Skip to main content

Effects of Exercise on Long-Term Potentiation in Neuropsychiatric Disorders

  • Chapter
  • First Online:
Physical Exercise for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1228))

Abstract

Various neuropsychiatric conditions, such as depression, Alzheimer’s disease, and Parkinson’s disease, demonstrate evidence of impaired long-term potentiation, a cellular correlate of episodic memory function. This chapter discusses the mechanistic effects of these neuropsychiatric conditions on long-term potentiation and how exercise may help to attenuate these detrimental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loprinzi PD, Edwards MK, Frith E (2017) Potential avenues for exercise to activate episodic memory-related pathways: a narrative review. Eur J Neurosci 46(5):2067–2077

    Article  PubMed  Google Scholar 

  2. Loprinzi PD, Ponce P, Frith E (2018) Hypothesized mechanisms through which acute exercise influences episodic memory. Physiol Int 105(4):285–297

    Article  CAS  PubMed  Google Scholar 

  3. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahmadalipour A, Ghodrati-Jaldbakhan S, Samaei SA, Rashidy-Pour A (2018) Deleterious effects of prenatal exposure to morphine on the spatial learning and hippocampal BDNF and long-term potentiation in juvenile rats: beneficial influences of postnatal treadmill exercise and enriched environment. Neurobiol Learn Mem 147:54–64

    Article  CAS  PubMed  Google Scholar 

  5. Alkadhi KA (2018) Neuroprotective effects of nicotine on hippocampal long-term potentiation in brain disorders. J Pharmacol Exp Ther 366(3):498–508

    Article  PubMed  CAS  Google Scholar 

  6. Ardeshiri MR, Hosseinmardi N, Akbari E (2018) Orexin 1 and orexin 2 receptor antagonism in the basolateral amygdala modulate long-term potentiation of the population spike in the perforant path-dentate gyrus-evoked field potential in rats. Neurobiol Learn Mem 149:98–106

    Article  CAS  PubMed  Google Scholar 

  7. Blaise JH, Park JE, Bellas NJ, Gitchell TM, Phan V (2018) Caffeine consumption disrupts hippocampal long-term potentiation in freely behaving rats. Physiol Rep 6(5):e13632

    Article  PubMed Central  CAS  Google Scholar 

  8. Bliim N, Leshchyns’ka I, Keable R, Chen BJ, Curry-Hyde A, Gray L, Sytnyk V, Janitz M (2018) Early transcriptome changes in response to chemical long-term potentiation induced via activation of synaptic NMDA receptors in mouse hippocampal neurons. Genomics 111:1676–1686

    Article  PubMed  CAS  Google Scholar 

  9. Blome R, Bach W, Guli X, Porath K, Sellmann T, Bien CG, Kohling R, Kirschstein T (2018) Differentially altered NMDAR dependent and independent long-term potentiation in the CA3 subfield in a model of anti-NMDAR encephalitis. Front Synap Neurosci 10:26

    Article  CAS  Google Scholar 

  10. Booker SA, Loreth D, Gee AL, Watanabe M, Kind PC, Wyllie DJA, Kulik A, Vida I (2018) Postsynaptic GABABRs inhibit L-type calcium channels and abolish long-term potentiation in hippocampal somatostatin interneurons. Cell Rep 22(1):36–43

    Article  CAS  PubMed  Google Scholar 

  11. Bromer C, Bartol TM, Bowden JB, Hubbard DD, Hanka DC, Gonzalez PV, Kuwajima M, Mendenhall JM, Parker PH, Abraham WC, Sejnowski TJ, Harris KM (2018) Long-term potentiation expands information content of hippocampal dentate gyrus synapses. Proc Natl Acad Sci USA 115(10):E2410–E2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bychkov ML, Vasilyeva NA, Shulepko MA, Balaban PM, Kirpichnikov MP, Lyukmanova EN (2018) Lynx1 prevents long-term potentiation blockade and reduction of neuromodulator expression caused by Abeta1-42 and JNK activation. Acta Nat 10(3):57–61

    Article  CAS  Google Scholar 

  13. Chen QY, Chen T, Zhou LJ, Liu XG, Zhuo M (2018) Heterosynaptic long-term potentiation from the anterior cingulate cortex to spinal cord in adult rats. Mol Pain 14:1744806918798406

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Damodaran T, Tan BWL, Liao P, Ramanathan S, Lim GK, Hassan Z (2018) Clitoria ternatea L. root extract ameliorated the cognitive and hippocampal long-term potentiation deficits induced by chronic cerebral hypoperfusion in the rat. J Ethnopharmacol 224:381–390

    Article  PubMed  Google Scholar 

  15. Dieni CV, Ferraresi A, Sullivan JA, Grassi S, Pettorossi VE, Panichi R (2018) Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats. Brain Struct Funct 223(2):837–850

    Article  CAS  PubMed  Google Scholar 

  16. Dimpfel W, Schombert L, Panossian AG (2018) Assessing the quality and potential efficacy of commercial extracts of Rhodiola rosea L. by analyzing the Salidroside and Rosavin content and the electrophysiological activity in hippocampal long-term potentiation, a synaptic model of memory. Front Pharmacol 9:425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ding X, Liang YJ, Su L, Liao FF, Fang D, Tai J, Xing GG (2018) BDNF contributes to the neonatal incision-induced facilitation of spinal long-term potentiation and the exacerbation of incisional pain in adult rats. Neuropharmacology 137:114–132

    Article  CAS  PubMed  Google Scholar 

  18. Divakaruni SS, Van Dyke AM, Chandra R, LeGates TA, Contreras M, Dharmasri PA, Higgs HN, Lobo MK, Thompson SM, Blanpied TA (2018) Long-term potentiation requires a rapid burst of dendritic mitochondrial fission during induction. Neuron 100(4):860–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong L, Zheng Y, Li ZY, Li G, Lin L (2018) Modulating effects of on-line low frequency electromagnetic fields on hippocampal long-term potentiation in young male Sprague-Dawley rat. J Neurosci Res 96(11):1775–1785

    Article  CAS  PubMed  Google Scholar 

  20. Eslami M, Sadeghi B, Goshadrou F (2018) Chronic ghrelin administration restores hippocampal long-term potentiation and ameliorates memory impairment in rat model of Alzheimer’s disease. Hippocampus 28(10):724–734

    Article  CAS  PubMed  Google Scholar 

  21. Finley J (2018) Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Med Hypotheses 116:61–73

    Article  CAS  PubMed  Google Scholar 

  22. Foster WJ, Taylor HBC, Padamsey Z, Jeans AF, Galione A, Emptage NJ (2018) Hippocampal mGluR1-dependent long-term potentiation requires NAADP-mediated acidic store Ca(2+) signaling. Sci Signal 11(558):eaat9093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghaeminia M, Rajkumar R, Koh HL, Dawe GS, Tan CH (2018) Ginsenoside Rg1 modulates medial prefrontal cortical firing and suppresses the hippocampo-medial prefrontal cortical long-term potentiation. J Ginseng Res 42(3):298–303

    Article  PubMed  Google Scholar 

  24. Guimaraes Marques MJ, Reyes-Garcia SZ, Marques-Carneiro JE, Lopes-Silva LB, Andersen ML, Cavalheiro EA, Scorza FA, Scorza CA (2018) Long-term potentiation decay and poor long-lasting memory process in the wild rodents proechimys from Brazil’s Amazon rainforest. Front Behav Neurosci 12:2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guo D, Gan J, Tan T, Tian X, Wang G, Ng KT (2018) Neonatal exposure of ketamine inhibited the induction of hippocampal long-term potentiation without impairing the spatial memory of adult rats. Cogn Neurodyn 12(4):377–383

