Skip to main content
Log in

Withdrawal from spinal application of remifentanil induces long-term potentiation of c-fiber-evoked field potentials by activation of Src family kinases in spinal microglia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is well known that remifentanil, a widely used intravenous anesthesia drug, can paradoxically induce hyperalgesia. The underlying mechanisms are still not clear despite the wide investigations. The present study demonstrated that withdrawal from spinal application of remifentanil could dose-dependently induce long term potentiation (LTP) of C-fiber evoked field potentials. Remifentanil withdrawal could activate Src family kinases (SFKs) in microglia, and upregulate the expression of tumor necrosis factor alpha (TNFα) in spinal dorsal horn. Furthermore, pretreatment with either microglia inhibitor Minocycline, SFKs inhibitor PP2 or TNF αneutralization antibody could block remifentanil withdrawal induced spinal LTP, whereas supplement of recombinant rat TNFα to the spinal cord could reverse the inhibitory effect of Minocycline or PP2 on remifentanil withdrawal induced LTP. Our results suggested that TNFαrelease following SFKs activation in microglia is involved in the induction of LTP induced by remifentanil withdrawal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu EH, Tran DH, Lam SW, Irwin MG (2016) Remifentanil tolerance and hyperalgesia: short-term gain, long-term pain? Anaesthesia 71:1347–1362

    Article  PubMed  CAS  Google Scholar 

  2. Yuan Y, Wang JY, Yuan F, Xie KL, Yu YH, Wang GL (2013) Glycogen synthase kinase-3beta contributes to remifentanil-induced postoperative hyperalgesia via regulating N-methyl-D-aspartate receptor trafficking. Anesth Analg 116:473–481

    Article  PubMed  CAS  Google Scholar 

  3. Wang C, Li Y, Wang H, Xie K, Shu R, Zhang L, Hu N, Yu Y, Wang G (2015) Inhibition of DOR prevents remifentanil induced postoperative hyperalgesia through regulating the trafficking and function of spinal NMDA receptors in vivo and in vitro. Brain Res Bull 110:30–39

    Article  PubMed  CAS  Google Scholar 

  4. Wehrfritz A, Schaefer S, Troester A, Noel N, Bessiere B, Apiou-Sbirlea G, Simonnet G, Schuettler J, Richebe P (2016) A randomized phase I trial evaluating the effects of inhaled 50–50% N2 O-O2 on remifentanil-induced hyperalgesia and allodynia in human volunteers. Eur J Pain 20:1467–1477

    Article  PubMed  CAS  Google Scholar 

  5. Li S, Zeng J, Wan X, Yao Y, Zhao N, Yu Y, Yu C, Xia Z (2017) [EXPRESS] Enhancement of spinal dorsal horn neuron NMDA receptor phosphorylation as the mechanism of remifentanil induced hyperalgesia: Roles of PKC and CaMKII. Mol Pain 13:17448069–17723789

    PubMed  PubMed Central  Google Scholar 

  6. Heinl C, Drdla-Schutting R, Xanthos DN, Sandkuhler J (2011) Distinct mechanisms underlying pronociceptive effects of opioids. J Neurosci 31:16748–16756

    Article  PubMed  CAS  Google Scholar 

  7. Romero A, Gonzalez-Cuello A, Laorden ML, Campillo A, Vasconcelos N, Romero-Alejo E, Puig MM (2012) Effects of surgery and/or remifentanil administration on the expression of pERK1/2, c-Fos and dynorphin in the dorsal root ganglia in mice. Naunyn Schmiedebergs Arch Pharmacol 385:397–409

    Article  PubMed  CAS  Google Scholar 

  8. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ (2013) Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65:223–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sandkuhler J (2007) Understanding LTP in pain pathways. Mol Pain 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sandkuhler J, Benrath J, Brechtel C, Ruscheweyh R, Heinke B (2000) Synaptic mechanisms of hyperalgesia. Prog Brain Res 129:81–100

    Article  PubMed  CAS  Google Scholar 

  11. Willis WD (2002) Long-term potentiation in spinothalamic neurons. Brain Res Brain Res Rev 40:202–214

    Article  PubMed  Google Scholar 

  12. Drdla R, Gassner M, Gingl E, Sandkühler J (2009) Induction of synaptic long-term potentiation after opioid withdrawal. Science 325(5937):207–210

    Article  PubMed  CAS  Google Scholar 

  13. Zhong Y, Zhou LJ, Ren WJ, Xin WJ, Li YY, Zhang T, Liu XG (2010) The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: the role of tumor necrosis factor-alpha. Brain Behav Immun 24:874–880

    Article  PubMed  CAS  Google Scholar 

  14. Zhou LJ, Yang T, Wei X, Liu Y, Xin WJ, Chen Y, Pang RP, Zang Y, Li YY, Liu XG (2011) Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun 25:322–334

    Article  PubMed  CAS  Google Scholar 

  15. Gong QJ, Li YY, Xin WJ, Zang Y, Ren WJ, Wei XH, Zhang T, Liu XG (2009) ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: the roles of P2 × 4 receptors and p38 MAPK in microglia. Glia 57:583–591

