrather JA, Koenning SR (2006) Estimates of disease effects on soybean yields in the United States, 2003 to 2005. J Nematol 38:173–180

    PubMed  PubMed Central  Google Scholar 

  • Wrather A, Shannon G, Balardin R, Carregal L, Escobar R, Gupta GK, Ma Z, Morel W, Ploper D, Tenuta A (2010) Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Prog 10:1094

    Google Scholar 

  • Xue S, Yao X, Luo W, Jha D, Tester M, Horie T, Schroeder JI (2011) AtHKT1; 1 mediates nernstian sodium channel transport properties in Arabidopsis root stellar cells. PLoS One 6:e24725

    Article  CAS  Google Scholar 

  • Yang XB, Lundeen P, Uphoff MD (1999) Soybean varietal response and yield loss caused by Sclerotinia sclerotiorum. Plant Dis 83:456–461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, S., Choudhary, D.K., Sharma, K.P., Aggarwal, R. (2018). Bacterial Mediated Plant Protection: Induced Systemic Resistance in Soybean. In: Patra, J., Das, G., Shin, HS. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7140-9_10

Download citation

Publish with us

Policies and ethics