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hadipour M, Kaka G, Bahrami F, Meftahi GH, Pirzad Jahromi G, Mohammadi A, Sahraei H (2018) Crocin improved amyloid beta induced long-term potentiation and memory deficits in the hippocampal CA1 neurons in freely moving rats. Synapse 72(5):e22026

    Article  PubMed  CAS  Google Scholar 

  27. Hao L, Yang Z, Lei J (2018) Underlying mechanisms of cooperativity, input specificity, and associativity of long-term potentiation through a positive feedback of local protein synthesis. Front Comput Neurosci 12:25

    Article  PubMed  PubMed Central  Google Scholar 

  28. He WB, Abe K, Akaishi T (2018) Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo. J Pharmacol Sci 136(1):42–45

    Article  CAS  PubMed  Google Scholar 

  29. Helfer P, Shultz TR (2018) Coupled feedback loops maintain synaptic long-term potentiation: a computational model of PKMzeta synthesis and AMPA receptor trafficking. PLoS Comput Biol 14(5):e1006147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hiester BG, Becker MI, Bowen AB, Schwartz SL, Kennedy MJ (2018) Mechanisms and role of dendritic membrane trafficking for long-term potentiation. Front Cell Neurosci 12:391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang GZ, Taniguchi M, Zhou YB, Zhang JJ, Okutani F, Murata Y, Yamaguchi M, Kaba H (2018) alpha2-adrenergic receptor activation promotes long-term potentiation at excitatory synapses in the mouse accessory olfactory bulb. Learn Mem 25(4):147–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hufgard JR, Sprowles JLN, Pitzer EM, Koch SE, Jiang M, Wang Q, Zhang X, Biesiada J, Rubinstein J, Puga A, Williams MT, Vorhees CV (2018) Prenatal exposure to PCBs in Cyp1a2 knock-out mice interferes with F1 fertility, impairs long-term potentiation, reduces acoustic startle and impairs conditioned freezing contextual memory with minimal transgenerational effects. J Appl Toxicol 39(4):603–621

    Article  PubMed  CAS  Google Scholar 

  33. Kanzari A, Bourcier-Lucas C, Freyssin A, Abrous DN, Haddjeri N, Lucas G (2018) Inducing a long-term potentiation in the dentate gyrus is sufficient to produce rapid antidepressant-like effects. Mol Psychiatry 23(3):587–596

    Article  CAS  PubMed  Google Scholar 

  34. Kawaharada S, Nakanishi M, Nakanishi N, Hazama K, Higashino M, Yasuhiro T, Lewis A, Clark GS, Chambers MS, Maidment SA, Katsumata S, Kaneko S (2018) ONO-8590580, a novel GABAAalpha5 negative allosteric modulator enhances long-term potentiation and improves cognitive deficits in preclinical models. J Pharmacol Exp Ther 366(1):58–65

    Article  CAS  PubMed  Google Scholar 

  35. Kim MK, Lee JS (2018) Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12(2):1680–1687

    Article  CAS  PubMed  Google Scholar 

  36. Kim S, Kim Y, Lee SH, Ho WK (2018) Dendritic spikes in hippocampal granule cells are necessary for long-term potentiation at the perforant path synapse. elife 7:e35269

    Article  PubMed  PubMed Central  Google Scholar 

  37. Law CSH, Leung LS (2018) Long-term potentiation and excitability in the hippocampus are modulated differently by theta rhythm. eNeuro 5(6)

    Google Scholar 

  38. Lee KKY, Soutar CN, Dringenberg HC (2018) Gating of long-term potentiation (LTP) in the thalamocortical auditory system of rats by serotonergic (5-HT) receptors. Brain Res 1683:1–11

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Sun W, An L (2018) Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats. Toxicol Ind Health 34(6):409–421

    Article  CAS  PubMed  Google Scholar 

  40. Li XH, Miao HH, Zhuo M (2018) NMDA receptor dependent long-term potentiation in chronic pain. Neurochem Res 44(3):531–538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu J, Yang L, Lin D, Cottrell JE, Kass IS (2018) Sevoflurane blocks the induction of long-term potentiation when present during, but not when present only before, the high-frequency stimulation. Anesthesiology 128(3):555–563

    Article  CAS  PubMed  Google Scholar 

  42. Liu JP, He YT, Duan XL, Suo ZW, Yang X, Hu XD (2018) Enhanced activities of delta subunit-containing GABAA receptors blocked spinal long-term potentiation and attenuated formalin-induced spontaneous pain. Neuroscience 371:155–165

    Article  CAS  PubMed  Google Scholar 

  43. Lomo T (2018) Discovering long-term potentiation (LTP) – recollections and reflections on what came after. Acta Physiol 222(2):e12921

    Article  CAS  Google Scholar 

  44. Lu JS, Song Q, Zhang MM, Zhuo M (2018) No requirement of interlukine-1 for long-term potentiation in the anterior cingulate cortex of adult mice. Mol Pain 14:1744806918765799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma JC, Duan MJ, Li KX, Biddyut D, Zhang S, Yan ML, Yang L, Jin Z, Zhao HM, Huang SY, Sun Q, Su D, Xu Y, Pan YH, Ai J (2018) Knockdown of microRNA-1 in the hippocampus ameliorates myocardial infarction induced impairment of long-term potentiation. Cell Physiol Biochem 50(4):1601–1616

    Article  CAS  PubMed  Google Scholar 

  46. Maglio LE, Noriega-Prieto JA, Maraver MJ, Fernandez de Sevilla D (2018) Endocannabinoid-dependent long-term potentiation of synaptic transmission at rat barrel cortex. Cereb Cortex 28(5):1568–1581

    Article  PubMed  Google Scholar 

  47. Miller RM, Marriott D, Trotter J, Hammond T, Lyman D, Call T, Walker B, Christensen N, Haynie D, Badura Z, Homan M, Edwards JG (2018) Running exercise mitigates the negative consequences of chronic stress on dorsal hippocampal long-term potentiation in male mice. Neurobiol Learn Mem 149:28–38

    Article  PubMed  PubMed Central  Google Scholar 

  48. Orfila JE, McKinnon N, Moreno M, Deng G, Chalmers N, Dietz RM, Herson PS, Quillinan N (2018) Cardiac arrest induces ischemic long-term potentiation of hippocampal CA1 neurons that occludes physiological long-term potentiation. Neural Plast 2018:9275239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ostroff LE, Watson DJ, Cao G, Parker PH, Smith H, Harris KM (2018) Shifting patterns of polyribosome accumulation at synapses over the course of hippocampal long-term potentiation. Hippocampus 28(6):416–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park P, Kang H, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M, Kaang BK, Collingridge GL (2018) The role of calcium-permeable AMPARs in long-term potentiation at principal neurons in the rodent hippocampus. Front Synap Neurosci 10:42

