Skip to main content

Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Abstract

Natural products obtained from microbes, plants and animals find their potential use as biofertilizers and biopesticides sustaining and enhancing crop production and protection. Among them microbes and their metabolites with excellent plant growth-promoting and biocontrol properties have been identified, mass produced successfully, appropriately formulated and are commercially available for use. Compounds of microbial origin which make them efficient biofertilizers and biopesticides enhancing plant growth and providing protection from various biotic and abiotic stress include production of plant growth-promoting hormones like auxins, giberrelins, cytokinins and 1-aminocyclopropane-1-carboxylate deaminase (ACCD); production of antagonistic compounds such as antibiotics, crystal proteins, hydrolytic enzymes, siderophores, hydrogen cyanide, etc. Additionally, these beneficial microbes also compete for food and habitat with phytopathogens or parasitize the pests and eliminate them. Majority of the microbes and their bioactive molecules are target specific, eco-friendly and biodegradable and play an important role in preserving the ecosystem. These eco-friendly natural products could either supplement or replace the hazardous agrochemicals thereby minimize or nullify their use. Screening and selection of the microbial strains based on its geographical origin will make the bioformulation more suitable for a particular agroclimatic condition, and this needs intensive studies on microbial ecology and interaction with other components of the ecosystem. Research focus on ways to improve the efficacy of these biomolecules, and mass production of these natural products for its utilization and commercial availability will build a path towards environment-friendly agriculture. Alternatively, research that focusses to elucidate the chemistry of natural compounds and to synthesize compounds that mimic them is also being done to ensure the demand-supply balance. This chapter will shed light on potentials and prospectives of the use of natural bioactive compounds of microbial origin in enhancing crop protection and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysingha NS, Weerarathne CS (2010) A preliminary study on quantification of biological nitrogen fixation in sugarcane grown in Sevanagala in Sri Lanka. J Nat Sci Found Sri Lanka 38:207–210

    Article  CAS  Google Scholar 

  • Abril A, Zurdo-Pineiro JL, Peix A, Rivas R, Velazquez EAB (2007) Solubilization of phosphate by a strain of Rhizobium leguminosarum bv. trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina). In: Vaelzquez E, Rodrıguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Basel, pp 135–138

    Chapter  Google Scholar 

  • Aggarwal N, Thind SK, Sharma S (2016) Role of secondary metabolites of actinomycetes in crop protection. In: Subramaniam G, Arumugam S, Rajendran V (eds) Plant growth promoting actinobacteria. Springer, Singapore, pp 135–138

    Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreadis TG (2007) Microsporidian parasites of mosquitoes. J Am Mosq Control Assoc 23:3–29

    Article  PubMed  Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119

    Article  CAS  PubMed  Google Scholar 

  • Arasu MV, Al-Dhabi NA, Saritha V, Duraipandiyan V, Muthukumar C, Kim SJ (2013) Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol 13:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argueso CT, Ferreira FJ, Epple P, To JP, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:e1002448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2010) Coronatine-intensive 1 (COII) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol Plant 3:390–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthurs S, Dara SK (2018) Microbial biopesticides for invertebrate pests and their markets in the United States. J Invertebr Pathol 165:13–21

    Article  PubMed  Google Scholar 

  • Askary TH, Martinelli PRP (2015) Biocontrol agents of phytonematodes. CAB International, Wallingford, p 470

    Book  Google Scholar 

  • Auld BA, Hetherington SD, Smith HE (2003) Advances in bioherbicide formulation. Weed Biol Manag 3:61–67

    Article  CAS  Google Scholar 

  • Azam F, Memon GH (1996) Soil organisms. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp 200–232

    Google Scholar 

  • Bacci L, Lupi D, Savoldelli S, Rossaro B (2016) A review of spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J Entomol Acarol Res 48:40–52

    Article  Google Scholar 

  • Bajpai PD, Gupta BF, Bambal IM (1978) Studies on survival of Rhizobium leguminosarum as affected by moisture and temperature conditions. Indian J Agric Res 12:39–43

    Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Barman M, Paul S, Choudhury AG, Roy P, Sen J (2017) Biofertilizer as prospective input for sustainable agriculture in India. Int J Curr Microbiol App Sci 6:1177–1186

