Skip to main content

Biochemical Aspects of Syngas Fermentation

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Abstract

In the current scenario, the world is facing a shortage of fuels, and in the future, the existing reservoirs of fuels will be exhausted; this challenging situation could be solved by the method of syngas fermentation. Syngas is a mixed composition of gases including carbon monoxide, hydrogen and a lesser amount of carbon dioxide. Mostly, syngas synthesis is performed by acetogenic bacteria. These bacteria utilizes the Wood–Ljungdahl pathway for fermentation to take place. Syngas fermentation of waste biomass has led to the development of biofuels rich in energy and valuable chemicals. Biomass used as a substrate includes municipal waste, crops, chemical wastes, coal, lignin, natural gas and wood. Firstly, biomass gets transformed into carbon dioxide and hydrogen via gasification, these products formed act as substrate for syngas fermentation which is utilized by acetogenic bacteria to produce hydrocarbon-rich compounds. Bacteria used are genetically modified and the reactors are optimized for the scale-up studies for maximizing the yield. This chapter covered the important biochemical aspects of syngas fermentation and advantages, biochemical pathway and the microorganisms involved in syngas fermentation. The type of bioreactors used for syngas production, challenges faced during syngas fermentation and future perspectives have been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161(4):345–351

    Article  CAS  Google Scholar 

  • Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Biorefin 5(1):93–114

    Article  CAS  Google Scholar 

  • Ahmed A, Cateni BG, Huhnke RL, Lewis RS (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of clostridium carboxidivorans P7T. Biomass Bioenergy 30(7):665–672

    Article  CAS  Google Scholar 

  • Ahmed A, Lewis RS (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97(5):1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Ajanovic A (2011) Biofuels versus food production: does biofuels production increase food prices? Energy 36(4):2070–2076

    Article  Google Scholar 

  • Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculumbacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60(10):2483–2489

    Article  CAS  PubMed  Google Scholar 

  • Asimakopoulos K, Gavala HN, Skiadas IV (2018) Reactor systems for syngas fermentation processes: a review. Chem Eng J 348:732–744

    Article  CAS  Google Scholar 

  • Bailey R (2008) Another inconvenient truth: how biofuel policies are deepening poverty and accelerating climate change. Oxfam Policy Pract Clim Change Resilience 4(2):1–58

    Google Scholar 

  • Barik S, Prieto S, Harrison SB, Clausen EC, Gaddy JL (1988) Biological production of alcohols from coal through indirect liquefaction. Appl Biochem Biotechnol 18(1):363–378

    Article  CAS  Google Scholar 

  • Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34(13–14):1639–1651

    Article  CAS  PubMed  Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2012a) Elimination of acetate production to improve ethanol yield during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MTEtOH550. Appl Biochem Biotechnol 167(2):338–347

    Article  CAS  PubMed  Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2012b) Selective production of acetone during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MAceT113. Lett Appl Microbiol 55(2):149–154

    Article  CAS  PubMed  Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2012c) Cre-lox66/lox71-based elimination of phosphotransacetylase or acetaldehyde dehydrogenase shifted carbon flux in acetogen rendering selective overproduction of ethanol or acetate. Appl Biochem Biotechnol 168(6):1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Berzin V, Kiriukhin M, Tyurin M (2013a) “Curing” of plasmid DNA in acetogen using microwave or applying an electric pulse improves cell growth and metabolite production as compared to the plasmid-harboring strain. Arch Microbiol 195(3):181–188

    Article  CAS  PubMed  Google Scholar 

  • Berzin V, Tyurin M (2012) Acetogen biocatalyst Clostridium sp. MTEtOH871engineered with our proprietary electrotransformation technology and equipment: continuous synthesis gas fermentation for selective ethanol production. JBR 4:54–64

    CAS  Google Scholar 

  • Berzin V, Tyurin M, Kiriukhin M (2013b) Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. Appl Biochem Biotechnol 169(3):950–959

    Article  CAS  PubMed  Google Scholar 

  • Biegel E, Müller V (2010) Bacterial Na+−translocatingferredoxin: NAD+ oxidoreductase. Proc Natl Acad Sci 107(42):18138–18142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun M (1981) Charakterisierung von anaerobenautotrophen Essigsäurebildnern und Untersuchungenzur Essigsäurebildungaus Wasserstoff und Kohlendioxiddurch Clostridium aceticum (Doctoral dissertation, Uitgevernietvastgesteld)