    Article  CAS  Google Scholar 

  51. Premi E, Benussi A, La Gatta A, Visconti S, Costa A, Gilberti N, Cantoni V, Padovani A, Borroni B, Magoni M (2018) Modulation of long-term potentiation-like cortical plasticity in the healthy brain with low frequency-pulsed electromagnetic fields. BMC Neurosci 19(1):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Quarta E, Fulgenzi G, Bravi R, Cohen EJ, Yanpallewar S, Tessarollo L, Minciacchi D (2018) Deletion of the endogenous TrkB.T1 receptor isoform restores the number of hippocampal CA1 parvalbumin-positive neurons and rescues long-term potentiation in pre-symptomatic mSOD1(G93A) ALS mice. Mol Cell Neurosci 89:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quinlan MAL, Strong VM, Skinner DM, Martin GM, Harley CW, Walling SG (2018) Locus coeruleus optogenetic light activation induces long-term potentiation of perforant path population spike amplitude in rat dentate gyrus. Front Syst Neurosci 12:67

    Article  CAS  PubMed  Google Scholar 

  54. Rammes G, Seeser F, Mattusch K, Zhu K, Haas L, Kummer M, Heneka M, Herms J, Parsons CG (2018) The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Abeta) species on long-term potentiation (LTP). Neuropharmacology 140:184–192

    Article  CAS  PubMed  Google Scholar 

  55. Salas IH, Weerasekera A, Ahmed T, Callaerts-Vegh Z, Himmelreich U, D’Hooge R, Balschun D, Saido TC, De Strooper B, Dotti CG (2018) High fat diet treatment impairs hippocampal long-term potentiation without alterations of the core neuropathological features of Alzheimer disease. Neurobiol Dis 113:82–96

    Article  CAS  PubMed  Google Scholar 

  56. Salavati B, Daskalakis ZJ, Zomorrodi R, Blumberger DM, Chen R, Pollock BG, Rajji TK (2018) Pharmacological modulation of long-term potentiation-like activity in the dorsolateral prefrontal cortex. Front Hum Neurosci 12:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Salehi I, Komaki A, Karimi SA, Sarihi A, Zarei M (2018) Effect of garlic powder on hippocampal long-term potentiation in rats fed high fat diet: an in vivo study. Metab Brain Dis 33(3):725–731

    Article  CAS  PubMed  Google Scholar 

  58. Scott-McKean JJ, Roque AL, Surewicz K, Johnson MW, Surewicz WK, Costa ACS (2018) Pharmacological modulation of three modalities of CA1 hippocampal long-term potentiation in the Ts65Dn mouse model of down syndrome. Neural Plast 2018:9235796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Shahidi S, Asl SS, Komaki A, Hashemi-Firouzi N (2018) The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid beta protein treated rat. Psychopharmacology 235(5):1513–1525

    Article  CAS  PubMed  Google Scholar 

  60. Shahidi S, Komaki A, Sadeghian R, Soleimani Asl S (2018) Effect of a 5-HT1D receptor agonist on the reinstatement phase of the conditioned place preference test and hippocampal long-term potentiation in methamphetamine-treated rats. Brain Res 1698:151–160

    Article  CAS  PubMed  Google Scholar 

  61. Sullivan JA, Zhang XL, Sullivan AP, Vose LR, Moghadam AA, Fried VA, Stanton PK (2018) Zinc enhances hippocampal long-term potentiation at CA1 synapses through NR2B containing NMDA receptors. PLoS One 13(11):e0205907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Takeuchi H, Kameda M, Yasuhara T, Sasaki T, Toyoshima A, Morimoto J, Kin K, Okazaki M, Umakoshi M, Kin I, Kuwahara K, Tomita Y, Date I (2018) Long-term potentiation enhances neuronal differentiation in the chronic hypoperfusion model of rats. Front Aging Neurosci 10:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tominaga Y, Taketoshi M, Tominaga T (2018) Overall assay of neuronal signal propagation pattern with long-term potentiation (LTP) in hippocampal slices from the CA1 area with fast voltage-sensitive dye imaging. Front Cell Neurosci 12:389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsai TC, Huang CC, Hsu KS (2018) Infantile amnesia is related to developmental immaturity of the maintenance mechanisms for long-term potentiation. Mol Neurobiol 56(2):907–919

    Article  PubMed  CAS  Google Scholar 

  65. Wang Y, Chen T, Yuan Z, Zhang Y, Zhang B, Zhao L, Chen L (2018) Ras inhibitor S-trans, trans-farnesylthiosalicylic acid enhances spatial memory and hippocampal long-term potentiation via up-regulation of NMDA receptor. Neuropharmacology 139:257–267

    Article  CAS  PubMed  Google Scholar 

  66. Welzel G, Schuster S (2018) Long-term potentiation in an innexin-based electrical synapse. Sci Rep 8(1):12579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wu MN, Kong LL, Zhang J, Hu MM, Wang ZJ, Cai HY, Qi JS (2018) Amyloid beta protein injection into medial septum impairs hippocampal long-term potentiation and cognitive behaviors in rats. Sheng Li Xue Bao 70(3):217–227

    PubMed  Google Scholar 

  68. Wu X, Zheng WJ, Lv MH, Su SH, Zhang SJ, Gao JF (2018) Effect of different concentrations of calcitonin gene-related peptide on the long-term potentiation in hippocampus of mice. Sheng Li Xue Bao 70(1):17–22

    PubMed  Google Scholar 

  69. Xie RG, Gao YJ, Park CK, Lu N, Luo C, Wang WT, Wu SX, Ji RR (2018) Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull 34(1):13–21

    Article  CAS  PubMed  Google Scholar 

  70. Yang T, Du S, Liu X, Ye X, Wei X (2018) Withdrawal from spinal application of remifentanil induces long-term potentiation of c-fiber-evoked field potentials by activation of Src family kinases in spinal microglia. Neurochem Res 43(8):1660–1670

    Article  CAS  PubMed  Google Scholar 

  71. Yang Y, Fang Z, Dai Y, Wang Y, Liang Y, Zhong X, Wang Q, Hu Y, Zhang Z, Wu D, Xu X (2018) Bisphenol-A antagonizes the rapidly modulating effect of DHT on spinogenesis and long-term potentiation of hippocampal neurons. Chemosphere 195:567–575

    Article  CAS  PubMed  Google Scholar 

  72. Youn DH (2018) Trigeminal long-term potentiation as a cellular substrate for migraine. Med Hypotheses 110:27–30

    Article  PubMed  Google Scholar 

  73. Zak N, Moberget T, Boen E, Boye B, Waage TR, Dietrichs E, Harkestad N, Malt UF, Westlye LT, Andreassen OA, Andersson S, Elvsashagen T (2018) Longitudinal and cross-sectional investigations of long-term potentiation-like cortical plasticity in bipolar disorder type II and healthy individuals. Transl Psychiatry 8(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhou JJ, Li DP, Chen SR, Luo Y, Pan HL (2018) The alpha2delta-1-NMDA receptor coupling is essential for corticostriatal long-term potentiation and is involved in learning and memory. J Biol Chem 293(50):19354–19364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou Q, Zhu S, Guo Y, Lian L, Hu Q, Liu X, Xu F, Zhang N, Kang H (2018) Adenosine A1 receptors play an important protective role against cognitive impairment and long-term potentiation inhibition in a pentylenetetrazol mouse model of epilepsy. Mol Neurobiol 55(4):3316–3327

    Article  CAS  PubMed  Google Scholar 

  76. Zhu G, Yang S, Xie Z, Wan X (2018) Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharmacology 138:331–340. https://doi.org/10.1016/j.neuropharm.2018.06.030