    Article  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria use in agriculture. Biotech Adv 6:729–770

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculants technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Baum JA, Johnson TB, Carlton BC (1999) Bacillus thuringiensis. Natural and recombinant bioinsecticide products. Methods Biotechnol 5:189–209

    Google Scholar 

  • Baumann P, Clark MA, Baumann L, Broadwell AH (1991) Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol Rev 55:425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G (2009) Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berninger T, Gonzalez Lopez O, Bejarano A, Preininger C, Sessitsch A (2018) Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol 11:277–301

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Ind Inst Sci 92:37–62

    CAS  Google Scholar 

  • Briano JA, Calcaterra LA, Meer RKV, Valles SM, Livore JP (2006) New survey for the fire ant microsporidia Vairimorpha invictae and Thelohania solenopsae in southern South America, with observations on their field persistence and prevalence of dual infections. Environ Entomol 35:1358–1365

    Article  Google Scholar 

  • Cakmakci R, Kantar F, Sahin F (2001) Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J Plant Nutr Soil Sci 164:527–531

    Article  CAS  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    Article  CAS  PubMed  Google Scholar 

  • Carlos MHJ, Stefani PVY, Janette AM, Melani MSS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188:53–61

    Article  PubMed  Google Scholar 

  • Carlton BC, Gawron-Burke C (1993) Genetic improvement of Bacillus thuringiensis for bioinsecticide development. In: Kim L (ed) Advanced engineered biopesticides. Marcel Dekker Inc, NewYork, pp 43–61

    Google Scholar 

  • Casella F, Charudattan R, Vurro M (2010) Effectiveness and technological feasibility of bioherbicide candidates for biocontrol of green foxtail Setaria viridis. Biocontrol Sci Tech 20:1027–1045

    Article  Google Scholar 

  • Cayrol JC, Dijan-Caporalino C, Panchaud-Mattei E (1992) La lutte biologique contre les Nématodes phytoparasites. Courrier de la cellule Environnement de l’ INRA 17:31–44

    Google Scholar 

  • Charles JF, Silva-Filha MH, Nielsen-LeRoux C (2000) Mode of action of Bacillus sphaericus on mosquito larvae: incidence on resistance. In: Charles JF, Delecluse A, Nielsen-LeRoux C (eds) Entomopathogenic Bacteria: from laboratory to field application. Kluwer Academic Publishers, London, pp 237–252

    Chapter  Google Scholar 

  • Charudattan R, Dinoor A (2000) Biological control of weeds using plant pathogens: accomplishments and limitations. Crop Protect 19:691–695

    Article  Google Scholar 

  • Chelinho S, Maleita CMN, Francisco R, Braga MEM, da Cunha MJM, Abrantes I, Sousa JP (2017) Toxicity of the bionematicide 1,4-naphthoquinone on non-target soil organisms. Chemosphere 181:579–588

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol 34:33–41

    Article  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signalling in Arabidopsis. Dev Cell 19:284–295

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • CIB Rc (2019). http://ppqs.gov.in/divisions/cib-rc/bio-pesticide-registrant

  • Copping GL, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512

    Article  CAS  PubMed  Google Scholar 

  • Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • De Faria MR, Wraight SP (2007) Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:75–88

    Article  Google Scholar 

  • Dighton J, Boddy L (1989) Role of fungi in nitrogen, phosphorus and sulfur cycling in temperate forest ecosystems. In: Boddy L, Marchant R, Read D (eds) Nitrogen, phosphorus and sulfur utilization by fungi. Cambridge University Press, Cambridge, pp 269–298

    Google Scholar 

  • Down RE, Cuthbertson AGS, Mathers JJ, Walters KFA (2009) Dissemination of the entomopathogenic fungi, Lecanicillium longisporum and L. muscarium, by the predatory bug, Orius laevigatus, to provide concurrent control of Myzus persicae, Frankliniella occidentalis and Bemisia tabaci. Biol Control 50:172–178

    Article  Google Scholar 

  • Dube JN, Mahere DP, Bawat AF (1980) Development of coal as a carrier for rhizobial inoculants. Sci Cult 46:304

