Skip to main content
Log in

Adenosine A1 Receptors Play an Important Protective Role Against Cognitive Impairment and Long-Term Potentiation Inhibition in a Pentylenetetrazol Mouse Model of Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epilepsy is a complicated neurological disorder that occurs worldwide and features several kinds of comorbidities in addition to recurrent seizures. One of the most common comorbidities is cognitive impairment, which seriously affects patients’ quality of life. Through activating pre- and postsynaptic adenosine A1 receptors (A1Rs), adenosine has demonstrated anticonvulsant and neuroprotective effects in many epileptic animal models. However, whether the neuroprotective effect of A1Rs will protect cognition during epileptogenesis remains unknown. Therefore, by using A1R knockout (KO) mice and establishing a pentylenetetrazole (PTZ)-kindled model of epilepsy, the present study investigated A1Rs’ influences on memory and synaptic function. Morris water maze test results indicated that A1R knockout exacerbated the memory impairment induced by PTZ kindling compared with the wild-type group. To further study the synaptic function of epileptic A1Rs KO mice, we recorded long-term potentiation (LTP) in the hippocampal CA3-CA1 pathway, and LTP was highly inhibited in kindled A1R KO mice compared with kindled wild-type mice. To reveal the mechanisms underlying these effects, neuronal loss, cell apoptosis, and relevant synaptic protein levels in hippocampus were assessed. Epileptic A1R KO mice exhibited significant reductions in neuronal cell survival in the CA1 region and a marked increase in the activation of caspase-3 in the hippocampus compared with epileptic wild-type mice. In addition, an obvious decrease in the PSD95 and BDNF expression levels of epileptic A1R KO mice was observed 7 days after complete kindling. In conclusion, these findings indicated that A1Rs play an important protective role against cognitive impairment by reducing neuron loss and increasing BDNF and PSD95 levels. Activation of A1Rs during epileptogenesis might be beneficial to the preservation of epileptic individuals’ cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holmes GL (2015) Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord 17(2):101–116. doi:10.1684/epd.2015.0739

    PubMed  PubMed Central  Google Scholar 

  2. Lencz T, McCarthy G, Bronen RA, Scott TM, Inserni JA, Sass KJ, Novelly RA, Kim JH et al (1992) Quantitative magnetic resonance imaging in temporal lobe epilepsy: relationship to neuropathology and neuropsychological function. Ann Neurol 31(6):629–637. doi:10.1002/ana.410310610

    Article  CAS  PubMed  Google Scholar 

  3. Jokeit H, Kramer G, Ebner A (2005) Do antiepileptic drugs accelerate forgetting? Epilepsy Behav 6(3):430–432. doi:10.1016/j.yebeh.2004.12.012

    Article  PubMed  Google Scholar 

  4. Motamedi GK, Meador KJ (2004) Antiepileptic drugs and memory. Epilepsy Behav 5(4):435–439. doi:10.1016/j.yebeh.2004.03.006

    Article  PubMed  Google Scholar 

  5. Thompson PJ, Corcoran R (1992) Everyday memory failures in people with epilepsy. Epilepsia 33(Suppl 6):S18–S20

    PubMed  Google Scholar 

  6. Meador KJ, Loring DW, Abney OL, Allen ME, Moore EE, Zamrini EY, King DW (1993) Effects of carbamazepine and phenytoin on EEG and memory in healthy adults. Epilepsia 34(1):153–157

    Article  CAS  PubMed  Google Scholar 

  7. Meador KJ, Loring DW, Ray PG, Murro AM, King DW, Nichols ME, Deer EM, Goff WT (1999) Differential cognitive effects of carbamazepine and gabapentin. Epilepsia 40(9):1279–1285

    Article  CAS  PubMed  Google Scholar 

  8. Martin R, Meador K, Turrentine L, Faught E, Sinclair K, Kuzniecky R, Gilliam F (2001) Comparative cognitive effects of carbamazepine and gabapentin in healthy senior adults. Epilepsia 42(6):764–771

    Article  CAS  PubMed  Google Scholar 

  9. Meador KJ, Loring DW, Ray PG, Murro AM, King DW, Perrine KR, Vazquez BR, Kiolbasa T (2001) Differential cognitive and behavioral effects of carbamazepine and lamotrigine. Neurology 56(9):1177–1182

    Article  CAS  PubMed  Google Scholar 

  10. Boison D (2005) Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist 11(1):25–36. doi:10.1177/1073858404269112

    Article  CAS  PubMed  Google Scholar 

  11. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55. doi:10.1146/annurev.neuro.24.1.31

