Skip to main content

Integrating Biomass Pyrolysis with Microbial Conversion Processes to Produce Biofuels and Biochemicals

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

  • 786 Accesses

Abstract

Biomass is considered to be one of the most promising sources of renewable resources when it comes to producing biofuels and biochemicals. Several technologies have been developed to assist in transforming biomass into useful products, pyrolysis being one of them. However, pyrolysis products have not yet become competitive alternatives to fossil fuel resources. They still require further processing to improve their fuel characteristics and to produce chemicals. On the other hand, due to advancements in industrial biotechnology, the microbial conversion of biomass has rapidly been evolving in recent times. Thanks to this, integrating pyrolysis into microbial conversion processes is provoking a great deal of interest. This would allow the further transformation of pyrolysis products into high value biofuels and biochemicals. In this chapter, an overview of possible approaches to integrate pyrolysis and microbial processes is presented. Furthermore, the opportunities and challenges involving microbial conversion of pyrolysis products are summarised. In particular, the inhibitory effects of pyrolysis oil and possible detoxification methods are discussed. Finally, the future direction of research is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veum K, Bauknecht D. How to reach the EU renewables target by 2030? An analysis of the governance framework. Energy Policy. 2020;127:299–307. https://doi.org/10.1016/j.enpol.2018.12.013.

    Article  Google Scholar 

  2. Pires JCM. COP21: the algae opportunity? Renew Sust Energ Rev. 2017;79:867–77. https://doi.org/10.1016/j.rser.2017.05.197.

    Article  Google Scholar 

  3. IEA. Key world energy statistics IEA, Paris. 2019. https://www.iea.org/reports/key-world-energy-statistics-2019.

    Google Scholar 

  4. Jiang L, Zheng A, Meng J, Wang X, Zhao Z, Li H. A comparative investigation of fast pyrolysis with enzymatic hydrolysis for fermentable sugars production from cellulose. Bioresour Technol. 2019;274:281–6. https://doi.org/10.1016/j.biortech.2018.11.098.

    Article  CAS  Google Scholar 

  5. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2011;38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048.

    Article  CAS  Google Scholar 

  6. Pinheiro Pires AP, Arauzo J, Fonts I, Domine ME, Fernández Arroyo A, Garcia-Perez ME. Challenges and opportunities for bio-oil refining: a review. Energy Fuel. 2019;33:4683–720. https://doi.org/10.1021/acs.energyfuels.9b00039.

    Article  CAS  Google Scholar 

  7. Campbell RM, Anderson NM, Daugaard DE, Naughton HT. Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Appl Energy. 2018;230:330–43. https://doi.org/10.1016/j.apenergy.2018.08.085.

    Article  Google Scholar 

  8. Arnold S, Moss K, Henkel M, Hausmann R. Biotechnological perspectives of pyrolysis oil for a bio-based economy. Trends Biotechnol. 2017;35:925–36. https://doi.org/10.1016/j.tibtech.2017.06.003.

    Article  CAS  Google Scholar 

  9. Demirbas MF. Biorefineries for biofuel upgrading: a critical review. Appl Energy. 2009;86:S151–61. https://doi.org/10.1016/j.apenergy.2009.04.043.

    Article  CAS  Google Scholar 

  10. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675–85. https://doi.org/10.1016/j.biotechadv.2011.05.005.

    Article  CAS  Google Scholar 

  11. Raud M, Kikas T, Sippula O, Shurpali NJ. Potentials and challenges in lignocellulosic biofuel production technology. Renew Sust Energ Rev. 2019;111:44–56. https://doi.org/10.1016/j.rser.2019.05.020.

    Article  CAS  Google Scholar 

  12. Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production : review. Crit Rev Biotechnol. 2011;31:20–31. https://doi.org/10.3109/07388551003757816.

    Article  CAS  Google Scholar 

  13. Himmel ME, Ding S, Johnson DK, Adney WS, Nimlos MR, Brady JW. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315:804–8. https://doi.org/10.1126/science.1137016.