    Article  CAS  PubMed  Google Scholar 

  77. Berlim MT, Turecki G (2007) Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can J Psychiatry 52(1):46–54

    Article  PubMed  Google Scholar 

  78. Fava M (2003) Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 53(8):649–659

    Article  PubMed  Google Scholar 

  79. Hidalgo-Mazzei D, Berk M, Cipriani A, Cleare AJ, Florio AD, Dietch D, Geddes JR, Goodwin GM, Grunze H, Hayes JF, Jones I, Kasper S, Macritchie K, McAllister-Williams RH, Morriss R, Nayrouz S, Pappa S, Soares JC, Smith DJ, Suppes T, Talbot P, Vieta E, Watson S, Yatham LN, Young AH, Stokes PRA (2019) Treatment-resistant and multi-therapy-resistant criteria for bipolar depression: consensus definition. Br J Psychiatry 214(1):27–35

    Article  PubMed  Google Scholar 

  80. Laudisio A, Antonelli Incalzi R, Gemma A, Marzetti E, Pozzi G, Padua L, Bernabei R, Zuccala G (2018) Definition of a geriatric depression scale cutoff based upon quality of life: a population-based study. Int J Geriatr Psychiatry 33(1):e58–e64

    Article  PubMed  Google Scholar 

  81. Malhi GS, Parker GB, Crawford J, Wilhelm K, Mitchell PB (2005) Treatment-resistant depression: resistant to definition? Acta Psychiatr Scand 112(4):302–309

    Article  CAS  PubMed  Google Scholar 

  82. Ng CH, Kato T, Han C, Wang G, Trivedi M, Ramesh V, Shao D, Gala S, Narayanan S, Tan W, Feng Y, Kasper S (2019) Definition of treatment-resistant depression – Asia Pacific perspectives. J Affect Disord 245:626–636

    Article  CAS  PubMed  Google Scholar 

  83. Pendlebury ST, Mariz J, Bull L, Mehta Z, Rothwell PM (2013) Impact of different operational definitions on mild cognitive impairment rate and MMSE and MoCA performance in transient ischaemic attack and stroke. Cerebrovasc Dis 36(5–6):355–362

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yatham LN, Calabrese JR, Kusumakar V (2003) Bipolar depression: criteria for treatment selection, definition of refractoriness, and treatment options. Bipolar Disord 5(2):85–97

    Article  CAS  PubMed  Google Scholar 

  85. Kim BK, Seo JH (2013) Treadmill exercise alleviates post-traumatic stress disorder-induced impairment of spatial learning memory in rats. J Exerc Rehabil 9(4):413–419

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wang J, Wu X, Lai W, Long E, Zhang X, Li W, Zhu Y, Chen C, Zhong X, Liu Z, Wang D, Lin H (2017) Prevalence of depression and depressive symptoms among outpatients: a systematic review and meta-analysis. BMJ Open 7(8):e017173

    Article  PubMed  PubMed Central  Google Scholar 

  87. Holzel L, Harter M, Reese C, Kriston L (2011) Risk factors for chronic depression—a systematic review. J Affect Disord 129(1–3):1–13

    Article  PubMed  Google Scholar 

  88. Edwards MK, Loprinzi PD (2016) Effects of a sedentary behavior-inducing randomized controlled intervention on depression and mood profile in active young adults. Mayo Clin Proc 91(8):984–998

    Article  PubMed  Google Scholar 

  89. Jaffery A, Edwards MK, Loprinzi PD (2017) Randomized control intervention evaluating the effects of acute exercise on depression and mood profile: Solomon experimental design. Mayo Clin Proc 92(3):480–481

    Article  PubMed  Google Scholar 

  90. Loprinzi PD (2013) Objectively measured light and moderate-to-vigorous physical activity is associated with lower depression levels among older US adults. Aging Ment Health 17(7):801–805

    Article  PubMed  Google Scholar 

  91. Mammen G, Faulkner G (2013) Physical activity and the prevention of depression: a systematic review of prospective studies. Am J Prev Med 45(5):649–657

    Article  PubMed  Google Scholar 

  92. Patki G, Li L, Allam F, Solanki N, Dao AT, Alkadhi K, Salim S (2014) Moderate treadmill exercise rescues anxiety and depression-like behavior as well as memory impairment in a rat model of posttraumatic stress disorder. Physiol Behav 130:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schuch FB, Vancampfort D, Richards J, Rosenbaum S, Ward PB, Stubbs B (2016) Exercise as a treatment for depression: a meta-analysis adjusting for publication bias. J Psychiatr Res 77:42–51

    Article  PubMed  Google Scholar 

  94. Tavares BB, Moraes H, Deslandes AC, Laks J (2014) Impact of physical exercise on quality of life of older adults with depression or Alzheimer’s disease: a systematic review. Trends Psychiatry Psychother 36(3):134–139

    Article  PubMed  Google Scholar 

  95. Zarshenas S, Houshvar P, Tahmasebi A (2013) The effect of short-term aerobic exercise on depression and body image in Iranian women. Depress Res Treat 2013:132684

    PubMed  PubMed Central  Google Scholar 

  96. Craft LL, Perna FM (2004) The benefits of exercise for the clinically depressed. Prim Care Companion J Clin Psychiatry 6(3):104–111

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cardinal BJ (1997) Construct validity of stages of change for exercise behavior. Am J Health Promot 12(1):68–74

    Article  CAS  PubMed  Google Scholar 

  98. Cardinal BJ, Kosma M (2004) Self-efficacy and the stages and processes of change associated with adopting and maintaining muscular fitness-promoting behaviors. Res Q Exerc Sport 75(2):186–196

    Article  PubMed  Google Scholar 

  99. Loprinzi PD, Cardinal BJ, Winters-Stone K (2013) Self-efficacy mediates the relationship between behavioral processes of change and physical activity in older breast cancer survivors. Breast Cancer 20(1):47–52

    Article  PubMed  Google Scholar 

  100. Craft LL (2005) Exercise and clinical depression: examining two psychological mechanisms. Psychol Sport Exerc 6(2):151–171

    Article  Google Scholar 

  101. Chesney MA, Neilands TB, Chambers DB, Taylor JM, Folkman S (2006) A validity and reliability study of the coping self-efficacy scale. Br J Health Psychol 11(Pt 3):421–437

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lee BH, Kim YK (2010) The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 7(4):231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wainwright SR, Galea LA (2013) The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast 2013:805497

    Article  PubMed  PubMed Central  Google Scholar 

  104. Dang YH, Ma XC, Zhang JC, Ren Q, Wu J, Gao CG, Hashimoto K (2014) Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des 20(32):5151–5159

    Article  CAS  PubMed  Google Scholar 

  105. Loprinzi PD, Frith E, Ponce P (2018) Memorcise and Alzheimer’s disease. Phys Sportsmed 46(2):145–154

    Article  PubMed  Google Scholar 

  106. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544

    Article  PubMed  PubMed Central  Google Scholar 

  107. Diegues JC, Pauli JR, Luciano E, de Almeida Leme JA, de Moura LP, Dalia RA, de Araujo MB, Sibuya CY, de Mello MA, Gomes RJ (2014) Spatial memory in sedentary and trained diabetic rats: molecular mechanisms. Hippocampus 24(6):703–711

    Article  CAS  PubMed  Google Scholar 

  108. Hayes SM, Hayes JP, Cadden M, Verfaellie M (2013) A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Front Aging Neurosci 5:31