    Article  CAS  PubMed  Google Scholar 

  12. During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32(5):618–624. doi:10.1002/ana.410320504

    Article  CAS  PubMed  Google Scholar 

  13. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  14. Huicong K, Zheng X, Furong W, Zhouping T, Feng X, Qi H, Xiaoyan L, Xiaojiang H et al (2013) The imbalanced expression of adenosine receptors in an epilepsy model corrected using targeted mesenchymal stem cell transplantation. Mol Neurobiol 48(3):921–930. doi:10.1007/s12035-013-8480-0

    Article  PubMed  Google Scholar 

  15. Avsar E, Empson RM (2004) Adenosine acting via A1 receptors, controls the transition to status epilepticus-like behaviour in an in vitro model of epilepsy. Neuropharmacology 47(3):427–437. doi:10.1016/j.neuropharm.2004.04.015

    Article  CAS  PubMed  Google Scholar 

  16. Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D (2006) Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 200(1):184–190. doi:10.1016/j.expneurol.2006.02.133

    Article  CAS  PubMed  Google Scholar 

  17. Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808(5):1380–1399. doi:10.1016/j.bbamem.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  18. Cunha RA (2005) Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic signalling 1(2):111–134. doi:10.1007/s11302-005-0649-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J, Schnermann J (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98(17):9983–9988. doi:10.1073/pnas.171317998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Erdtmann-Vourliotis M, Riechert U, Mayer P, Grecksch G, Hollt V (1998) Pentylenetetrazole (PTZ)-induced c-fos expression in the hippocampus of kindled rats is suppressed by concomitant treatment with naloxone. Brain Res 792(2):299–308

    Article  CAS  PubMed  Google Scholar 

  21. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  22. Becker A, Grecksch G, Ruthrich HL, Pohle W, Marx B, Matthies H (1992) Kindling and its consequences on learning in rats. Behav Neural Biol 57(1):37–43

    Article  CAS  PubMed  Google Scholar 

  23. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60. doi:10.1016/0165-0270(84)90007-4

    Article  CAS  PubMed  Google Scholar 

  24. Masino SA, Dunwiddie TV (1999) Temperature-dependent modulation of excitatory transmission in hippocampal slices is mediated by extracellular adenosine. J Neurosci 19(6):1932–1939

    CAS  PubMed  Google Scholar 

  25. Hooper N, Fraser C, Stone TW (1996) Effects of purine analogues on spontaneous alternation in mice. Psychopharmacology 123(3):250–257

    Article  CAS  PubMed  Google Scholar 

  26. Ohno M, Watanabe S (1996) Working memory failure by stimulation of hippocampal adenosine A1 receptors in rats. Neuroreport 7(18):3013–3016

    Article  CAS  PubMed  Google Scholar 

  27. Lu G, Zhou QX, Kang S, Li QL, Zhao LC, Chen JD, Sun JF, Cao J et al (2010) Chronic morphine treatment impaired hippocampal long-term potentiation and spatial memory via accumulation of extracellular adenosine acting on adenosine A1 receptors. J Neurosci 30(14):5058–5070. doi:10.1523/jneurosci.0148-10.2010

    Article  CAS  PubMed  Google Scholar 

  28. Gimenez-Llort L, Fernandez-Teruel A, Escorihuela RM, Fredholm BB, Tobena A, Pekny M, Johansson B (2002) Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur J Neurosci 16(3):547–550

    Article  PubMed  Google Scholar 

  29. Gimenez-Llort L, Masino SA, Diao L, Fernandez-Teruel A, Tobena A, Halldner L, Fredholm BB (2005) Mice lacking the adenosine A1 receptor have normal spatial learning and plasticity in the CA1 region of the hippocampus, but they habituate more slowly. Synapse 57(1):8–16. doi:10.1002/syn.20146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malenka RC, Nicoll RA (1999) Long-term potentiation–a decade of progress? Science (New York, NY) 285(5435):1870–1874

    Article  CAS  Google Scholar 

  31. Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9(4):130–134

    Article  CAS  PubMed  Google Scholar 

  32. Moore KA, Nicoll RA, Schmitz D (2003) Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 100(24):14397–14402. doi:10.1073/pnas.1835831100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnes CA, Jung MW, McNaughton BL, Korol DL, Andreasson K, Worley PF (1994) LTP saturation and spatial learning disruption: effects of task variables and saturation levels. J Neurosci 14(10):5793–5806