    Article  PubMed  Google Scholar 

  16. Ye L, Xiao L, Yang SY, Duan JJ, Chen Y, Cui Y (2017) Cathepsin S in the spinal microglia contributes to remifentanil-induced hyperalgesia in rats. Neuroscience 344:265–275

    Article  PubMed  CAS  Google Scholar 

  17. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  PubMed  CAS  Google Scholar 

  18. Zhang L, Zhao H, Qiu Y, Loh HH, Law PY (2009) Src phosphorylation of micro-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal. J Biol Chem 284:1990–2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Walwyn W, Evans CJ, Hales TG (2007) Beta-arrestin2 and c-Src regulate the constitutive activity and recycling of mu opioid receptors in dorsal root ganglion neurons. J Neurosci 27:5092–5104

    Article  PubMed  CAS  Google Scholar 

  20. Liu XG, Sandkuhler J (1998) Activation of spinal N-methyl-D-aspartate or neurokinin receptors induces long-term potentiation of spinal C-fibre-evoked potentials. Neuroscience 86:1209–1216

    Article  PubMed  CAS  Google Scholar 

  21. Taniguchi S, Nakazawa T, Tanimura A, Kiyama Y, Tezuka T, Watabe AM, Katayama N, Yokoyama K, Inoue T, Izumi-Nakaseko H, Kakuta S, Sudo K, Iwakura Y, Umemori H, Murphy NP, Hashimoto K, Kano M, Manabe T, Yamamoto T (2009) Involvement of NMDAR2A tyrosine phosphorylation in depression-related behaviour. EMBO J 28:3717–3729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li S, Cai J, Feng ZB, Jin ZR, Liu BH, Zhao HY, Jing HB, Wei TJ, Yang GN, Liu LY, Cui YJ, Xing GG (2017) BDNF contributes to spinal long-term potentiation and mechanical hypersensitivity via Fyn-mediated phosphorylation of NMDA receptor GluN2B subunit at tyrosine 1472 in rats following spinal nerve ligation. Neurochem Res 42:2712–2729

    Google Scholar 

  23. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

  24. Wei XH, Yang T, Wu Q, Xin WJ, Wu JL, Wang YQ, Zang Y, Wang J, Li YY, Liu XG (2012) Peri-sciatic administration of recombinant rat IL-1beta induces mechanical allodynia by activation of src-family kinases in spinal microglia in rats. Exp Neurol 234:389–397

    Article  PubMed  CAS  Google Scholar 

  25. Koo CH, Yoon S, Kim BR, Cho YJ, Kim TK, Jeon Y, Seo JH (2017) Intraoperative naloxone reduces remifentanil-induced postoperative hyperalgesia but not pain: a randomized controlled trial. Br J Anaesth 119:1161–1168

    Article  Google Scholar 

  26. Lahtinen P, Kokki H, Hynynen M (2008) Remifentanil infusion does not induce opioid tolerance after cardiac surgery. Jof Cardiothorac Vasc Anesth 22:225–229

    Article  CAS  Google Scholar 

  27. Ishii H, Petrenko AB, Kohno T, Baba H (2013) No evidence for the development of acute analgesic tolerance during and hyperalgesia after prolonged remifentanil administration in mice. Mol Pain 9:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gruber-Schoffnegger D, Drdla-Schutting R, Honigsperger C, Wunderbaldinger G, Gassner M, Sandkuhler J (2013) Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-alpha and IL-1beta is mediated by glial cells. J Neurosci 33:6540–6551

    Article  PubMed  CAS  Google Scholar 

  29. Kim SH, Stoicea N, Soghomonyan S, Bergese SD (2015) Remifentanil-acute opioid tolerance and opioid-induced hyperalgesia: a systematic review. Am J Ther 22:e62–e74

    Article  PubMed  Google Scholar 

  30. Beck H, Schröck H, Sandkühler J (1995) Controlled superfusion of the rat spinal cord for studying non-synaptic transmission: an autoradiographic analysis. J Neurosci Methods 58:193–202

    Article  PubMed  CAS  Google Scholar 

  31. Stroumpos C, Manolaraki M, Paspatis GA (2010) Remifentanil, a different opioid: potential clinical applications and safety aspects. Expert Opin Drug Saf 9:355–364

    Article  PubMed  CAS  Google Scholar 

  32. Chu LF, D’Arcy N, Brady C, Zamora AK, Young CA, Kim JE, Clemenson AM, Angst MS, Clark JD (2012) Analgesic tolerance without demonstrable opioid-induced hyperalgesia: a double-blinded, randomized, placebo-controlled trial of sustained-release morphine for treatment of chronic nonradicular low-back pain. Pain 153:1583–1592