    Article  PubMed  PubMed Central  Google Scholar 

  109. Balsamo S, Willardson JM, Frederico Sde S, Prestes J, Balsamo DC, da Dahan CN, Dos Santos-Neto L, Nobrega OT (2013) Effectiveness of exercise on cognitive impairment and Alzheimer’s disease. Int J Gen Med 6:387–391

    PubMed  PubMed Central  Google Scholar 

  110. Erickson KI, Weinstein AM, Lopez OL (2012) Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res 43(8):615–621

    Article  PubMed  PubMed Central  Google Scholar 

  111. (2008) Fitness may inhibit Alzheimer’s progression. Cardiorespiratory fitness could help delay shrinkage in the parts of the brain that are key to memory. Duke Med Health News 14(10):9–10

    Google Scholar 

  112. Huang P, Fang R, Li BY, Chen SD (2016) Exercise-related changes of networks in aging and mild cognitive impairment brain. Front Aging Neurosci 8:47

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Intlekofer KA, Cotman CW (2013) Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis 57:47–55

    Article  CAS  PubMed  Google Scholar 

  114. Radak Z, Hart N, Sarga L, Koltai E, Atalay M, Ohno H, Boldogh I (2010) Exercise plays a preventive role against Alzheimer’s disease. J Alzheimer’s Dis 20(3):777–783

    Article  Google Scholar 

  115. Yu F, Kolanowski AM, Strumpf NE, Eslinger PJ (2006) Improving cognition and function through exercise intervention in Alzheimer’s disease. J Nurs Sch 38(4):358–365

    Article  Google Scholar 

  116. Cass SP (2017) Alzheimer’s disease and exercise: a literature review. Curr Sports Med Rep 16(1):19–22

    Article  PubMed  Google Scholar 

  117. Paillard T, Rolland Y, de Souto BP (2015) Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: a narrative review. J Clin Neurol 11(3):212–219

    Article  PubMed  PubMed Central  Google Scholar 

  118. Duzel E, van Praag H, Sendtner M (2016) Can physical exercise in old age improve memory and hippocampal function? Brain 139(Pt 3):662–673

    Article  PubMed  PubMed Central  Google Scholar 

  119. Song JH, Yu JT, Tan L (2015) Brain-derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol 52(3):1477–1493

    Article  CAS  PubMed  Google Scholar 

  120. Deak F, Kapoor N, Prodan C, Hershey LA (2016) Memory loss: five new things. Neurol Clin Pract 6(6):523–529

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chen WW, Zhang X, Huang WJ (2016) Role of physical exercise in Alzheimer’s disease. Biomed Rep 4(4):403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mirochnic S, Wolf S, Staufenbiel M, Kempermann G (2009) Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 19(10):1008–1018

    Article  CAS  PubMed  Google Scholar 

  123. Lazarov O, Mattson MP, Peterson DA, Pimplikar SW, van Praag H (2010) When neurogenesis encounters aging and disease. Trends Neurosci 33(12):569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–281

    Article  CAS  PubMed  Google Scholar 

  125. Marlatt MW, Lucassen PJ (2010) Neurogenesis and Alzheimer’s disease: biology and pathophysiology in mice and men. Curr Alzheimer Res 7(2):113–125

    Article  CAS  PubMed  Google Scholar 

  126. Alzheimer’s Statistics. https://www.alzheimers.net/resources/alzheimers-statistics/

  127. 2017 Alzheimer’s Disease Facts and Figures. https://www.alz.org/documents_custom/2017-facts-and-figures.pdf

  128. Roberson ED, Hesse JH, Rose KD, Slama H, Johnson JK, Yaffe K, Forman MS, Miller CA, Trojanowski JQ, Kramer JH, Miller BL (2005) Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology 65(5):719–725

    Article  CAS  PubMed  Google Scholar 

  129. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13(8):788–794

    Article  PubMed  Google Scholar 

  130. Stephen R, Hongisto K, Solomon A, Lonnroos E (2017) Physical activity and Alzheimer’s disease: a systematic review. J Gerontol A Biol Sci Med Sci 72(6):733–739

    PubMed  Google Scholar 

  131. Guure CB, Ibrahim NA, Adam MB, Said SM (2017) Impact of physical activity on cognitive decline, dementia, and its subtypes: meta-analysis of prospective studies. Biomed Res Int 2017:9016924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Aarsland D, Sardahaee FS, Anderssen S, Ballard C, Alzheimer’s Society Systematic Review Group (2010) Is physical activity a potential preventive factor for vascular dementia? A systematic review. Aging Ment Health 14(4):386–395

    Article  PubMed  Google Scholar 

  133. Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med 39(1):3–11

    Article  CAS  PubMed  Google Scholar 

  134. Rovio S, Spulber G, Nieminen LJ, Niskanen E, Winblad B, Tuomilehto J, Nissinen A, Soininen H, Kivipelto M (2010) The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging 31(11):1927–1936

    Article  PubMed  Google Scholar 

  135. Bugg JM, Head D (2011) Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiol Aging 32(3):506–514

    Article  PubMed  Google Scholar 

  136. Zhao G, Liu HL, Zhang H, Tong XJ (2015) Treadmill exercise enhances synaptic plasticity, but does not alter beta-amyloid deposition in hippocampi of aged APP/PS1 transgenic mice. Neuroscience 298:357–366

    Article  CAS  PubMed  Google Scholar 

  137. Marlatt MW, Potter MC, Bayer TA, van Praag H, Lucassen PJ (2013) Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer’s disease. Curr Top Behav Neurosci 15:313–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120(5):701–713

    Article  CAS  PubMed  Google Scholar 

  139. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, Morris JC, Head D (2010) Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Ann Neurol 68(3):311–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA, Duncan GE, Mehta PD, Craft S (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67(1):71–79

    Article  PubMed  PubMed Central  Google Scholar 

  141. Cho JY, Um HS, Kang EB, Cho IH, Kim CH, Cho JS, Hwang DY (2010) The combination of exercise training and alpha-lipoic acid treatment has therapeutic effects on the pathogenic phenotypes of Alzheimer’s disease in NSE/APPsw-transgenic mice. Int J Mol Med 25(3):337–346

    Article  CAS  PubMed  Google Scholar 

  142. Leem YH, Lim HJ, Shim SB, Cho JY, Kim BS, Han PL (2009) Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of tauopathies. J Neurosci Res 87(11):2561–2570

    Article  CAS  PubMed  Google Scholar 

  143. Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, Hwang DY, Cho JY (2008) Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer’s disease in an NSE/APPsw-transgenic model. Int J Mol Med 22(4):529–539

    CAS  PubMed  Google Scholar 

  144. Herring A, Munster Y, Metzdorf J, Bolczek B, Krussel S, Krieter D, Yavuz I, Karim F, Roggendorf C, Stang A, Wang Y, Hermann DM, Teuber-Hanselmann S, Keyvani K (2016) Late running is not too late against Alzheimer’s pathology. Neurobiol Dis 94:44–54

    Article  CAS  PubMed  Google Scholar 

  145. Zhang Z, Wu H, Huang H (2016) Epicatechin plus treadmill exercise are neuroprotective against moderate-stage amyloid precursor protein/presenilin 1 mice. Pharmacogn Mag 12(Suppl 2):S139–S146

    PubMed  PubMed Central  Google Scholar 

  146. Kang EB, Cho JY (2014) Effects of treadmill exercise on brain insulin signaling and beta-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats. J Exerc Nutr Biochem 18(1):89–96

