Skip to main content

Advertisement

Log in

Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Fermentative production of styrene from glucose has been previously demonstrated in Escherichia coli. Here, we demonstrate the production of styrene from the sugars derived from lignocellulosic biomass depolymerized by fast pyrolysis. A previously engineered styrene-producing strain was further engineered for utilization of the anhydrosugar levoglucosan via expression of levoglucosan kinase. The resulting strain produced 240 ± 3 mg L−1 styrene from pure levoglucosan, similar to the 251 ± 3 mg L−1 produced from glucose. When provided at a concentration of 5 g L−1, pyrolytic sugars supported styrene production at titers similar to those from pure sugars, demonstrating the feasibility of producing this important industrial chemical from biomass-derived sugars. However, the toxicity of contaminant compounds in the biomass-derived sugars and styrene itself limit further gains in production. Styrene toxicity is generally believed to be due to membrane damage. Contrary to this prevailing wisdom, our quantitative assessment during challenge with up to 200 mg L−1 of exogenously provided styrene showed little change in membrane integrity; membrane disruption was observed only during styrene production. Membrane fluidity was also quantified during styrene production, but no changes were observed relative to the non-producing control strain. This observation that styrene production is much more damaging to the membrane integrity than challenge with exogenously supplied styrene provides insight into the mechanism of styrene toxicity and emphasizes the importance of verifying proposed toxicity mechanisms during production instead of relying upon results obtained during exogenous challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

USD:

US dollar

PAL2:

Phenylalanine ammonia lyase

FDC1:

Ferulic acid decarboxylase

 LGK:

Levoglucosan kinase

G6P:

Glucose-6-phosphate

ATP:

Adenosine triphosphate

ATCC:

American Type Culture Collection

Km:

Michaelis constant of enzyme kinetics

Ex:

Wavelength for excitation

Em:

Wavelength for emission

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

MM1:

Phosphate-limited minimal media

LB:

Lysogeny broth

Amp:

Ampicillin

Cm:

Chloramphenicol

PBS:

Phosphate-buffered saline

DPH:

1,6-Diphenyl-1,3,5-hexatriene

References

  1. Atsumi S, Wu TY, Machado IMP, Huang WC, Chen PY, Pellegrini M, Liao JC (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brown RC, Brown TR (2014) Biorenewable resources: engineering new products from agriculture. In. Blackwell, Ames, pp 219–226

    Book  Google Scholar 

  3. Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227

    Article  CAS  PubMed  Google Scholar 

  4. Claypool JT, Raman DR, Jarboe LR, Nielsen DR (2014) Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli. J Ind Microbiol Biotechnol 41:1211–1216

    Article  CAS  PubMed  Google Scholar 

  5. Dalluge DL, Daugaard T, Johnston P, Kuzhiyil N, Wright MM, Brown RC (2014) Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass. Green Chem 16:4144–4155

    Article  CAS  Google Scholar 

  6. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Edwards N, Slakman B, Vadhri V, Mukherjee M (2012) Styrene monomer production using alternative raw materials. Abstracts of Papers of the American Chemical Society 244

  8. Energy USDo (2012) New process for producing styrene cuts costs, saves energy and reduces greenhouse gas emissions

  9. Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712

    Article  CAS  PubMed  Google Scholar 

  10. Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio 5:e01932

  11. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  12. James DH, Castor WM (2002) Styrene. In: Ullmann’s encyclopedia of industrial chemistry, vol 34. Wiley-VCH, pp 529–544. doi:10.1002/14356007.a25_329.pub2

  13. Jarboe LR, Liu P, Royce LA (2011) Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 1:38–42

    Article  CAS  Google Scholar 

  14. Jarboe LR, Royce LA, Liu P (2013) Understanding biocatalyst inhibition by carboxylic acids. Front Microbiol 4:272

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jarboe LR, Wen Z, Choi D, Brown RC (2011) Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Appl Microbiol Biotechnol 91:1519–1523

    Article  CAS  PubMed  Google Scholar 

  16. Kitamura Y, Yasui T (1991) Purification and Some Properties of Levoglucosan (1,6-Anhydro-β-d-glucopyranose) Kinase from the Yeast Sporobolomyces salmonicolor. Agric Biol Chem 55:523–529