    Article  PubMed  CAS  Google Scholar 

  33. Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J (2016) Gliogenic LTP spreads widely in nociceptive pathways. Science 354:1144–1148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Ying YL, Wei XH, Xu XB, She SZ, Zhou LJ, Lv J, Li D, Zheng B, Liu XG (2014) Over-expression of P2 × 7 receptors in spinal glial cells contributes to the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR) in rats. Exp Neurol 261:836–843

    Article  PubMed  CAS  Google Scholar 

  35. Li YY, Wei XH, Lu ZH, Chen JS, Huang QD, Gong QJ (2013) Src/p38 MAPK pathway in spinal microglia is involved in mechanical allodynia induced by peri-sciatic administration of recombinant rat TNF-alpha. Brain Res Bull 96:54–61

    Article  PubMed  CAS  Google Scholar 

  36. Liu XJ, Gingrich JR, Vargas-Caballero M, Dong YN, Sengar A, Beggs S, Wang SH, Ding HK, Frankland PW, Salter MW (2008) Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat Med 14:1325–1332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yang HB, Yang X, Cao J, Li S, Liu YN, Suo ZW, Cui HB, Guo Z, Hu XD (2011) cAMP-dependent protein kinase activated Fyn in spinal dorsal horn to regulate NMDA receptor function during inflammatory pain. J Neurochem 116:93–104

    Article  PubMed  CAS  Google Scholar 

  38. Huang Y, Li Y, Zhong X, Hu Y, Liu P, Zhao Y, Deng Z, Liu X, Liu S, Zhong Y (2017) Src-family kinases activation in spinal microglia contributes to central sensitization and chronic pain after lumbar disc herniation. Mol Pain 13:1744806917733637

    PubMed  PubMed Central  Google Scholar 

  39. Zhang L, Berta T, Xu ZZ, Liu T, Park JY, Ji RR (2011) TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 152:419–427

    Article  PubMed  CAS  Google Scholar 

  40. Zhang L, Tetrault J, Wang W, Loh HH, Law PY (2006) Short- and long-term regulation of adenylyl cyclase activity by delta-opioid receptor are mediated by Galphai2 in neuroblastoma N2A cells. Mol Pharmacol 69:1810–1819

    Article  PubMed  CAS  Google Scholar 

  41. Zhang L, Loh HH, Law PY (2013) A novel noncanonical signaling pathway for the mu-opioid receptor. Mol Pharmacol 84:844–853

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nestler EJ (1997) Molecular mechanisms of opiate and cocaine addiction. Curr Opin Neurobiol 7:713–719

    Article  PubMed  CAS  Google Scholar 

  43. Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302

    Article  PubMed  CAS  Google Scholar 

  44. Palazzo A, Ackerman B, Gundersen GG (2003) Cell biology: tubulin acetylation and cell motility. Nature 421:230

    Article  PubMed  CAS  Google Scholar 

  45. Tsai RY, Cheng YC, Wong CS (2015) (+)-Naloxone inhibits morphine-induced chemotaxis via prevention of heat shock protein 90 cleavage in microglia. J Formos Med Assoc 114:446–455

    Article  PubMed  CAS  Google Scholar 

  46. Chen SX, Liao GJ, Yao PW, Wang SK, Li YY, Zeng WA, Liu XG, Zang Y (2018) Calpain-2 regulates TNF-alpha expression associated with neuropathic pain following motor nerve injury. Neuroscience 376:142–151

    Article  PubMed  CAS  Google Scholar 

  47. Chen SX, Wang SK, Yao PW, Liao GJ, Na XD, Li YY, Zeng WA, Liu XG, Zang Y (2018) Early CALP2 expression and microglial activation are potential inducers of spinal IL-6 up-regulation and bilateral pain following motor nerve injury. J Neurochem 145:154–169

    Article  PubMed  CAS  Google Scholar 

  48. Li YZ, Tang XH, Wang CY, Hu N, Xie KL, Wang HY, Yu YH, Wang GL (2014) Glycogen synthase kinase-3beta inhibition prevents remifentanil-induced postoperative hyperalgesia via regulating the expression and function of AMPA receptors. Anesth Analg 119:978–987

    Article  PubMed  CAS  Google Scholar 

  49. Sun Y, Zhang W, Liu Y, Liu X, Ma Z, Gu X (2014) Intrathecal injection of JWH015 attenuates remifentanil-induced postoperative hyperalgesia by inhibiting activation of spinal glia in a rat model. Anesth Analg 118:841–853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation (Beijing, People’s Republic of China. Nos. 81200856 and 81471250); Nature Science Foundation of Guangdong Province of China (Guangzhou, People’s Republic of China. Nos. 2014A030313029), and by Scientific Research Foundation of Guangdong Province of China (Guangzhou, People’s Republic of China. No. 2016A020215035). All grants were awarded to Dr. Wei.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xijiu Ye or Xuhong Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Du, S., Liu, X. et al. Withdrawal from spinal application of remifentanil induces long-term potentiation of c-fiber-evoked field potentials by activation of Src family kinases in spinal microglia. Neurochem Res 43, 1660–1670 (2018). https://doi.org/10.1007/s11064-018-2582-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2582-z

Keywords

Navigation