Skip to main content
Log in

Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The effect of trace metal ions (Co2+, Cu2+, Fe2+, Mn2+, Mo6+, Ni2+, Zn2+, SeO4 and WO4 ) on growth and ethanol production by an ethanologenic acetogen, Clostridium ragsdalei was investigated in CO:CO2-grown cells. A standard acetogen medium (ATCC medium no. 1754) was manipulated by varying the concentrations of trace metals in the media. Increasing the individual concentrations of Ni2+, Zn2+, SeO4 and WO4 from 0.84, 6.96, 1.06, and 0.68 μM in the standard trace metals solution to 8.4, 34.8, 5.3, and 6.8 μM, respectively, increased ethanol production from 35.73 mM under standard metals concentration to 176.5, 187.8, 54.4, and 72.3 mM, respectively. Nickel was necessary for growth of C. ragsdalei. Growth rate (μ) of C. ragsdalei improved from 0.34 to 0.49 (day−1), and carbon monoxide dehydrogenase (CODH) and hydrogenase (H2ase)-specific activities improved from 38.45 and 0.35 to 48.5 and 1.66 U/mg protein, respectively, at optimum concentration of Ni2+. At optimum concentrations of WO4 and SeO4 , formate dehydrogenase (FDH) activity improved from 32.3 to 42.6 and 45.4 U/mg protein, respectively. Ethanol production and the activity of FDH reduced from 35 mM and 32.3 U/mg protein to 1.14 mM and 8.79 U/mg protein, respectively, upon elimination of WO4 from the medium. Although increased concentration of Zn2+ enhanced growth and ethanol production, the activities of CODH, FDH, H2ase and alcohol dehydrogenase (ADH) were not affected by varying the Zn2+ concentration. Omitting Fe2+ from the medium decreased ethanol production from 35.7 to 6.30 mM and decreased activities of CODH, FDH, H2ase and ADH from 38.5, 32.3, 0.35, and 0.68 U/mg protein to 9.07, 7.01, 0.10, and 0.24 U/mg protein, respectively. Ethanol production improved from 35 to 54 mM when Cu2+ was removed from the medium. The optimization of trace metals concentration in the fermentation medium improved enzyme activities (CODH, FDH, and H2ase), growth and ethanol production by C. ragsdalei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams MWW, Mortenson LE, Chen J-S (1981) Hydrogenase. Biochem Biophys Acta 594:105–176

    Google Scholar 

  2. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  CAS  Google Scholar 

  3. Bramlett MR, Tan X, Lindahl PA (2003) Inactivation of acetyl CoA synthase/carbon monoxide dehydrogenase by copper. J Am Chem Soc 125:9316–9317

    Article  PubMed  CAS  Google Scholar 

  4. Burdette DS, Jung S-H, Shen G-J, Hollingsworth RI, Zeikus JG (2002) Physiological function of alcohol dehydrogenase and long-chain (C30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol 68:1914–1918

    Article  PubMed  CAS  Google Scholar 

  5. Cammack R (1999) Hydrogenase sophistication. Nature 397:214–215

    Article  PubMed  CAS  Google Scholar 

  6. Chen JS (1995) Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol Rev 17:263–273

    Article  PubMed  CAS  Google Scholar 

  7. Clark JE, Ragsdale SW, Ljungdahl LG, Wiegel J (1982) Levels of enzymes involved in the synthesis of acetate from carbon dioxide in Clostridium thermoautotrophicum. J Bacteriol 151:507–509

    PubMed  CAS  Google Scholar 

  8. Diekert GB, Thauer RK (1980) The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum. FEMS Microbiol Lett 7:187–189

    Article  CAS  Google Scholar 

  9. Drake HL, Kusel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, Berlin Heidelberg New York, pp 354–420

    Chapter  Google Scholar 

  10. Drennan CL, Doukov TI, Ragsdale SW (2004) The metalloclusters of carbon monoxidedehydrogenase/acetyl-CoA synthase: a story in pictures. J Biol Inorg Chem 9:511–515