    CAS  PubMed  Google Scholar 

  34. Dragoi G, Harris KD, Buzsaki G (2003) Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39(5):843–853

    Article  CAS  PubMed  Google Scholar 

  35. Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9(1):3–5. doi:10.1038/sj.cdd.4400963

    Article  PubMed  Google Scholar 

  36. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K et al (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46(8):497–510. doi:10.1136/jmg.2009.066944

    Article  CAS  PubMed  Google Scholar 

  37. Li ZP, Zhang XY, Lu X, Zhong MK, Ji YH (2004) Dynamic release of amino acid transmitters induced by valproate in PTZ-kindled epileptic rat hippocampus. Neurochem Int 44(4):263–270

    Article  CAS  PubMed  Google Scholar 

  38. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD et al (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57(2):226–235. doi:10.1002/ana.20380

    Article  CAS  PubMed  Google Scholar 

  39. Hudspith MJ (1997) Glutamate: a role in normal brain function, anaesthesia, analgesia and CNS injury. Br J Anaesth 78(6):731–747

    Article  CAS  PubMed  Google Scholar 

  40. Zhu X, Dong J, Shen K, Bai Y, Zhang Y, Lv X, Chao J, Yao H (2015) NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress. Brain Res Bull 114:70–78. doi:10.1016/j.brainresbull.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  41. Baez MV, Oberholzer MV, Cercato MC, Snitcofsky M, Aguirre AI, Jerusalinsky DA (2013) NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open field and after LTP induction. PLoS One 8(2):e55244. doi:10.1371/journal.pone.0055244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cercato MC, Colettis N, Snitcofsky M, Aguirre AI, Kornisiuk EE, Baez MV, Jerusalinsky DA (2014) Hippocampal NMDA receptors and the previous experience effect on memory. J Physiol Paris 108(4–6):263–269. doi:10.1016/j.jphysparis.2014.08.001

    Article  PubMed  Google Scholar 

  43. Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science (New York, NY) 290(5492):750–754

    Article  CAS  Google Scholar 

  44. Ziff EB (1997) Enlightening the postsynaptic density. Neuron 19(6):1163–1174

    Article  CAS  PubMed  Google Scholar 

  45. Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82(2):430–443. doi:10.1016/j.neuron.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  46. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76(2):99–125. doi:10.1016/j.pneurobio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  47. Edelmann E, Lessmann V, Brigadski T (2014) Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76 Pt C:610–627. doi:10.1016/j.neuropharm.2013.05.043

    Article  PubMed  Google Scholar 

  48. Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89(3):312–323. doi:10.1016/j.nlm.2007.08.018

    Article  CAS  PubMed  Google Scholar 

  49. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10(12):850–860. doi:10.1038/nrn2738

    Article  CAS  PubMed  Google Scholar 

  50. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20(4):709–726

    Article  CAS  PubMed  Google Scholar 

  51. Tao X, West AE, Chen WG, Corfas G, Greenberg ME (2002) A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron 33(3):383–395

    Article  CAS  PubMed  Google Scholar 

  52. Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D (1990) Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J 9(11):3545–3550

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9(6):1081–1088

    Article  CAS  PubMed  Google Scholar 

  54. Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, Hempstead BL, Lee FS (2004) Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 24(18):4401–4411. doi:10.1523/jneurosci.0348-04.2004

    Article  CAS  PubMed  Google Scholar 

  55. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25(22):5455–5463. doi:10.1523/jneurosci.5123-04.2005

    Article  CAS  PubMed  Google Scholar 

  56. Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, Causing CG, Miller FD (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140(4):911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boyd JG, Gordon T (2002) A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci 15(4):613–626

    Article  CAS  PubMed  Google Scholar 

  58. Leal G, Afonso PM, Salazar IL, Duarte CB (2015) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 1621:82–101. doi:10.1016/j.brainres.2014.10.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81201006). We thank Professor Jurgen Schnermann for providing the adenosine A1 receptor knockout mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huicong Kang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Zhu, S., Guo, Y. et al. Adenosine A1 Receptors Play an Important Protective Role Against Cognitive Impairment and Long-Term Potentiation Inhibition in a Pentylenetetrazol Mouse Model of Epilepsy. Mol Neurobiol 55, 3316–3327 (2018). https://doi.org/10.1007/s12035-017-0571-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0571-x

Keywords

Navigation