    Google Scholar 

  • Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15(5):834–844

    Article  CAS  PubMed  Google Scholar 

  • Bridgwater AV (1994) Catalysis in thermal biomass conversion. Appl Catal A Gen 116(1–2):5–47

    Article  CAS  Google Scholar 

  • Brogren C, Karlsson HT, Bjerle I (1997) Absorption of NO in an alkaline solution of KMnO4. Chem Eng Technol 20(6):396–402

    Article  CAS  Google Scholar 

  • Brown RC, Brown TR (2003) Biorenewable resources: engineering new products from agriculture. Blackwell Publishing Co., Ames, IA

    Google Scholar 

  • Bryant MP, McBride BC, Wolfe RS (1968) Hydrogen-oxidizing methane bacteria I. Cultivation and methanogenesis. J Bacteriol 95(3):1118–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra S, Jain A (2007) A review of fixed bed gasification systems for biomass. Agric Eng Int: the CIGR Ejournal. Invited Overview No. 5. Vol. IX

    Google Scholar 

  • Chu H, Chien TW, Li SY (2001) Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions. Sci Total Environ 275(1–3):127–135

    Article  CAS  PubMed  Google Scholar 

  • Cotter JL, Chinn MS, Grunden AM (2009) Ethanol and acetate production by Clostridium ljungdahlii and clostridium autoethanogenum using resting cells. Bioprocess Biosyst Eng 32:369–380

    Article  CAS  PubMed  Google Scholar 

  • Dahmen N, Henrich E, Dinjus E, Weirich F (2012) The bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy. Energy Sustainability Soc 2(1):3

    Article  Google Scholar 

  • Daniell J, Köpke M, Simpson S (2012) Commercial biomass syngas fermentation. Energies 5(12):5372–5417

    Article  CAS  Google Scholar 

  • Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86(5):587–594

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33(1):1–18

    Article  CAS  Google Scholar 

  • Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacteriumwoodii. Biotechnol Bioeng 108(2):470–474

    Article  CAS  PubMed  Google Scholar 

  • Drake HL (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In: Acetogenesis. Springer, Boston, MA, pp 3–60

    Chapter  Google Scholar 

  • Drake HL, Hu SI, Wood HG (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermocaceticum. J Biol Chem 255(15):7174–7180

    Article  CAS  PubMed  Google Scholar 

  • Drake HL, Hu SI, Wood HG (1981) Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. J Biol Chem 256(21):11137–11144

    Article  CAS  PubMed  Google Scholar 

  • Drake HL, Küsel K and Matthies C (2006) Acetogenic prokaryotes. The Prokaryotes: Volume 2: Ecophysiology and Biochemistry, pp. 354–420

    Google Scholar 

  • Dry ME (2002) The fischer–tropsch process: 1950–2000. Catal Today 71(3–4):227–241

    Article  CAS  Google Scholar 

  • Dürre P (2016) Butanol formation from gaseous substrates. FEMS Microbiol Lett 363(6):fnw040

    Article  PubMed  Google Scholar 

  • Fei Q, Chang HN, Shang L, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102(3):2695–2701

    Article  CAS  PubMed  Google Scholar 

  • Fraisse L, Simon H (1988) Observations on the reduction of non-activated carboxylates by Clostridium formicoaceticum with carbon monoxide or formate and the influence of various viologens. Arch Microbiol 150(4):381–386

    Article  CAS  Google Scholar 

  • García-Aparicio MP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129(1–3):278–288

    Article  PubMed  Google Scholar 

  • Girbal L, Vasconcelos I, Saint-Amans S, Soucaille P (1995) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16(2–3):151–162

    Article  CAS  Google Scholar 

  • Gottwald M, Andreesen JR, LeGall J, Ljungdahl LG (1975) Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum. J Bacteriol 122(1):325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grahame DA (2003) Acetate C–C bond formation and decomposition in the anaerobic world: the structure of a central enzyme and its key active-site metal cluster. Trends Biochem Sci 28(5):221–224