    Article  Google Scholar 

  147. Walker JM, Klakotskaia D, Ajit D, Weisman GA, Wood WG, Sun GY, Serfozo P, Simonyi A, Schachtman TR (2015) Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer’s disease mouse model. J Alzheimer’s Dis 44(2):561–572

    Article  CAS  Google Scholar 

  148. Ke HC, Huang HJ, Liang KC, Hsieh-Li HM (2011) Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res 1403:1–11

    Article  CAS  PubMed  Google Scholar 

  149. Li S, Feig LA, Hartley DM (2007) A brief, but repeated, swimming protocol is sufficient to overcome amyloid beta-protein inhibition of hippocampal long-term potentiation. Eur J Neurosci 26(5):1289–1298

    Article  PubMed  Google Scholar 

  150. Vidoni ED, Honea RA, Billinger SA, Swerdlow RH, Burns JM (2012) Cardiorespiratory fitness is associated with atrophy in Alzheimer’s and aging over 2 years. Neurobiol Aging 33(8):1624–1632

    Article  PubMed  Google Scholar 

  151. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509

    Article  CAS  PubMed  Google Scholar 

  152. Kessels HW, Nabavi S, Malinow R (2013) Metabotropic NMDA receptor function is required for beta-amyloid-induced synaptic depression. Proc Natl Acad Sci USA 110(10):4033–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8(8):1051–1058

    Article  CAS  PubMed  Google Scholar 

  154. Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM, Gouras GK (2005) Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 20(2):187–198

    Article  CAS  PubMed  Google Scholar 

  155. Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452(1–2):165–174

    Article  CAS  PubMed  Google Scholar 

  156. Alkon DL, Sun MK, Nelson TJ (2007) PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer’s disease. Trends Pharmacol Sci 28(2):51–60

    Article  CAS  PubMed  Google Scholar 

  157. Loprinzi PD, Frith E (2018) Memorcise in the context of Parkinson’s disease. J Cogn Enhanc 2:1–9

    Article  Google Scholar 

  158. Morrin H, Fang T, Servant D, Aarsland D, Rajkumar AP (2017) Systematic review of the efficacy of non-pharmacological interventions in people with Lewy body dementia. Int Psychogeriatrics 30:1–13

    Google Scholar 

  159. Inskip M, Mavros Y, Sachdev PS, Fiatarone Singh MA (2016) Exercise for individuals with Lewy body dementia: a systematic review. PLoS One 11(6):e0156520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Hanagasi HA, Tufekcioglu Z, Emre M (2017) Dementia in Parkinson’s disease. J Neurol Sci 374:26–31

    Article  PubMed  Google Scholar 

  161. Kramberger MG, Stukovnik V, Cus A, Repovs G, Tomse P, Meglic NP, Garasevic Z, Jensterle J, Pirtosek Z (2010) Parkinson’s disease dementia: clinical correlates of brain spect perfusion and treatment. Psychiatr Danub 22(3):446–449

    PubMed  Google Scholar 

  162. Murray DK, Sacheli MA, Eng JJ, Stoessl AJ (2014) The effects of exercise on cognition in Parkinson’s disease: a systematic review. Transl Neurodegener 3(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  163. Loprinzi PD, Herod SM, Cardinal BJ, Noakes TD (2013) Physical activity and the brain: a review of this dynamic, bi-directional relationship. Brain Res 1539:95–104

    Article  CAS  PubMed  Google Scholar 

  164. Chiaravalloti ND, Ibarretxe-Bilbao N, DeLuca J, Rusu O, Pena J, Garcia-Gorostiaga I, Ojeda N (2014) The source of the memory impairment in Parkinson’s disease: acquisition versus retrieval. Mov Disord 29(6):765–771

    Article  PubMed  Google Scholar 

  165. Marchant DW (2016) Dancing with disease: a Dancer’s reflections on moving with people with Parkinson’s and memory loss. Front Neurol 7:137

    Article  PubMed  PubMed Central  Google Scholar 

  166. Mattson MP (2015) Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle. NPJ Aging Mech Dis 1:15003

    Article  PubMed  PubMed Central  Google Scholar 

  167. Naismith SL, Mowszowski L, Diamond K, Lewis SJ (2013) Improving memory in Parkinson’s disease: a healthy brain ageing cognitive training program. Mov Disord 28(8):1097–1103

    Article  PubMed  Google Scholar 

  168. Rosenthal LS, Dorsey ER (2013) The benefits of exercise in Parkinson disease. JAMA Neurol 70(2):156–157

    Article  PubMed  PubMed Central  Google Scholar 

  169. Garraux G (2008) [Preserve brain function...through physical exercise?]. Rev Med Liege 63(5–6):293–298

    Google Scholar 

  170. Fama R, Sullivan EV, Shear PK, Stein M, Yesavage JA, Tinklenberg JR, Pfefferbaum A (2000) Extent, pattern, and correlates of remote memory impairment in Alzheimer’s disease and Parkinson’s disease. Neuropsychology 14(2):265–276

    Article  CAS  PubMed  Google Scholar 

  171. Martin WR, Wieler M, Gee M, Camicioli R (2009) Temporal lobe changes in early, untreated Parkinson’s disease. Mov Disord 24(13):1949–1954

    Article  PubMed  Google Scholar 

  172. Pereira JB, Junque C, Marti MJ, Ramirez-Ruiz B, Bargallo N, Tolosa E (2009) Neuroanatomical substrate of visuospatial and visuoperceptual impairment in Parkinson’s disease. Mov Disord 24(8):1193–1199

    Article  PubMed  Google Scholar 

  173. Muslimovic D, Post B, Speelman JD, Schmand B (2007) Motor procedural learning in Parkinson’s disease. Brain 130(Pt 11):2887–2897

    Article  CAS  PubMed  Google Scholar 

  174. Beatty WW, Monson N, Goodkin DE (1989) Access to semantic memory in Parkinson’s disease and multiple sclerosis. J Geriatr Psychiatry Neurol 2(3):153–162

    CAS  PubMed  Google Scholar 

  175. Salmazo-Silva H, Parente MA, Rocha MS, Baradel RR, Cravo AM, Sato JR, Godinho F, Carthery-Goulart MT (2017) Lexical-retrieval and semantic memory in Parkinson’s disease: the question of noun and verb dissociation. Brain Lang 165:10–20

    Article  PubMed  Google Scholar 

  176. Tamura I, Kikuchi S, Otsuki M, Kitagawa M, Tashiro K (2003) Deficits of working memory during mental calculation in patients with Parkinson’s disease. J Neurol Sci 209(1–2):19–23

    Article  PubMed  Google Scholar 

  177. Chen H, Zhang SM, Schwarzschild MA, Hernan MA, Ascherio A (2005) Physical activity and the risk of Parkinson disease. Neurology 64(4):664–669

    Article  CAS  PubMed  Google Scholar 

  178. Logroscino G, Sesso HD, Paffenbarger RS Jr, Lee IM (2006) Physical activity and risk of Parkinson’s disease: a prospective cohort study. J Neurol Neurosurg Psychiatry 77(12):1318–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Thacker EL, Chen H, Patel AV, McCullough ML, Calle EE, Thun MJ, Schwarzschild MA, Ascherio A (2008) Recreational physical activity and risk of Parkinson’s disease. Mov Disord 23(1):69–74