    Google Scholar 

  • Dunham B (2015) Microbial biopesticides: a key role in the multinational portfolio. http://dunhamtrimmer.com/wp-content/uploads/2015/01/Products-and-Trends.pdf. Accessed April 2018

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    Article  CAS  Google Scholar 

  • Edwards CA (1986) Agrochemicals as environmental pollutants. In: Van Hofsten B, Eckstrom G (eds) Control of pesticide applications and residues in food. A guide and directory. Swedish Science Press, Uppsala, pp 1–19

    Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutrition 31:157–171

    Article  CAS  Google Scholar 

  • Erayya JJ, Sajeesh PK, Vinod U (2013) Nuclear Polyhedrosis virus (NPV), a potential biopesticide: a review. Res J Agric Forestry Sci 1:30–33

    Google Scholar 

  • Ffrench-Constant R, Waterfield N (2006) An ABC guide to the bacterial toxin complexes. Adv Appl Microbio l58:169–183

    Google Scholar 

  • Fira D, Dimkic I, Beric T, Lozo J, Stankovic S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55

    Article  CAS  PubMed  Google Scholar 

  • Frankenhuyzen KV (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Article  PubMed  Google Scholar 

  • Gao Z (1992) Biological control of dodder-a review research progress of the bioherbicide Lubao no. 1. Chinese J Biol Control 8:173–175

    Google Scholar 

  • Ghaffar NA, Aziz A, Abdallah SO, Salama M, Madkour MA (2008) Construction of a potent strain of Bacillus thuringiensis against the cotton leaf worm Spodoptera littoralis. Landbauforschung Volkenrode 1:2008111–2008123

    Google Scholar 

  • Ghazanfar MU, Raza M, Raza W, Qamar MI (2018) Trichoderma as potential biocontrol agent, its exploitation. Agriculture 2:135

    Google Scholar 

  • Giri B, Prasad R, Wu Q-S, Varma A (2019) Biofertilizers for sustainable agriculture and environment. Springer International Publishing, Cham. ISBN 978-3-030-18932-7. https://www.springer.com/gp/book/9783030189327

    Book  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by gram-negative bacteria. In: Torriani-Gorni A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novak O, Strnad M, Pfeifhofer H, van der Graaff E (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol 157:815–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, De Salamone IE, Nelson LM, Novak O, Strnad M, Van Der Graaff E, Roitsch T (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10

    Google Scholar 

  • Hajek AE, Papierok B, Eilenberg J (2012) Methods for study of the entomophthorales. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, San Diego, pp 285–316

    Chapter  Google Scholar 

  • Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, Lee IJ (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10:117–125

    Article  CAS  Google Scholar 

  • Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria, viruses: a review. Front Plant Sci 6:659

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi S, Gresshoff PM, Ferguson BJ (2014) Mechanistic action of gibberellins in legume nodulation. J Integrat Plant Boil 56:971–978

    Article  CAS  Google Scholar 

  • He ZL, Wu J, O’Donnell AG, Syers JK (1997) Seasonal responses in microbial biomass carbon, phosphorus and Sulphur in soils under pasture. Biol Fertil Soils 24:421–428

    Article  CAS  Google Scholar 

  • Heap I (2015) The International Survey of Herbicide Resistant Weeds. www.weedscience.org

  • Henry JE, Oma EA (1981) Pest control by Nosemalocustae, a pathogen of grasshoppers and crickets. In: Burges HD (ed) Microbial control of pests and plant diseases. Academic, London, pp 573–586

    Google Scholar 

  • Hoflich G, Wiehe W, Kühn G (1994) Plant growth stimulation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905

    Article  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afric J Microbiol Res 3:704–712

    CAS  Google Scholar 

  • Hussain A, Rizwan-ul-Haq M, Al-Ayedh H, Al-Jabr AM (2014) Mycoinsecticides: potential and future perspective. Recent Pat Food Nutr Agric 6:45–53

    Article  CAS  PubMed  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic calcium phosphates—Solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  Google Scholar 

  • Iswaran V (1972) Growth and survival of Rhizobium trifoli in coir dust and soybean meal compost. Madras J Agric Sci 59:52–53