    Article  CAS  Google Scholar 

  14. Ko JK, Um Y, Park Y, Seo J, Kim KH. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl Microbiol Biotechnol. 2015;99:4201–12. https://doi.org/10.1007/s00253-015-6595-0.

    Article  CAS  Google Scholar 

  15. Nor W, Wan R, Hisham MWM, Ambar M, Hin TY. A review on bio-oil production from biomass by using pyrolysis method. Renew Sust Energ Rev. 2012;16:5910–23. https://doi.org/10.1016/j.rser.2012.05.039.

    Article  CAS  Google Scholar 

  16. Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy. 2018;129:695–716. https://doi.org/10.1016/j.renene.2017.04.035.

    Article  CAS  Google Scholar 

  17. Oasmaa A, Peacocke C. A guide to physical property characterisation of biomass – derived fast pyrolysis liquids. VTT Publ. 2001;450:65.

    Google Scholar 

  18. Jiang L, Fang Z, Zhao Z, Zheng A, Wang X, Li H. Levoglucosan and its hydrolysates via fast pyrolysis of lignocellulose for microbial biofuels: a state-of-the-art review. Renew Sust Energ Rev. 2019;105:215–29. https://doi.org/10.1016/j.rser.2019.01.055.

    Article  CAS  Google Scholar 

  19. Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lide G. Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res. 1997;11:4659–65. https://doi.org/10.1021/ie9700831.

    Article  Google Scholar 

  20. Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G. The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal – analytical and complementary studies. Bioresour Technol. 2011;102:9272–8. https://doi.org/10.1016/j.biortech.2011.06.044.

    Article  CAS  Google Scholar 

  21. Maduskar S, Maliekkal V, Neurock M, Dauenhauer PJ. On the yield of levoglucosan from cellulose pyrolysis. ACS Sustain Chem Eng. 2018;6:7017–25. https://doi.org/10.1021/acssuschemeng.8b00853.

    Article  CAS  Google Scholar 

  22. Bennett NM, Helle SS, Duff SJB. Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresour Technol. 2009;100:6059–63. https://doi.org/10.1016/j.biortech.2009.06.067.

    Article  CAS  Google Scholar 

  23. Kwon G, Kim D, Kimura S, Kuga S. Rapid-cooling , continuous-feed pyrolyzer for biomass processing preparation of levoglucosan from cellulose and starch. J Anal Appl Pyrolysis. 2007;80:1–5. https://doi.org/10.1016/j.jaap.2006.12.012.

    Article  CAS  Google Scholar 

  24. Yu Y, Chua YW, Wu H. Characterization of pyrolytic sugars in bio-oil produced from biomass fast pyrolysis. Energy Fuel. 2016;30:4145–9. https://doi.org/10.1021/acs.energyfuels.6b00464.

    Article  CAS  Google Scholar 

  25. Li X, Luque-Moreno LC, Oudenhoven SRG, Rehmann L, Kersten SRA, Schuur B. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability. Bioresour Technol. 2016;216:12–8. https://doi.org/10.1016/j.biortech.2016.05.035.

    Article  CAS  Google Scholar 

  26. Jönsson LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12. https://doi.org/10.1016/j.biortech.2015.10.009.

    Article  CAS  Google Scholar 

  27. Pattra S, Sangyoka S, Boonmee M, Reungsang A. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrog Energy. 2008;33:5256–65. https://doi.org/10.1016/j.ijhydene.2008.05.008.

    Article  CAS  Google Scholar 

  28. Ul Z, Yu I, El Z, Hassan B, Dongdong C. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second - generation biofuels. J Ind Microbiol Biotechnol. 2015;42:1557–79. https://doi.org/10.1007/s10295-015-1687-5.

    Article  CAS  Google Scholar 

  29. Kostas ET, Cooper M, Shepherd BJ, Robinson JP. Identification of bio-oil compound utilizing yeasts through phenotypic microarray screening. Waste biomass valor. 2019; https://doi.org/10.1007/s12649-019-00636-7.