    Article  CAS  Google Scholar 

  17. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  18. Kuzhiyil N, Dalluge D, Bai X, Kim KH, Brown RC (2012) Pyrolytic sugars from cellulosic biomass. ChemSusChem 5:2228–2236

    Article  CAS  PubMed  Google Scholar 

  19. Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol 102:8318–8322

    Article  CAS  PubMed  Google Scholar 

  20. Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 8:e54031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lian J, Chen S, Zhou S, Wang Z, O’Fallon J, Li C-Z, Garcia-Perez M (2010) Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresour Technol 101:9688–9699

    Article  CAS  PubMed  Google Scholar 

  22. Lian J, Garcia-Perez M, Chen S (2013) Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol 133:183–189

    Article  CAS  PubMed  Google Scholar 

  23. Licandro-Seraut H, Roussel C, Perpetuini G, Gervais P, Cavin J-F (2013) Sensitivity to vinyl phenol derivatives produced by phenolic acid decarboxylase activity in Escherichia coli and several food-borne Gram-negative species. Appl Microbiol Biotechnol 97:7853–7864

    Article  CAS  PubMed  Google Scholar 

  24. McKenna R, Moya L, McDaniel M, Nielsen DR (2015) Comparing in situ removal strategies for improving styrene bioproduction. Bioprocess Biosyst Eng 38:165–174

    Article  CAS  PubMed  Google Scholar 

  25. McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554

    Article  CAS  PubMed  Google Scholar 

  26. McKenna R, Pugh S, Thompson B, Nielsen DR (2013) Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources. Biotechnol J 8:1465–1475

    Article  CAS  PubMed  Google Scholar 

  27. Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mingardon F, Clement C, Hirano K, Nhan M, Luning EG, Chanal A, Mukhopadhyay A (2015) Improving olefin tolerance and production in E. coli using native and evolved AcrB. Biotechnol Bioeng 112:879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mortimer FC, Mason DJ, Gant VA (2000) Flow cytometric monitoring of antibiotic-induced injury in Escherichia coli using cell-impermeant fluorescent probes. Antimicrob Agents Chemother 44:676–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  31. Neelis M, Worrell E, Masanet E (2008) Energy efficiency improvement and cost saving opportunities for the petrochemical industry, vol LBNL-964E. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley. www.energystar.gov/ia/business/industry/Petrochemical_Industry.pdf

  32. Overton E (1899) Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermuthlichen Ursachen und ihre Bedeutung fur die Physiologie. Vierteljahrsschr Naturforsch Ges Zurich 44:88–135

    Google Scholar 

  33. Park JB, Bühler B, Habicher T, Hauer B, Panke S, Witholt B, Schmid A (2006) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501–512

    Article  CAS  PubMed  Google Scholar 

  34. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrol 86:323–330

    Article  CAS  Google Scholar 

  35. Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-González MI, Rojas A, Terán W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Ann Rev Microbiol 56:743–768

    Article  CAS  Google Scholar 

  36. Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L (2014) Production of clean pyrolytic sugars for fermentation. ChemSusChem 7:1662–1668

    Article  CAS  PubMed  Google Scholar 

  38. Royce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LR (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97:8317–8327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seok KY, Min J, Hong HN, Park JH, Park KS, Gu MB (2007) Analysis of the stress effects of endocrine disrupting chemicals (EDCs) on Escherichia coli. J Microbiol Biotechnol 17:1390–1393

    Google Scholar 

  40. Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochimica et Biophysica Acta (BBA)-Rev Biomembr 515:367–394

  41. Sri (2010) Styrene. Access Intelligence LLC Inc

  42. Tribe DE (1987) Novel microorganism and method

  43. Wu C, Koylinski T, Bozik J (1981) Preparation of styrene from ethylbenzene US Patent 4,255,599

  44. Zhuang X, Zhang H (2002) Identification, characterization of levoglucosan kinase, and cloning and expression of levoglucosan kinase cDNA from Aspergillus niger CBX-209 in Escherichia coli. Protein Expr Purif 26:71–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Iowa State University, ISU’s Bioeconomy Institute and the Iowa Energy Center (12-06). We thank Robert C. Brown for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura R. Jarboe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, J., McKenna, R., Rover, M.R. et al. Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity. J Ind Microbiol Biotechnol 43, 595–604 (2016). https://doi.org/10.1007/s10295-016-1734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1734-x

Keywords

Navigation