    Article  PubMed  PubMed Central  Google Scholar 

  180. Xu Q, Park Y, Huang X, Hollenbeck A, Blair A, Schatzkin A, Chen H (2010) Physical activities and future risk of Parkinson disease. Neurology 75(4):341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    PubMed  PubMed Central  Google Scholar 

  182. Tufekci KU, Meuwissen R, Genc S, Genc K (2012) Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol 88:69–132

    Article  CAS  PubMed  Google Scholar 

  183. Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S (2017) Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: implications for pathogenesis and therapy. Neural Regen Res 12(4):549–557

    Article  PubMed  PubMed Central  Google Scholar 

  184. Loprinzi PD, Danzl MM, Ulanowski E, Paydo C (2018) A pilot study evaluating the association between physical activity and cognition among individuals with Parkinson’s disease. Disabil Health J 11(1):165–168

    Article  PubMed  Google Scholar 

  185. Klein C, Rasinska J, Empl L, Sparenberg M, Poshtiban A, Hain EG, Iggena D, Rivalan M, Winter Y, Steiner B (2016) Physical exercise counteracts MPTP-induced changes in neural precursor cell proliferation in the hippocampus and restores spatial learning but not memory performance in the water maze. Behav Brain Res 307:227–238

    Article  CAS  PubMed  Google Scholar 

  186. Aguiar AS Jr, Lopes SC, Tristao FS, Rial D, de Oliveira G, da Cunha C, Raisman-Vozari R, Prediger RD (2016) Exercise improves cognitive impairment and dopamine metabolism in MPTP-treated mice. Neurotox Res 29(1):118–125

    Article  CAS  PubMed  Google Scholar 

  187. Goes AT, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR (2014) Neuroprotective effects of swimming training in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Neuroscience 256:61–71

    Article  CAS  PubMed  Google Scholar 

  188. Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW (2004) Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res 77(3):378–390

    Article  CAS  PubMed  Google Scholar 

  189. Aguiar AS Jr, Araujo AL, da Cunha TR, Speck AE, Ignacio ZM, De Mello N, Prediger RD (2009) Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull 79(6):452–457

    Article  CAS  PubMed  Google Scholar 

  190. Pothakos K, Kurz MJ, Lau YS (2009) Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson’s disease with severe neurodegeneration. BMC Neurosci 10:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Cho HS, Shin MS, Song W, Jun TW, Lim BV, Kim YP, Kim CJ (2013) Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson’s rats. J Exerc Rehabil 9(3):354–361

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sung YH (2015) Effects of treadmill exercise on hippocampal neurogenesis in an MPTP/probenecid-induced Parkinson’s disease mouse model. J Phys Ther Sci 27(10):3203–3206

    Article  PubMed  PubMed Central  Google Scholar 

  193. Hurwitz A (1989) The benefit of a home exercise regimen for ambulatory Parkinson’s disease patients. J Neurosci Nurs 21(3):180–184

    Article  CAS  PubMed  Google Scholar 

  194. David FJ, Robichaud JA, Leurgans SE, Poon C, Kohrt WM, Goldman JG, Comella CL, Vaillancourt DE, Corcos DM (2015) Exercise improves cognition in Parkinson’s disease: the PRET-PD randomized, clinical trial. Mov Disord 30(12):1657–1663

    Article  PubMed  PubMed Central  Google Scholar 

  195. Nocera JR, Amano S, Vallabhajosula S, Hass CJ (2013) Tai Chi exercise to improve non-motor symptoms of Parkinson’s disease. J Yoga Phys Ther 3:137

    Google Scholar 

  196. Altmann LJ, Stegemoller E, Hazamy AA, Wilson JP, Bowers D, Okun MS, Hass CJ (2016) Aerobic exercise improves mood, cognition, and language function in Parkinson’s disease: results of a controlled study. J Int Neuropsychol Soc 9:878–889

    Article  Google Scholar 

  197. Bethus I, Tse D, Morris RG (2010) Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 30(5):1610–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cepeda C, Andre VM, Jacoy EL, Levine MS (2009) NMDA and dopamine: diverse mechanisms applied to interacting receptor systems. In: Van Dongen AM (ed) Biology of the NMDA receptor. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  199. Snyder GL, Fienberg AA, Huganir RL, Greengard P (1998) A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 18(24):10297–10303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Frith E, Loprinzi PD (2018) Physical activity and individual cognitive function parameters: unique exercise-induced mechanisms. J Cogn Behav Psychother Res 7:92–106

    Article  Google Scholar 

  201. Delancey D, Frith E, Sng E, Loprinzi PD (2018) Randomized controlled trial examining the long-term memory effects of acute exercise during the memory consolidation stage of memory. J Cogn Enhanc 1–6

    Google Scholar 

  202. Frith E, Sng E, Loprinzi PD (2017) Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. Eur J Neurosci 46(10):2557–2564

    Article  PubMed  Google Scholar 

  203. Frith E, Sng E, Loprinzi PD (2018) Randomized controlled trial considering varied exercises for reducing proactive memory interference. J Clin Med 7(6):E147

    Article  PubMed  CAS  Google Scholar 

  204. Green D, Loprinzi PD (2018) Experimental effects of acute exercise on prospective memory and false memory. Psychol Rep 122:1313–1326

    Article  PubMed  Google Scholar 

  205. Haynes Iv JT, Frith E, Sng E, Loprinzi PD (2018) Experimental effects of acute exercise on episodic memory function: considerations for the timing of exercise. Psychol Rep 122:1744–1754

    Article  Google Scholar 

  206. Haynes JT IV, Loprinzi PD (2018) Acute cardiovascular exercise on proactive memory interference. J Cogn Enhanc 3:1–5

    Google Scholar 

  207. Loprinzi PD (2018) IGF-1 in exercise-induced enhancement of episodic memory. Acta Physiol 226:e13154

    Article  CAS  Google Scholar 

  208. Loprinzi PD (2018) Intensity-specific effects of acute exercise on human memory function: considerations for the timing of exercise and the type of memory. Health Promot Perspect 8(4):255–262

    Article  PubMed  PubMed Central  Google Scholar 

  209. Loprinzi PD, Blough J, Ryu S, Kang M (2018) Experimental effects of exercise on memory function among mild cognitive impairment: systematic review and meta-analysis. Phys Sportsmed 47:1–6

    Google Scholar 

  210. Loprinzi PD, Edwards MK (2017) Exercise and implicit memory: a brief systematic review. Psychol Rep 121(6):1072–1085

    Article  PubMed  Google Scholar 

  211. Loprinzi PD, Edwards MK (2018) Exercise and cognitive-related semantic memory function. J Cogn Behav Psychother Res 7(2):51–52

    Google Scholar 

  212. Loprinzi PD, Edwards MK, Frith E (2018) Exercise and prospective memory. J Lifestyle Med 8:51–59

    Article  PubMed  PubMed Central  Google Scholar 

  213. Loprinzi PD, Frith E (2019) Protective and therapeutic effects of exercise on stress-induced memory impairment. J Physiol Sci 69(1):1–12

    Article  PubMed  Google Scholar 

  214. Loprinzi PD, Frith E (2018) Interhemispheric activation and memory function: considerations and recommendations in the context of cardiovascular exercise research. Psychol Rep 122:2396–2405

    Article  PubMed  Google Scholar 

  215. Loprinzi PD, Frith E (2018) The role of sex in memory function: considerations and recommendations in the context of exercise. J Clin Med 7(6):132