  30. Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51:1–52. https://doi.org/10.1016/S0065-2164(02)51000-5.

    Article  CAS  Google Scholar 

  31. Prosen EM, Radlein D, Piskorz J, Scott DS, Legge RL. Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol Bioeng. 1993;42:538–41. https://doi.org/10.1002/bit.260420419.

    Article  CAS  Google Scholar 

  32. Wang H, Livingston D, Srinivasan R. Detoxification and fermentation of pyrolytic sugar for ethanol production. Appl Biochem Biotechnol. 2012;168:1568–83. https://doi.org/10.1007/s12010-012-9879-1.

    Article  CAS  Google Scholar 

  33. Chi Z, Zhao X, Daugaard T, Dalluge D, Rover M, Johnston P. Biomass and bioenergy comparison of product distribution , content and fermentability of biomass in a hybrid thermochemical/biological processing platform. Biomass Bioenergy. 2019;120:107–16. https://doi.org/10.1016/j.biombioe.2018.11.006.

    Article  CAS  Google Scholar 

  34. Yu Z, Zhang H. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol. 2003;90:95–100. https://doi.org/10.1016/S0960-8524(03)00093-2.

    Article  CAS  Google Scholar 

  35. Fidalgo RM, Ortigueira J, Mendes B, Lemos PC. Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures. New Biotechnol. 2014;31:297–307. https://doi.org/10.1016/j.nbt.2013.10.009.

    Article  CAS  Google Scholar 

  36. Lian J, Mckenna R, Rover MR, Nielsen DR, Wen Z, Jarboe LR. Production of biorenewable styrene : utilization of biomass - derived sugars and insights into toxicity. J Ind Microbiol Biotechnol. 2016;43:595–604. https://doi.org/10.1007/s10295-016-1734-x.

    Article  CAS  Google Scholar 

  37. Lian J, Garcia-Perez M, Chen S. Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol. 2013;133:183–9. https://doi.org/10.1016/j.biortech.2013.01.031.

    Article  CAS  Google Scholar 

  38. Luque L, Orr VCA, Chen S, Westerhof R, Oudenhoven S, Rossum G. Van, Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production. Bioresour Technol. 2016;214:660–9. https://doi.org/10.1016/j.biortech.2016.05.030.

    Article  CAS  Google Scholar 

  39. Wang C, Thygesen A, Liu Y, Li Q, Yang M, Dang D. Bio-oil based biorefinery strategy for the production of succinic acid. Biotechnol Biofuels. 2013;6(74):1–10. https://doi.org/10.1186/1754-6834-6-74.

    Article  CAS  Google Scholar 

  40. Zhuang XL, Zhang HX, Yang JZ, Qi HY. Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresour Technol. 2001;79:63–6. https://doi.org/10.1016/S0960-8524(01)00023-2.

    Article  CAS  Google Scholar 

  41. Islam ZU, Klykov SP, Yu Z, Chang D, Hassan EB, Zhang H. Fermentation of detoxified acid-hydrolyzed pyrolytic anhydrosugars into bioethanol with saccharomyces cerevisiae 2. 399. Appl Biochem Microbiol. 2018;54:58–70. https://doi.org/10.1134/S0003683818010143.

    Article  CAS  Google Scholar 

  42. Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC. Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol. 2013;150:220–7. https://doi.org/10.1016/j.biortech.2013.09.138.

    Article  CAS  Google Scholar 

  43. Guzik MW, Kenny ST, Duane GF, Casey E, Woods T, Babu RP. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl Microbiol Biotechnol. 2014;98:4223–32. https://doi.org/10.1007/s00253-013-5489-2.

    Article  CAS  Google Scholar 

  44. Ward PG, Goff M, Donner M. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol. 2006;40:2433–7. https://doi.org/10.1021/es0517668.

    Article  CAS  Google Scholar 

  45. Lian J, Garcia-Perez M, Coates R, Wu H, Chen S. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour Technol. 2012;118:177–86. https://doi.org/10.1016/j.biortech.2012.05.010.

