Skip to main content
Log in

Metagenomic analyses of bacterial endophytes associated with the phyllosphere of a Bt maize cultivar and its isogenic parental line from South Africa

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Genetic modification of maize with Bacillus thuringiensis (Bt) cry proteins may predispose shifts in the bacterial endophytes’ community associated with maize shoots. In this study, the diversity of bacterial endophytes associated with a Bt maize genotype (Mon810) and its isogenic non-transgenic parental line were investigated at pre-flowering (50 days) and post-flowering (90 days) developmental stages. PCR-DGGE and high throughput sequencing on the Illumina MiSeq sequencer were used to characterize bacterial 16S rRNA gene diversity in leaves, stems, seeds and tassels. PCR-DGGE profile revealed similarity as well as differences between bacterial communities of shoots in both cultivars and at both developmental stages. A total of 1771 operational taxonomic units (OTUs) were obtained from the MiSeq and assigned into 14 phyla, 27 classes, 58 orders, 116 families and 247 genera. Differences in alpha and beta diversity measures of OTUs between the phyllospheres of both genotypes were not significant (P > .05) at all developmental stages. In all cultivars, OTU diversity reduced with plant development. OTUs belonging to the phyla Proteobacteria were dominant in all maize phyllospheres. The class Gammaproteobacteria was dominant in Bt maize while, Alphaproteobacteria and Actinobacteria were dominant in non-Bt maize phyllospheres. Differences in the abundance of some genera, including Acidovorax, Burkerholderia, Brachybacterium, Enterobacter and Rhodococcus, whose species are known beneficial endophytes were observed between cultivars. Hierarchical cluster analysis further suggests that the bacterial endophyte communities of both maize genotypes associate differently (are dissimilar). Overall, the results suggest that bacterial endophytes community differed more across developmental stages than between maize genotypes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreote FD, de Araújo WL, de Azevedo JL, van Elsas JD, da Rocha UN, van Overbeek LS (2009) Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl Environ Microbiol 75:3396–3406. doi:10.1128/AEM.00491-09

    Article  CAS  Google Scholar 

  • Andreote FD, da Rocha UN, Araújo WL, Azevedo JL, van Overbeek LS (2010) Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Van Leeuwenhoek 97:389–399. doi:10.1007/s10482-010-9421-9

    Article  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229. doi:10.1016/j.femsec.2004.08.006

    Article  CAS  Google Scholar 

  • Bumunang EW, Jordaan K, Barros E, Bezuidenhout C, Babalola OO (2015) Analysis of rhizobacterial community in field grown GM and non-GM maize soil samples using PCR-DGGE. J Agric Technol 11:831–838

    CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knigh R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267. doi:10.1093/bioinformatics/btp636

    Article  CAS  Google Scholar 

  • Castaldini M et al (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729. doi:10.1128/AEM.71.11.6719-6729.2005

    Article  CAS  Google Scholar 

  • Cavaglieri L, Orlando J, Etcheverry M (2009) Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol Res 164:391–399. doi:10.1016/j.micres.2007.03.006

    Article  Google Scholar 

  • Celador-Lera L, Menéndez E, Flores-Félix JD, Mateos PF, Rivas R (2016) Analysis of the PGPB potential of bacterial endophytes associated with maize. In: González-Andrés F, James E (eds) Biological nitrogen fixation and Beneficial plant–microbe interaction. Springer, Basel, pp 23–35

    Chapter  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803. doi:10.1038/ismej.2013.196

    Article  CAS  Google Scholar 

  • Cheeke TE, Darby H, Rosenstiel TN, Bever JD, Cruzan MB (2014) Effect of Bacillus thuringiensis (Bt) maize cultivation history on arbuscular mycorrhizal fungal colonization, spore abundance and diversity, and plant growth. Agric Ecosyst Environ 195:29–35. doi:10.1016/j.agee.2014.05.019

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Cotta SR, Dias ACF, Marriel IE, Gomes EA, van Elsas JD, Seldin L (2013) Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems. Antonie Van Leeuwenhoek 103:589–601. doi:10.1007/s10482-012-9843-7

    Article  Google Scholar 

  • Cotta SR, Dias ACF, Marriel IE, Andreote FD, Seldin L, van Elsas JD (2014) Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Appl Environ Microbiol 80:6437–6445. doi:10.1128/AEM.01778-14