    Article  CAS  PubMed  Google Scholar 

  • Grethlein AJ, Soni BK, Worden RM, Jain MK (1992) Influence of hydrogen sulfide on the growth and metabolism ofbutyribacteriummethylotrophicumandclostridiumacetobutylicum. Appl Biochem Biotechnol 34(1):233

    Article  Google Scholar 

  • Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D (2010) Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour Technol 101(22):8784–8789

    Article  CAS  PubMed  Google Scholar 

  • Haryanto A, Fernando SD, Pordesimo LO, Adhikari S (2009) Upgrading of syngas derived from biomass gasification: a thermodynamic analysis. Biomass Bioenergy 33(5):882–889

    Article  CAS  Google Scholar 

  • Heiskanen H, Virkajärvi I, Viikari L (2007) The effect of syngas composition on the growth and product formation of Butyribacteriummethylotrophicum. Enzym Microb Technol 41(3):362–367

    Article  CAS  Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJ (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18(3):200–206

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Chakraborty S, Kumar A, Woolston B, Liu H, Emerson D, Stephanopoulos G (2016) Integrated bioprocess for conversion of gaseous substrates to liquids. Proc Natl Acad Sci 113(14):3773–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huhnke RL, Lewis RS and Tanner RS, Oklahoma State University and University of Oklahoma (2010) Isolation and characterization of novel clostridial species. U.S. Patent 7,704,723

    Google Scholar 

  • Jin G, Yang F, Hu C, Shen H, Zhao ZK (2012) Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidiumtoruloides. Bioresour Technol 111:378–382

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol 2(1):21–26

    CAS  PubMed  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnholz A, Küsel K, Gößner A, Schramm A, Drake HL (2002) Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Environ Microbiol 68(2):1005–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki S, Watamura Y, Ono M, Watanabe T, Takeda K, Niimura Y (2005) Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum. Appl Environ Microbiol 71(12):8442–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, Choi AR, Jeon JH, Lee JH, Lee HS, Kang SG (2013) CO-dependent H2 production by genetically engineered Thermococcusonnurineus NA1. Appl Environ Microbiol 79(6):2048–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel DE, Klasson KT, Clausen EC, Gaddy JL (1991) Performance of trickle-bed bioreactors for converting synthesis gas to methane. Appl Biochem Biotechnol 28(1):457

    Article  PubMed  Google Scholar 

  • Kiriukhin M, Tyurin M (2013) Expression of amplified synthetic ethanol pathway integrated using Tn7-tool and powered at the expense of eliminated pta, ack, spo0A and spo0J during continuous syngas or CO 2/H 2 blend fermentation. J Appl Microbiol 114(4):1033–1045

    Article  CAS  PubMed  Google Scholar 

  • Kirkels AF, Verbong GP (2011) Biomass gasification: still promising? A 30-year global overview. Renew Sust Energ Rev 15(1):471–481

    Article  CAS  Google Scholar 

  • Kita A, Iwasaki Y, Sakai S, Okuto S, Takaoka K, Suzuki T, Yano S, Sawayama S, Tajima T, Kato J, Nishio N (2013) Development of genetic transformation and heterologous expression system in carboxydotrophicthermophilicacetogen Moorellathermoacetica. J Biosci Bioeng 115(4):347–352

    Article  CAS  PubMed  Google Scholar 

  • Klasson KT, Ackerson CMD, Clausen EC, Gaddy JL (1992) Biological conversion of synthesis gas into fuels. Int J Hydrog Energy 17(4):281–288

    Article  CAS  Google Scholar 

  • Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72(12):1673–1678

    Article  CAS  Google Scholar 

  • Klasson KT, Cowger JP, Ko CW, Vega JL, Clausen EC, Gaddy JL (1990) Methane production from synthesis gas using a mixed culture of R. rubrum M. barkeri, and M. formicicum. Appl Biochem Biotechnol 24(1):317–328

    Article  Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci 107(29):13087–13092

    Article  PubMed  PubMed Central  Google Scholar 

  • Köpke M and Liew F (2012) Production of butanol from carbon monoxide by a recombinant microorganism. Patent, Germany

    Google Scholar 

  • Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2, 3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475

    Article  PubMed  PubMed Central  Google Scholar 

  • Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55(5):2085–2091

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014a) Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresour Technol 151:69–77