    Article  CAS  Google Scholar 

  46. Wei Z, Zeng G, Kosa M. Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus. Appl Biochem Biotechnol. 2015;175:1234–46. https://doi.org/10.1007/s12010-014-1305-4.

    Article  CAS  Google Scholar 

  47. Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol. 2011;113:1031–51. https://doi.org/10.1002/ejlt.201100014.

    Article  CAS  Google Scholar 

  48. Kim E, Um Y, Bott M, Woo HM. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan , a pyrolytic sugar substrate. FEMS Microbiol Lett. 2015;362:1–6. https://doi.org/10.1093/femsle/fnv161.

    Article  CAS  Google Scholar 

  49. Dörsam S, Kirchhoff J, Bigalke M, Dahmen N, Syldatk C, Ochsenreither K. Evaluation of pyrolysis oil as carbon source for fungal fermentation. Front Microbiol. 2016;7:1–11. https://doi.org/10.3389/fmicb.2016.02059.

    Article  Google Scholar 

  50. Lange J, Müller F, Bernecker K, Dahmen N, Takors R, Blombach B. Valorization of pyrolysis water: a biorefinery side stream , for 1, 2-propanediol production with engineered Corynebacterium glutamicum. Biotechnol Biofuels. 2017;10:277. https://doi.org/10.1186/s13068-017-0969-8.

    Article  CAS  Google Scholar 

  51. Lewis AJ, Ren S, Ye X, Kim P, Labbe N, Borole AP. Hydrogen production from switchgrass via an integrated pyrolysis – microbial electrolysis process. Bioresour Technol. 2015;195:231–41. https://doi.org/10.1016/j.biortech.2015.06.085.

    Article  CAS  Google Scholar 

  52. Park LK, Satinover SJ, Yiacoumi S, Mayes RT, Borole AP, Tsouris C. Electrosorption of organic acids from aqueous bio-oil and conversion into hydrogen via microbial electrolysis cells. Renew Energy. 2018;125:21–31. https://doi.org/10.1016/j.renene.2018.02.076.

    Article  CAS  Google Scholar 

  53. Brooks V, Lewis AJ, Dulin P, Beegle R, Rodriguez M, Borole AP. Hydrogen production from pine-derived catalytic pyrolysis aqueous phase via microbial electrolysis. Biomass Bioenergy. 2018;119:1–9. https://doi.org/10.1016/j.biombioe.2018.08.008.

    Article  CAS  Google Scholar 

  54. Satinover SJ, Elkasabi Y, Nuñez A, Rodriguez M. Microbial electrolysis using aqueous fractions derived from Tail-Gas Recycle Pyrolysis of willow and guayule. Bioresour Technol. 2019;274:302–12. https://doi.org/10.1016/j.biortech.2018.11.099.

    Article  CAS  Google Scholar 

  55. Monlau F, Sambusiti C, Antoniou N, Barakat A, Zabaniotou A. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl Energy. 2015;148:32–8. https://doi.org/10.1016/j.apenergy.2015.03.024.

    Article  Google Scholar 

  56. Torri C, Fabbri D. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass. Bioresour Technol. 2014;172:335–41. https://doi.org/10.1016/j.biortech.2014.09.021.

    Article  CAS  Google Scholar 

  57. Hübner T, Mumme J. Integration of pyrolysis and anaerobic digestion - use of aqueous liquor from digestate pyrolysis for biogas production. Bioresour Technol. 2015;183:86–92. https://doi.org/10.1016/j.biortech.2015.02.037.

    Article  CAS  Google Scholar 

  58. Yang Y, Heaven S, Venetsaneas N, Banks CJ, Bridgwater AV. Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): characterisation of products and screening of the aqueous liquid product for anaerobic digestion. Appl Energy. 2018;213:158–68. https://doi.org/10.1016/j.apenergy.2018.01.018.