    Google Scholar 

  • Jackson Lacey TA, Pearson JF, O’Callaghan M, Mahanty HK, Willock MJ (1992) Pathogen to product development of Serratia entomophila Enterobacteriaceae as a commercial biological control agent for the New Zealand grass grub Costelytra zealandica. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management, intercept ltd. UK, Andover, pp 191–198

    Google Scholar 

  • Jacobs H, Boswell GP, Ritz K, Davidson FA, Gadd GM (2002) Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol Ecol 40:65–71

    Article  CAS  PubMed  Google Scholar 

  • Jameson PE (2000) Cytokinins and auxins in plant-pathogen interactions - An overview. Plant Growth Reg 32:369–380

    Article  CAS  Google Scholar 

  • Jaronski ST, Jackson MA (2012) Mass production of entomopathogenic Hypocreales. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, San Diego, pp 257–286

    Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol Plant-microbe Int 26:287–296

    Article  CAS  Google Scholar 

  • Johnson BJ (1994) Biological control of annual bluegrass with Xanthomonas campestris pv. poannua in Bermuda grass. Hortic Sci 29:659–662

    Google Scholar 

  • Kandaswamy R, Prasad N (1971) Lignite as a carrier of rhizobia. Curr Sci 40:496

    Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Hamayun M, Joo GJ, Shahzad R, Choi KS, Lee IJ (2015) Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. Europ J Soil Biol 68:85–93

    Article  CAS  Google Scholar 

  • Keeney DR (1982) Nitrogen management for maximum efficiency and minimum pollution. In: Stevenson FJ (ed) Nitrogen in Agricultural Soils. Agronomy Monograph 22 ASA, Madison, Wallingford, pp 605–649

    Google Scholar 

  • Kergunteuil A, Bakhtiari M, Formenti L, Xiao Z, Defossez E, Rasmann S (2016) Biological control beneath the feet: a review of crop protection against insects root herbivores. Insects 7:70

    Article  PubMed Central  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Kang SM, Kim YH, Yun BW, Al-Rawahi A (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2009) Evaluation of Lecanicillium longisporum, Vertalec against the cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea in a greenhouse environment. Crop Protect 29:540–544

    Article  Google Scholar 

  • Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101–111

    Article  CAS  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Ko KW, Okada K, Koga J, Jikumaru Y, Nojiri H, Yamane H (2010) Effects of cytokinin on production of diterpenoid phytoalexins in rice. J Pestic Sci 35:412–418

    Article  CAS  Google Scholar 

  • Koppenhofer AM, Jackson TA, Klein MG (2012) Bacteria for use against soil inhabiting insects. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, San Diego, pp 129–149

    Chapter  Google Scholar 

  • Korir H, Mungai NW, Thuita M, Hamba Y, Masso C (2017) Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci 8:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuzmina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physio biochem 83:285–291

    Article  CAS  Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathways utilized by the Phanerochaete chrysosporium for degradation of cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar KH, Jagadeesh KS (2016) Microbial consortia-mediated plant defence against phytopathogens and growth benefits. South Indian J Biol Sci 2:395–403

    Article  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate- solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  CAS  PubMed  Google Scholar 

  • Kumar KK, Sridhar J, Murali-Baskaran RK, Senthil-Nathan S, Kaushal P, Dara SK, Arthurs S (2018) Microbial biopesticides for insect pest management in India: current status and future. J Invertebr Pathol 165:74–81

    Article  PubMed  Google Scholar 

  • Lacey LA, Liu TX, Buchman JL, Munyaneza JE, Goolsby JA, Horton DR (2011) Entomopathogenic fungi (Hypocreales) for control of potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biol Control 36:271–278

    Article  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lampel JS, Canter GL, Dimock MB, Kelly JL, Anderson JJ, Uratani BB, Foulke JSJ, Turner JT (1994) Integrative cloning, expression, and stability of the cry1A(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. Cynodontis. Appl Environ Microbiol 60:501–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange CE, Cigliano MM (2005) Overview and perspectives on the introduction and establishment of the grasshopper (Orthoptera: Acridoidea) biocontrol agent Paranosema locustae (canning) (Microsporidia) in the western pampas of Argentina. Vedalia 12:61–84