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014b) Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour Technol 152:337–346

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL (2012) Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculumbacchi. Bioresour Technol 104:336–341

    Article  CAS  PubMed  Google Scholar 

  • Ljungdhal LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40(1):415–450

    Article  Google Scholar 

  • Lu WP, Harder SR, Ragsdale SW (1990) Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J Biol Chem 265(6):3124–3133

    Article  CAS  PubMed  Google Scholar 

  • McCord JM, Keele BB, Fridovich I (1971) An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci 68(5):1024–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Mejillano MR, Jahansouz H, Matsunaga TO, Kenyon GL, Himes RH (1989) Formation and utilization of formyl phosphate by N10-formyltetrahydrofolate synthetase: evidence for formyl phosphate as an intermediate in the reaction. Biochemistry 28(12):5136–5145

    Article  CAS  PubMed  Google Scholar 

  • Michael K, Steffi N and Peter D (2011) The past, present, and future of biofuels–biobutanol as promising alternative. In Biofuel Production-Recent Developments and Prospects. IntechOpen

    Google Scholar 

  • Mitchel D (2008) A note on rising food prices. The World Bank

    Google Scholar 

  • Mojtahedi W, Ylitalo M, Maunula T, Abbasian J (1995) Catalytic decomposition of ammonia in fuel gas produced in pilot-scale pressurized fluidized-bed gasifier. Fuel Process Technol 45(3):221–236

    Article  CAS  Google Scholar 

  • Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69(11):6345–6353

    Article  PubMed  PubMed Central  Google Scholar 

  • Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101(13):5013–5022

    Article  CAS  PubMed  Google Scholar 

  • Naylor RL, Liska AJ, Burke MB, Falcon WP, Gaskell JC, Rozelle SD, Cassman KG (2007) The ripple effect: biofuels, food security, and the environment. Environ Sci Policy Sustain Dev 49(9):30–43

    Article  Google Scholar 

  • Nguyen TLT, Gheewala SH, Garivait S (2007) Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand. Energy Policy 35(9):4585–4596

    Article  Google Scholar 

  • Parekh SR, Cheryan M (1991) Production of acetate by mutant strains of Clostridium thermoaceticum. Appl Microbiol Biotechnol 36(3):384–387

    Article  CAS  Google Scholar 

  • Park EY, Clark JE, DerVartanian DV, Ljungdahl LG (1991) 5, 10-methylenetetrahydrofolate reductases: iron-sulfur-zinc flavoproteins of two acetogenic clostridia. Chem Biochem Flavoenzymes 1:389–400

    CAS  Google Scholar 

  • Perez JM, Richter H, Loftus SE, Angenent LT (2013) Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation. Biotechnol Bioeng 110(4):1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Perlack RD (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory

    Google Scholar 

  • Pezacka E, Wood HG (1984) Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria. Proc Natl Acad Sci 81(20):6261–6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips J, Huhnke R, Atiyeh H (2017) Syngas fermentation: a microbial conversion process of gaseous substrates to various products. Fermentation 3(2):28

    Article  Google Scholar 

  • Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J, Wilkins MR, Huhnke RL (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 190:114–121

    Article  CAS  PubMed  Google Scholar 

  • Phillips JR, Clausen EC, Gaddy JL (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Biochem Biotechnol 45(1):145–157

    Article  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Factories 4(1):24

    Article  Google Scholar 

  • Rabou LP, Zwart RW, Vreugdenhil BJ, Bos L (2009) Tar in biomass producer gas, the Energy research Centre of the Netherlands (ECN) experience: an enduring challenge. Energy Fuel 23(12):6189–6198

    Article  CAS  Google Scholar 

  • Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Mol Biol 26(3–4):261–300

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW (1997) The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. Biofactors 6(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784(12):1873–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragsdale SW (2009) Nickel-based enzyme systems. J Biol Chem 284(28):18571–18575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragsdale SW, Lindahl PA, Münck E (1987) Mössbauer, EPR, and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl coenzyme A by Clostridium thermoaceticum. J Biol Chem 262(29):14289–14297