    Article  CAS  Google Scholar 

  59. Zhao X, Chi Z, Rover M, Brown R, Jarboe L, Wen Z. Microalgae fermentation of acetic acid-rich pyrolytic bio-oil: reducing bio-oil toxicity by alkali treatment. Environ Prog Sustain Energy. 2013;32:955–61. https://doi.org/10.1002/ep.11813.

    Article  CAS  Google Scholar 

  60. Huggins T, Wang H, Kearns J, Jenkins P, Jason Z. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol. 2014;157:114–9. https://doi.org/10.1016/j.biortech.2014.01.058.

    Article  CAS  Google Scholar 

  61. Chen S, He G, Hu X, Xie M, Wang S, Zeng D. A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems. ChemSusChem. 2012;5(6):1059–63. https://doi.org/10.1002/cssc.201100783.

    Article  CAS  Google Scholar 

  62. Yuan H, Deng L, Qi Y, Kobayashi N, Tang J. Nonactivated and activated biochar derived from bananas as alternative cathode catalyst in microbial fuel cells. Sci World J. 2014;2014:832850. https://doi.org/10.1155/2014/832850.

    Article  CAS  Google Scholar 

  63. Wang B, Wang Z, Jiang Y, Tan G, Xu N, Xu Y. Enhanced power generation and wastewater treatment in sustainable biochar electrodes based bioelectrochemical system. Bioresour Technol. 2017;241:841–8. https://doi.org/10.1016/j.biortech.2017.05.155.

    Article  CAS  Google Scholar 

  64. Li M, Zhang H, Xiao T, Wang S, Zhang B. Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim Acta. 2018;283:780–8. https://doi.org/10.1016/j.electacta.2018.07.010.

    Article  CAS  Google Scholar 

  65. Huggins TM, Pietron JJ, Wang H, Jason Z, Biffinger JC. Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresour Technol. 2015;195:147–53. https://doi.org/10.1016/j.biortech.2015.06.012.

    Article  CAS  Google Scholar 

  66. Wu S, Li H, Zhou X, Liang P, Zhang X, Jiang Y. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 2016;98:396–403. https://doi.org/10.1016/j.watres.2016.04.043.

    Article  CAS  Google Scholar 

  67. Li S, Cheng C, Thomas A. Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv Mater. 2017;29:1602547. https://doi.org/10.1002/adma.201602547.

    Article  CAS  Google Scholar 

  68. Masebinu SO, Akinlabi ET, Muzenda E, Aboyade AO. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew Sust Energ Rev. 2019;103:291–307. https://doi.org/10.1016/j.rser.2018.12.048.

    Article  CAS  Google Scholar 

  69. Cordiner S, Manni A, Mulone V, Rocco V, Braglia R, Canini A. Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: evaluation of the biogas yield. Energy. 2018;161:663–9. https://doi.org/10.1016/j.energy.2018.07.196.

    Article  CAS  Google Scholar 

  70. Shanmugam SR, Adhikari S, Nam H, Sajib SK. Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures. Biomass Bioenergy. 2018;108:479–86. https://doi.org/10.1016/j.biombioe.2017.10.034.

    Article  CAS  Google Scholar 

  71. Luo C, Lu F. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 2014;68:710–8. https://doi.org/10.1016/j.watres.2014.10.052.

    Article  CAS  Google Scholar 

  72. Lü F, Luo C, Shao L, He P. Biochar alleviates combined stress of ammonium and acids by fi rstly enriching Methanosaeta and then Methanosarcina. Water Res. 2016;90:34–43. https://doi.org/10.1016/j.watres.2015.12.029.

    Article  CAS  Google Scholar 

  73. Fagbohungbe MO, Herbert BMJ, Hurst L, Li H, Usmani SQ, Semple KT. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresour Technol. 2016;216:142–9. https://doi.org/10.1016/j.biortech.2016.04.106.

    Article  CAS  Google Scholar 

  74. Shen Y, Linville JL, Urgun-demirtas M, Schoene RP, Snyder SW. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl Energy. 2015;158:300–9. https://doi.org/10.1016/j.apenergy.2015.08.016.