    Article  Google Scholar 

  • da Silva DAF, Cotta SR, Vollú RE, de Azevedo Jurelevicius D, Marques JM, Marriel IE, Seldin L (2014) Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiol 14:332. doi:10.1186/s12866-014-0332-1

    Article  Google Scholar 

  • Devare MH, Jones CM, Thies JE (2004) Effect of Cry3Bb transgenic corn and tefluthrin on the soil microbial community: biomass, activity, and diversity. J Environ Qual 33:837–843. doi:10.2134/jeq2004.0837

    Article  CAS  Google Scholar 

  • Dohrmann AB, Küting M, Jünemann S, Jaenicke S, Schlüter A, Tebbe CC (2013) Importance of rare taxa for bacterial diversity in the rhizosphere of Bt-and conventional maize varieties. ISME J 7:37–49. doi:10.1038/ismej.2012.77

    Article  CAS  Google Scholar 

  • Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ (1995) Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecol 2:111–124. doi:10.1016/0929-1393(94)00043-7

    Article  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil-and plant-associated microbial communities. J Environ Qual 33:806–815. doi:10.2134/jeq2004.0806

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189. doi:10.1016/j.apsoil.2007.02.005

    Article  Google Scholar 

  • Ezeokoli OT, Gupta AK, Mienie C, Popoola TOS, Bezuidenhout CC (2016) PCR-denaturing gradient gel electrophoresis analysis of microbial community in soy-daddawa, a Nigerian fermented soybean (Glycine max (L.) Merr.) condiment. Int J Food Microbiol 220:58–62. doi:10.1016/j.ijfoodmicro.2016.01.003

    Article  CAS  Google Scholar 

  • Felske A, Engelen B, Nübel U, Backhaus H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162–4167

    CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945. doi:10.1111/j.1365-2672.2006.02843.x

    Article  CAS  Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araújo WL (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14. doi:10.1111/j.1574-6968.2008.01258.x

    Article  CAS  Google Scholar 

  • Gafan GP, Lucas VS, Roberts GJ, Petrie A, Wilson M, Spratt DA (2005) Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J Clin Microbiol 43:3971–3978. doi:10.1128/JCM.43.8.3971-3978.2005

    Article  CAS  Google Scholar 

  • Garbeva P, Van Veen J, Van Elsas J (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316. doi:10.1007/s00248-002-2034-8

    Article  CAS  Google Scholar 

  • Hails RS (2000) Genetically modified plants–the debate continues. Trends in Ecology Evolution 15:14–18. doi:10.1016/S0169-5347(99)01751-6

    Article  CAS  Google Scholar 

  • Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164. doi:10.1111/j.1574-6941.2011.01092.x

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. doi:10.1007/s11104-008-9814-y

    Article  CAS  Google Scholar 

  • Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng bugs 1:31–50. doi:10.4161/bbug.1.1.10519

    Article  Google Scholar 

  • Illumina (2016) 16 S Metagenomic sequencing library preparation. https://www.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf. Accessed 28 November 2016

  • Justé A, Thomma B, Lievens B (2008) Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol 25:745–761. doi:10.1016/j.fm.2008.04.009

    Article  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251. doi:10.1111/j.1462-2920.2004.00658.x

    Article  CAS  Google Scholar 

  • Lin L, Li Z, Hu C, Zhang X, Chang S, Yang L, Li Y, An Q (2012) Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ 27:391–398. doi:10.1264/jsme2.ME11275

    Article  Google Scholar 

  • Liu B, Zeng Q, Yan F, Xu H, Xu C (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13. doi:10.1007/s11104-004-1610-8

    Article  CAS  Google Scholar 

  • Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104:759–768. doi:10.1007/s10482-013-9984-3

    Article  Google Scholar 

  • Marques JM, da Silva TF, Vollú RE, de Lacerda JRM, Blank AF, Smalla K, Seldin L (2015) Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Appl Soil Ecol 96:273–281. doi:10.1016/j.apsoil.2015.08.020

    Article  Google Scholar 

  • Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinform 13:31. doi:10.1186/1471-2105-13-31

    Article  CAS  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342. doi:10.1007/BF00011472

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Oliveros JC (2015) Venny. An interactive tool for computing lists with venn’s diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed 16 September 2016

  • Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855. doi:10.1007/s12038-012-9227-1

    Article  CAS  Google Scholar 

  • Prischl M, Hackl E, Pastar M, Pfeiffer S, Sessitsch A (2012) Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. Appl Soil Ecol 54:39–48. doi:10.1016/j.apsoil.2011.12.005

    Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ranjekar P, Patankar A, Gupta V, Bhatnagar R (2003) Genetic engineering of crop plants for insect resistance. Current Science 84:321–329. doi:10.1016/S0261-2194(99)00028-9

    Google Scholar 

  • Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312:105–112. doi:10.1111/nyas.12396

    Article  Google Scholar 

  • Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. doi:10.1111/j.1462-2920.2010.02258.x

    Article  Google Scholar 

  • Rijavec T, Lapanje A, Dermastia M, Rupnik M (2007) Isolation of bacterial endophytes from germinated maize kernels. Can J Microbiol 53:802–808. doi:10.1139/W07-048

    Article  CAS  Google Scholar 

  • Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2016) Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405:381–396. doi:10.1007/s11104-015-2495-4

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837. doi:10.1094/MPMI-19-0827

    Article  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi:10.1111/j.1574-6968.2007.00918.x

    Article  CAS  Google Scholar 

  • Santhanam R, Groten K, Meldau DG, Baldwin IT (2014) Analysis of plant-bacteria interactions in their native habitat: bacterial communities associated with wild tobacco are independent of endogenous jasmonic acid levels and developmental stages. PLoS ONE 9:e94710. doi:10.1371/journal.pone.0094710

    Article  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482. doi:10.1128/AEM.70.3.1475-1482.2004

    Article  CAS  Google Scholar 

  • Shen RF, Cai H, Gong WH (2006) Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant Soil 285:149–159. doi:10.1007/s11104-006-9000-z

    Article  CAS  Google Scholar 

  • Siciliano S, Germida J (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecol 29:263–272. doi:10.1111/j.1574-6941.1999.tb00617.x

    Article  CAS  Google Scholar 

  • Siciliano S, Theoret C, De Freitas J, Hucl P, Germida J (1998) Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Can J Microbiol 44:844–851. doi:10.1139/w98-075

    Article  CAS  Google Scholar 

  • Sims SR (1995) Bacillus thuringiensis var. kurstaki [CryIA (c)] protein expressed in transgenic cotton: effects on beneficial and other non-target insects. Southwestern. Entomologist 20:493–506

    Google Scholar 

  • Sun C, Geng L, Wang M, Shao G, Liu Y, Shu C, Zhang J (2016) No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp. MicrobiologyOpen 00:1–6. doi:10.1002/mbo3.404

  • Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296. doi:10.1111/j.1574-6941.2008.00469.x

    Article  Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093. doi:10.1126/science.290.5499.2088

    Article  CAS  Google Scholar 

  • Yang JH, Liu HX, Zhu GM, Pan YL, Xu LP, Guo JH (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 104:91–104. doi:10.1111/j.1365-2672.2007.03534.x

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Research Foundation (NRF) through the Thuthuka grant (Grant No. 84168) awarded to RA Adeleke. The authors acknowledge the Agricultural Research Council’s sponsorship of Mashiane RA through the Professional development program. We sincerely thank Owen Rhode and members of the Microbiology and Environmental Biotechnology Research Group ARC-ISCW for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheed A. Adeleke.

Additional information

Ramadimetja A. Mashiane and Obinna T. Ezeokoli have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11274_2017_2249_MOESM1_ESM.tif

Supplementary material 1 Fig S1. Rarefaction curve of OTUs species in maize phyllospheres. Rarefaction curve was constructed in R software by using the vegan package. (TIF 133 KB)

11274_2017_2249_MOESM2_ESM.tif

Supplementary material 2 Fig. S2. Heatmap of unweighted and weighted Bray-Curtis dissimilarity matrix between samples (a) Weighted (b) Unweighted. (TIF 45 KB)

Supplementary material 3 (TIF 52 KB)

11274_2017_2249_MOESM4_ESM.tif

Supplementary material 4 Fig. S3. Taxonomic diversity of OTUs in maize phyllospheres at order taxa level. “Others” indicate OTUs which were unclassified into phylum. Unassigned include OTUs which failed to align with any reference sequence. (TIF 103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashiane, R.A., Ezeokoli, O.T., Adeleke, R.A. et al. Metagenomic analyses of bacterial endophytes associated with the phyllosphere of a Bt maize cultivar and its isogenic parental line from South Africa. World J Microbiol Biotechnol 33, 80 (2017). https://doi.org/10.1007/s11274-017-2249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2249-y

Keywords

Navigation