Skip to main content

Advertisement

Log in

Infantile Amnesia Is Related to Developmental Immaturity of the Maintenance Mechanisms for Long-Term Potentiation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Infantile amnesia (IA) refers to the inability of adults to recall episodic memories from infancy or early childhood. While several hypotheses have been proposed to explain the occurrence of IA, the neurobiological and molecular bases for this accelerated forgetting phenomenon remain elusive. Using hippocampus-dependent object-location memory and contextual fear conditioning tasks, we confirmed that infant mice trained at postnatal day 20 (P20) displayed deficits in long-term memory retention compared to adult (P60) mice. The percentage of CA1 pyramidal neurons expressing phosphorylated cAMP-responsive element-binding protein after fear conditioning was significantly lower in P20 than P60 mice. P20 mice exhibited attenuated basal excitatory synaptic transmission and early-phase long-term potentiation (E-LTP) at Schaffer collateral-CA1 synapses compared to P60 mice, but conversely, P20 mice have a greater susceptibility to induce time-dependent reversal of LTP by low-frequency afferent stimulation than P60 mice. The protein levels of GluN2B subunit of N-methyl-d-aspartate receptors (NMDARs), protein kinase Mζ (PKMζ), and protein phosphatase 2B (PP2B) in hippocampal CA1 region were significantly higher in P20 than P60 mice. We also found that the levels of calcium/calmodulin-dependent protein kinase II α autophosphorylation at Thr286, GluA1 phosphorylation at Ser831, and PKMζ protein biosynthesis occurred during the ensuing maintenance of E-LTP were significantly lower in P20 than P60 mice. Pharmacological blockade of GluN2B-containing NMDARs or PP2B effectively restored deficits of E-LTP and long-term memory retention observed in P20 mice. Altogether, these findings suggest that developmental immaturity of the maintenance mechanisms for E-LTP is linked to the occurrence of IA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Madsen HB, Kim JH (2016) Ontogeny of memory: an update on 40 years of work on infantile amnesia. Behav Brain Res 298:4–14

    PubMed  Google Scholar 

  2. Campbell BA, Spear NE (1972) Ontogeny of memory. Psychol Rev 79:215–236

    CAS  PubMed  Google Scholar 

  3. Callaghan BL, Li S, Richardson R (2013) The elusive engram: what can infantile amnesia tell us about memory? Trends Neurosci 37:47–53

    PubMed  Google Scholar 

  4. Josselyn SA, Frankland PW (2012) Infantile amnesia: a neurogenic hypothesis. Learn Mem 19:423–433

    CAS  PubMed  Google Scholar 

  5. Rovee-Collier CK, Gekoski MJ (1979) The economics of infancy: a review of conjugate reinforcement. Adv Child Dev Behav 13:195–255

    CAS  PubMed  Google Scholar 

  6. Miller JS, Jagielo JA, Spear NE (1991) Differential effectiveness of various prior-cuing treatments in the reactivation and maintenance of memory. J Exp Psychol Anim Behav Process 17:249–258

    CAS  PubMed  Google Scholar 

  7. Kim JH, Richardson R (2007) Immediate post-reminder injection of GABA agonist midazolam attenuates reactivation of forgotten fear in the infant rat. Behav Neurosci 121:1328–1332

    CAS  PubMed  Google Scholar 

  8. Travaglia A, Bisaz R, Sweet ES, Blitzer RD, Alberini CM (2016) Infantile amnesia reflects a developmental critical period for hippocampal learning. Nat Neurosci 19:1225–1233

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Frankland PW, Köhler S, Josselyn SA (2013) Hippocampal neurogenesis and forgetting. Trends Neurosci 36:497–503

    CAS  PubMed  Google Scholar 

  10. Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, Wheeler AL, Guskjolen A et al (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598–602

    CAS  PubMed  Google Scholar 

  11. Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186

    CAS  PubMed  Google Scholar 

  12. Poo MM, Pignatelli M, Ryan TJ, Tonegawa S, Bonhoeffer T, Martin KC, Rudenko A, Tsai LH et al (2016) What is memory? The present state of the engram. BMC Biol 14:40

  13. Nicoll RA, Roche KW (2013) Long-term potentiation: peeling the onion. Neuropharmacology 74:18–22

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    CAS  PubMed  Google Scholar 

  15. Mayford M, Siegelbaum SA, Kandel ER (2012) Synapses and memory storage. Cold Spring Harb Perspect Biol 4:a005751

    PubMed  PubMed Central  Google Scholar 

  16. Winder DG, Sweatt JD (2001) Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat Rev Neurosci 2:461–474

    CAS  PubMed  Google Scholar 

  17. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    CAS  PubMed  Google Scholar 

  18. Yasuda H, Barth AL, Stellwagen D, Malenka RC (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6:15–16

    CAS  PubMed  Google Scholar 

  19. Huang CC, Chou PH, Yang CH, Hsu KS (2005) Neonatal isolation accelerates the developmental switch in the signalling cascades for long-term potentiation induction. J Physiol 569:789–799

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang CH, Huang CC, Hsu KS (2012) A critical role for protein tyrosine phosphatase nonreceptor type 5 in determining individual susceptibility to develop stress-related cognitive and morphological changes. J Neurosci 32:7550–7562

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang YF, Yang CH, Huang CC, Tai MH, Hsu KS (2010) Pharmacological and genetic accumulation of hypoxia-inducible factor-1alpha enhances excitatory synaptic transmission in hippocampal neurons through the production of vascular endothelial growth factor. J Neurosci 30:6080–6093

