Skip to main content
Log in

Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pyrolysate from waste cotton was acid hydrolyzed and detoxified to yield pyrolytic sugars, which were fermented to ethanol by the strain Escherichia coli ACCC 11177. Mathematical models based on the fermentation data were also constructed. Pyrolysate containing an initial levoglucosan concentration of 146.34 g/L gave a glucose yield of 150 % after hydrolysis, suggesting that other compounds were hydrolyzed to glucose as well. Ethyl acetate-based extraction of bacterial growth inhibitors with an ethyl acetate/hydrolysate ratio of 1:0.5 enabled hydrolysate fermentation by E. coli ACCC 11177, without a standard absorption treatment. Batch processing in a fermenter exhibited a maximum ethanol yield and productivity of 0.41 g/g and 0.93 g/L·h−1, respectively. The cell growth rate (r x ) was consistent with a logistic equation \( {r}_x=0.21\left(1-\frac{X}{3.75}\right)X \), which was determined as a function of cell growth (X). Glucose consumption rate (r s ) and ethanol formation rate (r p ) were accurately validated by the equations \( {r}_s=0.25\frac{dX}{dt}+0.47X \) and \( {r}_p=0.05\frac{dX}{dt}+0.29X \), respectively. Together, our results suggest that combining mathematical models with fermenter fermentation processes can enable optimized ethanol production from cellulosic pyrolysate with E. coli. Similar approaches may facilitate the production of other commercially important organic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  • Bennett NM, Helle SS, Duff SJ (2009) Extraction and hydrolysis of levoglucosan from pyrolysate. Bioresour Technol 100(23):6059–6063

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, Singh OV, da Silva SS (2011) Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In: Dos Santos Bernardes MA (ed) Biofuel production-recent developments and prospects. ISBN: 978-953-307-478-8, In Tech pp 225–246

  • Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150(C):220–227

    Article  CAS  PubMed  Google Scholar 

  • Clark TA, Mackie KL (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chem Technol Biotechnol 34(B):101–110

    Google Scholar 

  • Danon B, van der Aa L, de Jong W (2013) Furfural degradation in a dilute acidic and saline solution in the presence of glucose. Carbohydr Res 375:145–152

    Article  CAS  PubMed  Google Scholar 

  • de Andrade RR, Rabelo SC, Filho FM, Filho RM, da Costa AC (2013) Evaluation of the alcoholic fermentation kinetics of enzymatic hydrolysates from sugarcane bagasse (Saccharum officinarum L.). J Chem Technol Biotechnol 88:1049–1057

    Article  CAS  Google Scholar 

  • Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15:647–653

    Article  CAS  PubMed  Google Scholar 

  • Du J, Liu P, Liu ZH, Sun DG, Tao CY (2010) Fast pyrolysis of biomass for bio-oil with ionic liquid and microwave irradiation. J Fuel Chem Technol 38(5):554–559

    Article  CAS  Google Scholar 

  • Garcia-Perez M, Wang SX, Shen J, Rhodes MJ, Tian FJ, Lee WJ, Wu H, Li CZ (2008a) Fast pyrolysis of oil mallee biomass: effect of temperature on the yield and quality of products. Ind Eng Chem Res 47:1846–1854

    Article  CAS  Google Scholar 

  • Garcia-Perez M, Wang SX, Shen J, Rhodes MJ, Lee WJ, Li CZ (2008b) Effects of temperature on the formation of lignin derived oligomers during the fast pyrolysis of mallee woody biomass. Energy Fuel 22:2022–2032

    Article  CAS  Google Scholar 

  • Jarboe LR, Chi Z (2013) Inhibition of microbial biocatalysts by biomass-derived aldehydes and methods for engineering tolerance. In: Luca T, Emilia P (eds) New developments in aldehydes research. Nova Science, Hauppauge, pp 101–120

    Google Scholar 

  • Kawamoto H, Morisaki H, Saka S (2009) Secondary decomposition of levoglucosan in pyrolytic production from cellulosic biomass. J Anal Appl Pyrolysis 85(1–2):247–251

    Article  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  CAS  PubMed  Google Scholar 

  • Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol 102(17):8318–8322

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang HX (2004) Preparing levoglucosan derived from waste material by pyrolysis. Energy Sources 26(11):1053–1059

    Article  CAS  Google Scholar 

  • Lian J, Chen S, Zhou S, Wang Z, O’Fallon J, Li CZ, Garcia-Perez M (2010) Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresour Technol 101(24):9688–9699

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Garcia-Perez M, Chen S (2013) Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol 133:183–191

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD (P) H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81(4):743–753

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Lund H, Mathiesen BV, Zhang X (2011) Potential of renewable energy systems in China. Appl Energy 88(2):518–525

    Article  Google Scholar 

  • Lu Q, Xiong WM, Li WZ, Guo QX, Zhu XF (2009) Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds. Bioresour Technol 100(20):4871–4876

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Yang X, Dong C, Zhang Z, Zhang X, Zhu X (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis 92(2):430–438

    Article  CAS  Google Scholar 

  • Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1(4):393–412

    Article  CAS  Google Scholar 

  • Lv D, Xu M, Liu X, Zhan Z, Li Z, Yao H (2010) Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol 91(8):903–909

    Article  CAS  Google Scholar 

  • Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69(5):526–536

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Sakai Y, Yasui T (1984) Itaconic acid fermentation of levoglucosan. J Ferment Technol 62:201–203

    CAS  Google Scholar 

  • Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end users. Energy Fuel 13(4):914–921

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25(10):4745–4755

    Article  CAS  Google Scholar 

  • Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101(12):4646–4655

    Article  CAS  PubMed  Google Scholar 

  • Piskorz J, Majerski P, Radlein D, Vladars-Usas A, Scott DS (2000) Flash pyrolysis of cellulose for production of anhydro-oligomers. J Anal Appl Pyrolysis 56:145–166

    Article  CAS  Google Scholar 

  • Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107

    Article  CAS  PubMed  Google Scholar 

  • Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L (2014) Production of clean pyrolytic sugars for fermentation. ChemSusChem 7(6):1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Wooten JB, Baliga VL, Lin X, Chan WG, Hajaligol MR (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482

    Article  CAS  Google Scholar 

  • Shimada N, Kawamoto H, Saka S (2008) Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. J Anal Appl Pyrolysis 81(1):80–87

    Article  CAS  Google Scholar 

  • Sukhbaatar B, Li Q, Wan C, Yu F, Hassan EB, Steele P (2014) Inhibitors removal from bio-oil aqueous fraction for increased ethanol production. Bioresour Technol 161:379–384

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Sumi K (1970) Thermal decomposition products of cellulose. J Appl Polym Sci 14(8):2003–2013

    Article  CAS  Google Scholar 

  • Wang P, Zhan S, Yu H, Xue X, Hong N (2010) The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresour Technol 101(9):3236–3241

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Tsui R (2012) Research and analysis on energy hot topics in China. R&D, Arup East Asia. http://www.driversofchange.com/projects/energy-hot-topics-in-china/

  • Yang Z, Zhang B, Chen X, Bai Z, Zhang H (2008) Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation. J Anal Appl Pyrolysis 81(2):243–246

    Article  CAS  Google Scholar 

  • Yu ZS, Zhang HX (2003a) Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol 90(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Yu ZS, Zhang HX (2003b) Preteatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass Bioenergy 24(3):257–262

    Article  CAS  Google Scholar 

  • Zhang XL, Li J, Yang WH, Blasiak W (2011) Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis. Energy Fuel 25(8):3739–3746

    Article  CAS  Google Scholar 

  • Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Zhuang XL, Zhang HX, Yang JZ, Qi HY (2001) Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresour Technol 79(1):63–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Natural Science Foundation of China (Grants No. 21177153) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB15010200). We express our thanks to Dr. Zhihui Bai and Dr. Zhiguang Yang at the Research Center for Eco-Environmental Science in the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, D., Yu, Z., Islam, Z.U. et al. Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177. Appl Microbiol Biotechnol 99, 4093–4105 (2015). https://doi.org/10.1007/s00253-015-6475-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6475-7

Keywords

Navigation