    Article  PubMed  CAS  Google Scholar 

  11. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  12. Huhnke R, Lewis R, Tanner RS (2008) Isolation and characterization of novel clostridial species. US patent application. Publication no. US 2008/0057554 A1

  13. Ismaiel AA, Zhu CX, Colby GD, Chen JS (1993) Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol 175:5097–5105

    PubMed  CAS  Google Scholar 

  14. Koesnandar NN, Nagai S (1991) Effects of trace metal ions on the growth, homoacetogenesis and corronoid production by Clostridium aceticum. J Fermen Bioengg 71:181–185

    Article  CAS  Google Scholar 

  15. Korkhin Y, Kalb (Gilboa) AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol 278:967–981

    Article  PubMed  CAS  Google Scholar 

  16. Liu C-L, Mortenson LE (1984) Formate dehydrogenase of Clostridium pasteurianum. J Bacteriol 159:375–380

    PubMed  CAS  Google Scholar 

  17. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  PubMed  CAS  Google Scholar 

  18. Mehta MD, Saxena J, Tanner RS (2004) Enzyme activities in clostridia producing ethanol from carbon monoxide. Abstr 104th Annu Meet Am Soc Microbiol, O-81, p 474

  19. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329

    Article  PubMed  CAS  Google Scholar 

  20. Peckman KR (1976) Investigation of the phylogenetic relationship of Sporomusa ureae to members of the Bacillaceae using primary structural characterization of 16S ribosomal ribonucleic acids. PhD thesis. University of Illinois, Urbana

  21. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DOE/GO-102005-2135, Oak Ridge National Laboratory, Oak Ridge. http://:www.osti.gov/bridge

  22. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 5395:1853–1858

    Article  Google Scholar 

  23. Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Appl Environ Microbiol 10:2550–2573

    CAS  Google Scholar 

  24. Pimentel D (2003) Ethanol fuels: energy balance, economics, and environment impacts are negative. Nat Resour Res 12:127–134

    Article  Google Scholar 

  25. Ragsdale SW, Ljungdahl LG (1984) Hydrogenase from Acetobacterium woodii. Arch Microbiol 139:361–365

    Article  PubMed  CAS  Google Scholar 

  26. Scopes RK (1983) An iron-activated alcohol dehydrogenase. FEBS Lett 156:303–306

    Article  PubMed  CAS  Google Scholar 

  27. Seravalli J, Xiao Y, Gu W, Cramer SP, Antholine WE, Krymov V, Gerfen GJ, Ragsdale SW (2004) Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not. Biochem 43:3944–3955

    Article  CAS  Google Scholar 

  28. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Garter FH, Provenzano MD, Fujimoto EK, Goeke MN, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  29. Tanner RS (2007) Cultivation of bacteria and fungi. In: Hurst CJ, Crawford RL, Mills AL, Garland JL, Stetzenbach LD, Lipson DA (eds) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, DC, pp 69–78

    Google Scholar 

  30. Tanner RS (2008) Production of ethanol from synthesis gas. In: Wall J, Harwood CJ, Demain AL (eds) Bioenergy. ASM Press, Washington, DC, pp 147–151

    Google Scholar 

  31. Wagner R, Andreesen JR (1987) Accumulation and incorporation of 185W-tungsten into proteins of Clostridium acidiurici and Clostridium cylindrosporum. Arch Microbiol 147:295–299

    Article  CAS  Google Scholar 

  32. Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by USDA-CSREES Special Grant awards 2005-34447-15711 and 2006-34447-16939. We would like to thank Dr. James A. Zahn for his constructive suggestions in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotisna Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, J., Tanner, R.S. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei . J Ind Microbiol Biotechnol 38, 513–521 (2011). https://doi.org/10.1007/s10295-010-0794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0794-6

Keywords

Navigation