    Article  CAS  Google Scholar 

  75. Shen Y, Forrester S, Koval J, Urgun-demirtas M. Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production. J Clean Prod. 2017;167:863–74. https://doi.org/10.1016/j.jclepro.2017.05.135.

    Article  CAS  Google Scholar 

  76. Chang D, Yu Z, Islam ZU. Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177. Appl Microbiol Biotechnol. 2015;99:4093–105. https://doi.org/10.1007/s00253-015-6475-7.

    Article  CAS  Google Scholar 

  77. Rover MR, Johnston PA, Jin T, Smith RG, Brown RC. Production of clean pyrolytic sugars for fermentation. ChemSusChem Full Pap. 2014;7:1662–8. https://doi.org/10.1002/cssc.201301259.

    Article  CAS  Google Scholar 

  78. Chan JKS, Duff SJB. Methods for mitigation of bio-oil extract toxicity. Bioresour Technol. 2010;101:3755–9. https://doi.org/10.1016/j.biortech.2009.12.054.

    Article  CAS  Google Scholar 

  79. Yu Z, Zhang H. Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae , Pichia sp . YZ-1 and Zymomonas mobilis. Biomass Bioenergy. 2003;24:257–62.

    Article  CAS  Google Scholar 

  80. Barbary E, Abou-yousef H, Steele P. Increasing the efficiency of fast pyrolysis process through sugar yield maximization and separation from aqueous fraction bio-oil. Fuel Process Technol. 2013;110:65–72. https://doi.org/10.1016/j.fuproc.2012.11.003.

    Article  CAS  Google Scholar 

  81. Ren S, Ye XP, Borole AP. Separation of chemical groups from bio-oil water-extract via sequential organic solvent extraction. J Anal Appl Pyrolysis. 2017;123:30–9. https://doi.org/10.1016/j.jaap.2017.01.004.

    Article  CAS  Google Scholar 

  82. Sukhbaatar B, Li Q, Wan C, Yu F, Hassan E, Steele P. Inhibitors removal from bio-oil aqueous fraction for increased ethanol production. Bioresour Technol. 2014;161:379–84. https://doi.org/10.1016/j.biortech.2014.03.051.

    Article  CAS  Google Scholar 

  83. Wang J, Lu Z, Shah A. Techno-economic analysis of levoglucosan production via fast pyrolysis of cotton straw in China. Biofuels Bioprod Biorefin. 2019;13:1085–97. https://doi.org/10.1002/bbb.2004.

    Article  CAS  Google Scholar 

  84. Claypool JT, Simmons CW. Hybrid thermochemical/biological processing: the economic hurdles and opportunities for biofuel production from bio-oil. Renew Energy. 2016;96:450–7. https://doi.org/10.1016/j.renene.2016.04.095.

    Article  CAS  Google Scholar 

  85. So KS, Brown RC. Economic analysis of selected lignocellulose-to-ethanol conversion technologies. Appl Biochem Biotechnol. 1999;79:633–40. https://doi.org/10.1385/ABAB:79:1-3:633.

    Article  Google Scholar 

  86. Sandvig E, Walling G, Energy A, Brown RC, Pletka R, Radlein D, et al. Integrated pyrolysis combined cycle biomass power system concept definition final report. 2003. https://www.osti.gov/servlets/purl/826269-d5wHs7/native/ Accessed 15 Jan 2020.

Download references

Acknowledgement

Tharaka Rama Krishna C. Doddapaneni gratefully acknowledge the financial support by the European Regional Development Fund and the programme Mobilitas Pluss (Grant No MOBJD405) and base funded project of EMU PM180260TIBT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tharaka Rama Krishna C. Doddapaneni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doddapaneni, T.R.K.C., Kikas, T. (2020). Integrating Biomass Pyrolysis with Microbial Conversion Processes to Produce Biofuels and Biochemicals. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_9

Download citation

Publish with us

Policies and ethics