    Google Scholar 

  • Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016) Volatile organic compounds emitted by Trichoderma sp mediate plant growth. Fungal Biol Biotechnol 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis LC, Bruck DJ, Prasifka JR, Raun ES (2009) Nosema pyrausta: its biology, history, and potential role in a landscape of transgenic insecticidal crops. Biol Control 48:223–231

    Article  Google Scholar 

  • Li Y, Sun Z, Zhuang X, Xu L, Chen S, Li M (2003) Research progress on microbial herbicides. Crop Protect 22:247–252

    Article  Google Scholar 

  • Lin L, Guo W, Xing Y, Zhang X, Li Z, Hu C, Li S, Li Y, An Q (2012) The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms bio films, invades roots, and fi xes N 2 associated with micropropagated sugarcane plants. Appl Microbiol Biotechnol 93:1185–1195

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164

    Article  CAS  PubMed  Google Scholar 

  • MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant growth regulat 20:387–442

    Article  CAS  Google Scholar 

  • Madhok MR (1934) The use of soil as a medium for distributing legume organism culture to cultivators. Agric Livestock India 4:670–682

    CAS  Google Scholar 

  • Malusa E, Sas-Paszt LE, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 491206:1–12

    Article  Google Scholar 

  • Mankau R (1975) Prokaryotic affinities of Duboscquia penetrans Thorne. J Protozool 22:31–34

    Article  Google Scholar 

  • Marrone PG (2008) Barriers to adoption of biological control agents and biological pesticides. In: Radcliffe E, Hutchison W, Cancelado R (eds) Integrated Pest management: concepts, tactics, strategies and case studies. Cambridge University Press, Cambridge, pp 163–178

    Chapter  Google Scholar 

  • Mashtoly TA, Abolmaaty A, Thompson N, El-Said ElZemaity M, Hussien MI, Alm SR (2010) Enhanced toxicity of Bacillus thuringiensis japonensis strain Buibui toxin to oriental beetle and northern masked chafer (Coleoptera: Scarabaeidae) larvae with Bacillus sp. NFD2. J Econ Entomol 103:1547–1554

    Article  CAS  PubMed  Google Scholar 

  • Mashtoly TA, Abolmaaty A, El-Zemaity M, Hussien MI, Alm SR (2011) Enhanced toxicity of Bacillus thuringiensis subspecies kurstaki and aizawai to black cutworm larvae (Lepidoptera: Noctuidae) with Bacillus sp. NFD2 and Pseudomonas sp. FNFD1. J Econ Entomol 104:41–46

    Article  PubMed  Google Scholar 

  • Mateille T, Duponnois R, Dabiré K, N’Diaye S, Diop MT (1996) Influence of the soil on the transport of spores of Pasteuria penetrans, parasite of nematodes of the genus Meloidogyne. Eur J Soil Biol 32:81–88

    Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development. Funct Plant Biol 35:651–668

    Article  CAS  PubMed  Google Scholar 

  • Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41:574–583

    Article  CAS  Google Scholar 

  • McCoy CW, Samson RA, Boucias DG, Osborne LS, Pena J, Buss LJ (2009) Pathogens infecting insects and mites of citrus. LLC Friends of Microbes, Winter Park, p 193

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (eds) (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, p 331

    Google Scholar 

  • Moree WJ, Phelan VV, Wu CH, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Inter kingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci U S A 109:13811–13816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action: soil biology, 26. Springer, Heidelberg, pp 251–244

    Google Scholar 

  • Nett RS (2017) Gibberellin biosynthesis by bacteria and its effect on the rhizobia-legume symbiosis. Iowa State University Capstones, Iowa. Theses and Dissertations

    Book  Google Scholar 

  • Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag 26:203–206

    Article  Google Scholar 

  • Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Google Scholar 

  • Owen A, Zdor R (2001) Effect of cyanogenic rhizobacteria on the growth of velvet leaf (Abutilon theophrasti) and corn (Zea mays) in autoclaved soil and the influence of supplemental glycine. Soil Biol Biochem 33:801–809

    Article  CAS  Google Scholar 

  • Panazzi AR (2013) History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop Entomol 42:119–127

    Article  Google Scholar 

  • Parker DR, Reichmann SM, Crowley DE (2005) Metal chelation in the rhizosphere. In: Zobel RW (ed) Roots and soil management: interactions between roots and the soil. Agronomy monograph no. 48. Madison, American Soc Agron, pp 57–93