    Article  PubMed Central  CAS  Google Scholar 

  216. Loprinzi PD, Frith E (2019) A brief primer on the mediational role of BDNF in the exercise-memory link. Clin Physiol Funct Imaging 39(1):9–14

    Article  PubMed  Google Scholar 

  217. Loprinzi PD, Frith E, Edwards MK (2018) Resistance exercise and episodic memory function: a systematic review. Clin Physiol Funct Imaging

    Google Scholar 

  218. Loprinzi PD, Frith E, Edwards MK (2018) Exercise and emotional memory: a systematic review. J Cogn Enhanc 3:1–10

    Google Scholar 

  219. Loprinzi PD, Frith E, Edwards MK, Sng E, Ashpole N (2018) The effects of exercise on memory function among Young to middle-aged adults: systematic review and recommendations for future research. Am J Health Promot 32(3):691–704

    Article  PubMed  Google Scholar 

  220. Ponce P, Loprinzi PD (2018) A bi-directional model of exercise and episodic memory function. Med Hypotheses 117:3–6

    Article  PubMed  Google Scholar 

  221. Siddiqui A, Loprinzi PD (2018) Experimental investigation of the time course effects of acute exercise on false episodic memory. J Clin Med 7(7):157

    Article  PubMed Central  Google Scholar 

  222. Sng E, Frith E, Loprinzi PD (2018) Experimental effects of acute exercise on episodic memory acquisition: decomposition of multi-trial gains and losses. Physiol Behav 186:82–84

    Article  CAS  PubMed  Google Scholar 

  223. Sng E, Frith E, Loprinzi PD (2018) Temporal effects of acute walking exercise on learning and memory function. Am J Health Promot 32(7):1518–1525

    Article  PubMed  Google Scholar 

  224. Wade B, Loprinzi PD (2018) The experimental effects of acute exercise on long-term emotional memory. J Clin Med 7(12):486

    Article  PubMed Central  Google Scholar 

  225. Wingate S, Crawford L, Frith E, Loprinzi PD (2018) Experimental investigation of the effects of acute exercise on memory interference. Health Promot Perspect 8(3):208–214

    Article  PubMed  PubMed Central  Google Scholar 

  226. Yanes D, Loprinzi PD (2018) Experimental effects of acute exercise on iconic memory, short-term episodic, and long-term episodic memory. J Clin Med 7(6):146

    Article  PubMed Central  Google Scholar 

  227. Tsai SF, Ku NW, Wang TF, Yang YH, Shih YH, Wu SY, Lee CW, Yu M, Yang TT, Kuo YM (2018) Long-term moderate exercise rescues age-related decline in hippocampal neuronal complexity and memory. Gerontology 64:1–11

    Article  CAS  Google Scholar 

  228. Ma J, Chen H, Liu X, Zhang L, Qiao D (2018) Exercise-induced fatigue impairs bidirectional corticostriatal synaptic plasticity. Front Cell Neurosci 12:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Cheng M, Cong J, Wu Y, Xie J, Wang S, Zhao Y, Zang X (2018) Chronic swimming exercise ameliorates low-soybean-oil diet-induced spatial memory impairment by enhancing BDNF-mediated synaptic potentiation in developing spontaneously hypertensive rats. Neurochem Res 43(5):1047–1057

    Article  CAS  PubMed  Google Scholar 

  230. D’Arcangelo G, Triossi T, Buglione A, Melchiorri G, Tancredi V (2017) Modulation of synaptic plasticity by short-term aerobic exercise in adult mice. Behav Brain Res 332:59–63

    Article  PubMed  Google Scholar 

  231. Zheng F, Zhang M, Ding Q, Sethna F, Yan L, Moon C, Yang M, Wang H (2016) Voluntary running depreciates the requirement of Ca2+-stimulated cAMP signaling in synaptic potentiation and memory formation. Learn Mem 23(8):442–449

    Article  PubMed  PubMed Central  Google Scholar 

  232. Radahmadi M, Hosseini N, Alaei H (2016) Effect of exercise, exercise withdrawal, and continued regular exercise on excitability and long-term potentiation in the dentate gyrus of hippocampus. Brain Res 1653:8–13

    Article  CAS  PubMed  Google Scholar 

  233. Dao AT, Zagaar MA, Levine AT, Alkadhi KA (2016) Comparison of the effect of exercise on late-phase LTP of the dentate gyrus and CA1 of Alzheimer’s disease model. Mol Neurobiol 53(10):6859–6868

    Article  CAS  PubMed  Google Scholar 

  234. Miladi-Gorji H, Rashidy-Pour A, Fathollahi Y, Semnanian S, Jadidi M (2014) Effects of voluntary exercise on hippocampal long-term potentiation in morphine-dependent rats. Neuroscience 256:83–90

    Article  CAS  PubMed  Google Scholar 

  235. Yu Q, Li X, Wang J, Li Y (2013) Effect of exercise training on long-term potentiation and NMDA receptor channels in rats with cerebral infarction. Exp Ther Med 6(6):1431–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Patten AR, Sickmann H, Hryciw BN, Kucharsky T, Parton R, Kernick A, Christie BR (2013) Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learn Mem 20(11):642–647

    Article  PubMed  Google Scholar 

  237. Vasuta C, Caunt C, James R, Samadi S, Schibuk E, Kannangara T, Titterness AK, Christie BR (2007) Effects of exercise on NMDA receptor subunit contributions to bidirectional synaptic plasticity in the mouse dentate gyrus. Hippocampus 17(12):1201–1208

    Article  CAS  PubMed  Google Scholar 

  238. O’Callaghan RM, Ohle R, Kelly AM (2007) The effects of forced exercise on hippocampal plasticity in the rat: a comparison of LTP, spatial- and non-spatial learning. Behav Brain Res 176(2):362–366

    Article  PubMed  Google Scholar 

  239. Ahmed T, Frey JU, Korz V (2006) Long-term effects of brief acute stress on cellular signaling and hippocampal LTP. J Neurosci 26(15):3951–3958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124(1):71–79

    Article  CAS  PubMed  Google Scholar 

  241. Leung LS, Shen B, Rajakumar N, Ma J (2003) Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J Neurosci 23(28):9297–9304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96(23):13427–13431

    Article  PubMed  PubMed Central  Google Scholar 

  243. Smallwood N, Spriggs MJ, Thompson CS, Wu CC, Hamm JP, Moreau D, Kirk IJ (2015) Influence of physical activity on human sensory long-term potentiation. J Int Neuropsychol Soc 21(10):831–840

    Article  PubMed  Google Scholar 

  244. Singh AM, Neva JL, Staines WR (2014) Acute exercise enhances the response to paired associative stimulation-induced plasticity in the primary motor cortex. Exp Brain Res 232(11):3675–3685

    Article  PubMed  Google Scholar 

  245. Mang CS, Snow NJ, Campbell KL, Ross CJ, Boyd LA (2014) A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning. J Appl Physiol (1985) 117(11):1325–1336

    Article  Google Scholar 

  246. Dietrich MO, Mantese CE, Porciuncula LO, Ghisleni G, Vinade L, Souza DO, Portela LV (2005) Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res 1065(1–2):20–25

    Article  CAS  PubMed  Google Scholar 

  247. Molteni R, Ying Z, Gomez-Pinilla F (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16(6):1107–1116

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Loprinzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loprinzi, P.D. (2020). Effects of Exercise on Long-Term Potentiation in Neuropsychiatric Disorders. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_30

Download citation

Publish with us

Policies and ethics