Skip to main content
Log in

Performance of trickle-bed bioreactors for converting synthesis gas to methane

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carbon monoxide, H2, and CO2 in synthesis gas can be converted to CH4 by employing a triculture ofRhodospirillum rubrum, Methanosarcina barken, andMethanobacterium formicicum. Trickle-bed reactors have been found to be effective for this conversion because of their high mass-transfer coefficients. This paper compares results obtained for the conversion of synthesis gas to CH4 in 5-cm- and 16.5-cm-diameter trickle-bed reactors. Mass-transfer and scale-up parameters are defined, and light requirements forR. rubrum are considered in bioreactor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G:

gas flow rate mL/h

∈l:

liquid porosity mL/mL

h :

column height cm

H :

Henry’s law constant L-atm CO/mol CO

K La :

mass-transfer coefficient h-1

P :

partial pressure or tension atm

q :

specific uptake rate mmol/gcell.h

R :

ideal gas law constant L.atm/mol.K

S:

cross-sectional area cm2

T:

temperature K

X:

cell concentration g/L

Yco :

mole fraction ratio between CO and inert mol/mol

i :

inlet conditions

o :

outlet conditions

*:

equilibrium

G:

gas phase

L:

liquid phase

References

  1. Sublette, K. L. and Sylvester, N. D. (1986),Biotechnol. Bioeng. Symp. Series 17, 543–564.

    CAS  Google Scholar 

  2. Cork, D. J., Garunas, R., and Sajjad, A. (1983),Appl. Environ. Microbiol. 45, 913–918.

    CAS  Google Scholar 

  3. Grace, B. T., Gillespie, J., and Puckett, K. J. (1985),Can. J. Bot. 63, 797–805.

    CAS  Google Scholar 

  4. Wilkinson, T. G., Topiwala, H. H., and Hamer, G. (1974),Biotechnol. Bioeng. 16, 41–59.

    Article  CAS  Google Scholar 

  5. Levy, P. F., Barnard, G. W., Garcia-Martinez, D. V., Sanderson, J. E., and Wise, D. L. (1981),Biotechnol. Bioeng. 23, 2293–2306.

    Article  CAS  Google Scholar 

  6. Vega, J. L., Antorrena, G. M., Clausen, E. C., and Gaddy, J. L. (1989),Biotechnol. Bioeng. 34, 785–793.

    Article  CAS  Google Scholar 

  7. Klasson, K. T., Cowger, J. P., Ko, C. W., Vega, J. L., Clausen, E. C., and Gaddy, J. L. (1990),Appl. Biochem. Biotechnol. 24/25, 317–328.

    Article  Google Scholar 

  8. Vega, J. L., Prieto, S., Elmore, B. B., Clausen, E. C., and Gaddy, J. L. (1989),Appl. Biochem. Biotechnol. 20/21, 781–797.

    Google Scholar 

  9. Charpentier, J. C. (1981),Advances in Chemical Engineering, vol. II, (Academic, New York).

    Google Scholar 

  10. Vega, J. L., Holmberg, V. L., Ko, C. W., Clausen, E. C., and Gaddy, J. L. (1988),Advanced Studies of the Biological Conversion of Coal Synthesis Gas to Methane, Topical Report 1, Reactor optimization. US Department of Energy, Morgantown Energy Technology Center, Contract No. DE-AC21-86MC23281.

  11. Lorowitz, W. H., and Bryant, M. P. (1984),Appl. Environ. Microbiol. 47, 961–964.

    CAS  Google Scholar 

  12. Kerby, R., Niemczura, W., and Zeikus, J. G. (1983),J. Bacterial. 155, 1208- 1218.

    CAS  Google Scholar 

  13. Genthner, B. R. S., and Bryant, M. P. (1982),Appl. Environ. Microbiol. 43, 70–74.

    CAS  Google Scholar 

  14. Jones, W. J., Nagle, D. P., Jr., and Whitman, W. B. (1987),Microbiol. Rev. 51, 135–177.

    CAS  Google Scholar 

  15. Klasson, K. T., Vega, J. L., Ko, C. W., Kimmel, D. E., Cowger, J. P., Barik, S., Johnson, E. R., Holmberg, V. L., Clausen, E. C., and Gaddy, J. L. (1990),Advanced Studies of the Biological Conversion of Coal Synthesis Gas to Methane, Final Report, US Department of Energy, Morgantown Energy Technology Center, Contract No. DE-AC21-86MC23281.

  16. Kluyver, A. J. and Schnellen, C. G. (1947),Arch. Biochem. 14, 57–70.

    CAS  Google Scholar 

  17. Ko, C. W., Vega, J. L., Clausen, E. C., and Gaddy, J. L. (1987),Advanced Studies at the Biologkal Conversion of Coal Synthesis Gas to Methane, Topical Report 3. The Effects of acetate and pressure on methanogenesis. US Department of Energy, Morgantown Energy Technology Center, Contract No. DE-AC21-86MC23281.

  18. Vega, J. L., Klasson, K. T., Kimmel, D. E., Clausen, E. C., and Gaddy, J. L. (1990),Appl. Biochem. Biotechnol. 24/25, 329–340.

    Google Scholar 

  19. Klasson, K. T., Elmore, B. B., Vega, J. L., Ackerson, M. D., Clausen, E. C., and Gaddy, J. L. (1990),Appl. Biochem. Biotechnol. 24/25, 857–876.

    Google Scholar 

  20. Mclnerney, M. J., Bryant, M. P., and Pfennig, N. (1979),Arch. Microbiol. 122, 129–135.

    Article  Google Scholar 

  21. Genthner, B. R. S., Davis, M. P., and Bryant, M. P. (1981),Appl. Environ. Microbiol. 42, 12–19.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimmel, D.E., Klasson, K.T., Clausen, E.C. et al. Performance of trickle-bed bioreactors for converting synthesis gas to methane. Appl Biochem Biotechnol 28, 457–469 (1991). https://doi.org/10.1007/BF02922625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922625

Index Entries

Navigation