    Google Scholar 

  • Parks EJ, Olson GJ, Brinckman FE, Baldi F (1990) Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. J Ind Microbiol Biotechnol 5:183–189

    CAS  Google Scholar 

  • Pathma J, Sakthivel N (2013) Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl Soil Ecol 70:33–47

    Article  Google Scholar 

  • Pathma J, Ayyadurai N, Sakthivel N (2010) Assessment of genetic and functional relationship of antagonistic fluorescent pseudomonads of rice rhizosphere by repetitive sequence, protein coding sequence and functional gene analyses. J Microbiol 48:715–727

    Article  CAS  PubMed  Google Scholar 

  • Pathma J, Rahul GR, Kennedy RK, Subashri R, Sakthivel N (2011) Secondary metabolite production by bacterial antagonists. J Biol Cont 25:165–181

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 2:207–220

    Article  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Popham HJ, Nusawardani T, Bonning BC (2016) Introduction to the use of baculoviruses as biological insecticides. In: Murhammer DW (ed) Baculovirus and insect cell expression protocols, vol 388. Humana Press, NY, pp 383–392

    Chapter  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing Switzerland, Cham, pp 247–260

    Chapter  Google Scholar 

  • Prasad R, Chhabra S, Gill SS, Singh PK, Tuteja N (2020) The microbial symbionts: potential for the crop improvement in changing environments. In: Tuteja N, Tuteja R, Passricha N, Saifi SK (eds) Advancement in crop improvement techniques. Elsevier, Amsterdam, pp 233–240

    Chapter  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6:643–650

    Article  CAS  PubMed  Google Scholar 

  • Rahul S, Chandrashekhar P, Hemant B, Chandrakant N, Laxmikant S, Satish P (2014) Nematicidal activity of microbial pigment from Serratia marcescens. Nat Prod Res 17:1399–1404

    Article  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doubeand BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria, pp 50–62

    Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Roh YJ, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559

    CAS  PubMed  Google Scholar 

  • Rowley DL, Popham HJR, Harrison RL (2011) Genetic variation and virulence of nucleo polyhedro viruses isolated worldwide from the heliothine pests Helicoverpa armigera, Helicoverpa zea and Heliothis virescens. J Invertebr Pathol 107:112–126

    Article  PubMed  Google Scholar 

  • Ruiu L (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4:476–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiu L (2015) Insect pathogenic bacteria in integrated pest management. Insects 6:352–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiu L, Floris I, Satta A, Ellar DJ (2007) Toxicity of a Brevibacillus laterosporus strain lacking parasporal crystals against Musca domestica and Aedes aegypti. Biol Control 43:136–143

    Article  Google Scholar 

  • Saeki M, Toyota K (2004) Effect of bensulfuron-methyl (a sulfonylurea herbicides on the soil bacterial community of a paddy soil microcosm). Biol Fertil Soil 40:110–118

    Article  CAS  Google Scholar 

  • Sahu PK, Lavanya G, Brahmaprakash GP (2013) Fluid bed dried microbial inoculants formulation with improved survival and reduced contamination level. J Soil Biol Ecol 33:81–94

    Google Scholar 

  • de Salamone IEG, Salvo LPD, Ortega JSE, Sorte PMFB, Urquiaga S, Teixeira KRS (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362

    Article  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  PubMed  Google Scholar 

  • Sarhy-Bagnon V, Lozano P, Saucedo-Castaneda G, Roussos S (2000) Production of 6-pentyl-alpha-pyrone by Trichoderma harzianum in liquid and solid state cultures. Process Biochem 36:103–109

    Article  CAS  Google Scholar 

  • Sayre RM, Starr MP (1985) Pasteuria penetrans (ex. Thorne 1949) nom, rev, comb n, sp, n, a mycelia and endospore forming bacterial parasite in plant parasitic nematodes. Proc Helminthol Soc Wash 52:149–165

    Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotech Eq 31:446–459

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus:2–587

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    Article  CAS  Google Scholar 

  • Singh BH (2014) Management of plant pathogens with microorganisms. Proc Natl Acad Sci U S A 80:443–454