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang CC, Liang YC, Hsu KS (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J Biol Chem 276:48108–48117

    CAS  PubMed  Google Scholar 

  23. Valverde F (1998) Golgi atlas of the postnatal mouse brain, 15th edn. Springer-Verlag, Chicago

    Google Scholar 

  24. Franklin K, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  25. Kojima N, Sakamoto T, Endo S, Niki H (2005) Impairment of conditioned freezing to tone, but not to context, in Fyn-transgenic mice: relationship to NMDA receptor subunit 2B function. Eur J Neurosci 21:1359–1369

    CAS  PubMed  Google Scholar 

  26. Mouri A, Noda Y, Shimizu S, Tsujimoto Y, Nabeshima T (2010) The role of cyclophilin D in learning and memory. Hippocampus 20:293–304

    CAS  PubMed  Google Scholar 

  27. Izquierdo LA, Barros DM, Vianna MR, Coitinho A, deDavid e Silva T, Choi H, Moletta B, Medina JH et al (2002) Molecular pharmacological dissection of short- and long-term memory. Cell Mol Neurobiol 22:269–287

  28. Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF et al (2007) Neuronal competition and selection during memory formation. Science 316:457–460

    CAS  PubMed  Google Scholar 

  29. Hussain RJ, Carpenter DO (2001) Development of synaptic responses and plasticity at the SC-CA1 and MF-CA3 synapses in rat hippocampus. Cell Mol Neurobiol 21:357–368

    CAS  PubMed  Google Scholar 

  30. Shenolikar S, Nairn AC (1991) Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res 23:1–121

    CAS  PubMed  Google Scholar 

  31. Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280:1940–1942

    CAS  PubMed  Google Scholar 

  32. Akers KG, Arruda-Carvalho M, Josselyn SA, Frankland PW (2012) Ontogeny of contextual fear memory formation, specificity, and persistence in mice. Learn Mem 19:598–604

    PubMed  Google Scholar 

  33. Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Herring BE, Nicoll RA (2016) Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu Rev Physiol 78:351–365

    CAS  PubMed  Google Scholar 

  35. Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22:461–469

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955–959

    CAS  PubMed  Google Scholar 

  37. Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002) Protein kinase Mζ is necessary and sufficient for LTP maintenance. Nat Neurosci 5:295–296

    CAS  PubMed  Google Scholar 

  38. Sacktor TC (2011) How does PKMζ maintain long-term memory? Nat Rev Neurosci 12:9–15

    CAS  PubMed  Google Scholar 

  39. Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL (2013) PKMζ is not required for hippocampal synaptic plasticity, learning and memory. Nature 493:420–423

    CAS  PubMed  Google Scholar 

  40. Westmark PR, Westmark CJ, Wang S, Levenson J, O'Riordan KJ, Burger C, Malter JS (2010) Pin1 and PKMζ sequentially control dendritic protein synthesis. Sci Signal 3:ra18

    PubMed  PubMed Central  Google Scholar 

  41. Schuette SR, Fernández-Fernández D, Lamla T, Rosenbrock H, Hobson S (2016) Overexpression of protein kinase Mζ in the hippocampus enhances long-term potentiation and long-term contextual but not cued fear memory in rats. J Neurosci 36:4313–4324

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    CAS  PubMed  Google Scholar 

  44. Sachser RM, Santana F, Crestani AP, Lunardi P, Pedraza LK, Quillfeldt JA, Hardt O, Alvares Lde O (2016) Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Sci Rep 6:22771

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang YT, Huang CC, Lin YS, Huang WF, Yang CY, Lee CC, Yeh CM, Hsu KS (2017) Conditional deletion of Eps8 reduces hippocampal synaptic plasticity and impairs cognitive function. Neuropharmacology 112:113–123

    CAS  PubMed  Google Scholar 

  46. Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, Peng Y, Zhou L et al (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125:234–247

    Google Scholar 

  47. Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–1664

    CAS  PubMed  Google Scholar 

  48. Kelleher RJ 3rd, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    CAS  PubMed  Google Scholar 

  49. Cowan CS, Callaghan BL, Richardson R (2016) The effects of a probiotic formulation (Lactobacillus rhamnosus and L. helveticus) on developmental trajectories of emotional learning in stressed infant rats. Transl Psychiatry 6:e823

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shinohara K, Hata T (2014) Post-acquisition hippocampal NMDA receptor blockade sustains retention of spatial reference memory in Morris water maze. Behav Brain Res 259:261–267

    CAS  PubMed  Google Scholar 

  51. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ (2014) Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84:347–354

    CAS  PubMed  Google Scholar 

  53. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17:5196–5205

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Thiels E, Urban NN, Gonzalez-Burgos GR, Kanterewicz BI, Barrionuevo G, Chu CT, Oury TD, Klann E (2000) Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 20:7631–7639

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A et al (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52:437–444

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the technical services provided by the Bio-image Core Facility of the National Core Facility Program for Biotechnology, Ministry of Science and Technology, Taiwan.

Funding

This work was supported by research grants from the Ministry of Science and Technology (MOST 106-2320-B-006-026-MY3) and the National Health Research Institute (NHRI-EX106-10613NI and NHRI-EX107-10713NI), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuei-Sen Hsu.

Ethics declarations

All experimental procedures complied with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of National Cheng Kung University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, TC., Huang, CC. & Hsu, KS. Infantile Amnesia Is Related to Developmental Immaturity of the Maintenance Mechanisms for Long-Term Potentiation. Mol Neurobiol 56, 907–919 (2019). https://doi.org/10.1007/s12035-018-1119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1119-4

Keywords

Navigation