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW, Ljungdahl LG, DerVartanian DV (1983) Isolation of carbon monoxide dehydrogenase from Acetobacteriumwoodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme. J Bacteriol 155(3):1224–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raybuck SA, Bastian NR, Orme-Johnson WH, Walsh CT (1988) Kinetic characterization of the carbon monoxide-acetyl-CoA (carbonyl group) exchange activity of the acetyl-CoA synthesizing carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 27(20):7698–7702

    Article  CAS  PubMed  Google Scholar 

  • Roberts JR, Lu WP, Ragsdale SW (1992) Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps. J Bacteriol 174(14):4667–4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy R, Adams MW (2002) Tungsten-dependent aldehyde oxidoreductase: a new family of enzymes containing the pterin cofactor. Met Ions Biol Syst 39:673–697

    CAS  PubMed  Google Scholar 

  • Saxena J (2008) Development of an optimized and cost-effective medium for ethanol production by Clostridium strain P11. The University of Oklahoma

    Google Scholar 

  • Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenicacetogen, Clostridiumragsdalei. J Ind Microbiol Biotechnol 38(4):513–521

    Article  CAS  PubMed  Google Scholar 

  • Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24(7):777

    Article  CAS  PubMed  Google Scholar 

  • Shanmugasundaram T, Wood HG (1992) Interaction of ferredoxin with carbon monoxide dehydrogenase from Clostridium thermoaceticum. J Biol Chem 267(2):897–900

    Article  CAS  PubMed  Google Scholar 

  • Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzym Microb Technol 40(5):1234–1243

    Article  CAS  Google Scholar 

  • Sun AY, Ljungdahl L, Wood HG (1969) Total synthesis of acetate from CO2 II. Purification and properties of formyltetrahydrofolatesynthetase from Clostridium thermoaceticum. J Bacteriol 98(2):842–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridialr RNA homology group I. Int J Syst Evol Microbiol 43(2):232–236

    CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenicarchaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579

    Article  CAS  PubMed  Google Scholar 

  • Tyurin M, Kiriukhin M (2013) Selective methanol or formate production during continuous CO 2 fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool. World J Microbiol Biotechnol 29(9):1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Tyurin M, Kiriukhin M, Berzin V (2012) Electrofusionofcellsof acetogen Clostridiumsp.MT351witherm(B) orcatinthe chromosome. JBR 4:1–12

    CAS  Google Scholar 

  • Ungerman AJ, Heindel TJ (2007) Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Prog 23(3):613–620

    Article  CAS  PubMed  Google Scholar 

  • Vega JL, Clausen EC, Gaddy JL (1990) Design of bioreactors for coal synthesis gas fermentations. Resour Conserv Recycl 3(2–3):149–160

    Article  Google Scholar 

  • White H, Strobl G, Feicht R, Simon H (1989) Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur J Biochem 184(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Worden RM, Grethlein AJ, Jain MK, Datta R (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70(5):615–619

    Article  CAS  Google Scholar 

  • Xu CC, Donald J, Byambajav E, Ohtsuka Y (2010) Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel 89(8):1784–1795

    Article  CAS  Google Scholar 

  • Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35(7):2690–2696

    Article  CAS  Google Scholar 

  • Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258(3):1826–1832

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, Jeong Y, Park S, Jeong J, Lee EY, Lovitt RW, Kim BH, Lee J, Chang IS (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177:361–374

    Article  CAS  PubMed  Google Scholar 

  • Younesi H, Najafpour G, Ismail KSK, Mohamed AR, Kamaruddin AH (2008) Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillumrubrum. Bioresour Technol 99(7):2612–2619

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Lynd LH, Thompson TE, Krzycki JA, Weimer PJ, Hegge PW (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr Microbiol 3(6):381–386

    Article  CAS  Google Scholar 

  • Zhao Y, Haddad M, Cimpoia R, Liu Z, Guiot SR (2013) Performance of a Carboxydothermushydrogenoformans-immobilizing membrane reactor for syngas upgrading into hydrogen. Int J Hydrog Energy 38(5):2167–2175

    Article  CAS  Google Scholar 

  • Zhu L, Dong H, Zhang Y, Li Y (2011) Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng 13(4):426–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was sponsored by the Sharda University, Greater Noida- 201306, India.

Declaration of Competing Interest

No conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, J. et al. (2021). Biochemical Aspects of Syngas Fermentation. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_19

Download citation

Publish with us

Policies and ethics