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR proceeding 109e. Australian Centre for International Agricultural Research, Canberra, pp 52–66

    Google Scholar 

  • Solter LF, Becnel JJ, Oi DH (2012) Microsporidian entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, London, pp 221–263

    Chapter  Google Scholar 

  • Soni R, Yadav SK, Rajput AS (2018) ACC-deaminase producing rhizobacteria: prospects and application as stress busters for stressed agriculture. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution, Microbes for sustainable agro-ecosystem, vol 2. Springer, Singapore, pp 161–175

    Chapter  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905

    Article  CAS  PubMed  Google Scholar 

  • Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridevi M, Mallaiah KV, Yadav NCS (2007) Phosphate solubilization by Rhizobium isolates from Crotalaria species. J Plant Sci 2:635–639

    Article  CAS  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PA, Feussner I, Pieterse CM (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Pro Nat Acad Sci 115:E5213–E5222

    Article  CAS  Google Scholar 

  • Swaby RJ, Sperber J (1958) Phosphate dissolving microorganisms in the rhizosphere of legumes. In: Hallsworth EG (ed) Nutrition of the legumes. Academic Press, New York, pp 289–294

    Google Scholar 

  • Taule C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane ( Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Article  CAS  Google Scholar 

  • Tiwari G, Duraivadivel P, Sharma S (2018) 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. By mitigating drought and salt stress. Sci Rep 8

    Google Scholar 

  • Townsend RJ, Nelson TL, Jackson TA (2010) Beauveria brongniartii – a potential biocontrol agent for use against manuka beetle larvae damaging dairy pastures on cape Foulwind. N. Z. Plant Prot 63:224–228

    Google Scholar 

  • Trivedi PC, Malhotra A (2013) Bacteria in the management of plant-parasitic nematodes. In: Maheshwari D (ed) Bacteria in agrobiology: disease management. Springer, Berlin, Heidelberg, pp 349–377

    Chapter  Google Scholar 

  • Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A, Amtmann A, Armengaud P (2010) Potassium deficiency induced the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. Plant Biol 10:172–184

    Google Scholar 

  • Uroz S, Calvaruso C, Turpault P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF, Batista RB, Schultz N, Leite JM, Sa JM, Barbosa KP, de Resende AS, Alves BJR, Boddey RM (2012) Evidence from field nitrogen balance and 15 N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356:5–21

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001) Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarrowia lipolytica. Biotechnol Lett 23:907–909

    Article  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente M, Lopez-cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Wang XJ, Wang JJ, Wang JD, Zhang J, Xu MD, Xiang WS (2011) Two new doramectin analogs from Streptomyces avermitilis NEAU1069: fermentation, isolation and structure elucidation. J Antibiot 64:591–594

    Article  CAS  Google Scholar 

  • Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid (IAA) releasing potentials of rhizospheric microorganisms. Annals Plant Protect Sci 13:139–144

    Google Scholar 

  • Woo SL, Pepe O (2018) Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci 9:1801

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Li XL, Luo L (2012) Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol 78:8056–8061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang MM, Li ML, Zhang Y, Wang YZ, Qu LJ, Wang QH et al (2012) Baculoviruses and insect pests control in China. Afr J Microbiol Res:214–218

    Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernández M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28:845–870

    Article  CAS  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Yuan ZM, Zhang YM, Nielsen-LeRoux C, Sylviane H (1999) Analysis of crystal protein from Bacillus thuringiensis subsp. israelensis recombinant containing binary toxin gene and its toxicity. J Microbiol 19:1–5

    CAS  Google Scholar 

  • Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU (1997) Cloning and analysis of the cry gene from Bacillus popilliae. J Bacteriol 179:4336–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Base Compl Altern Med 615032:6

    Google Scholar 

Download references

Acknowledgement

The authors wish to thank Dr. R Nagarajaprakash, Group Leader, Chemical Sciences Research Group, Division of Research and Development, Lovely Professional University, Phagwara, Punjab-144411, India, for his support and suggestions in improving the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathma, J., Kennedy, R.K., Bhushan, L.S., Shankar, B.K., Thakur, K. (2021). Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_2

Download citation

Publish with us

Policies and ethics