Skip to main content

Abiotic Stresses Mediated Changes in Morphophysiology of Cotton Plant

  • Chapter
  • First Online:
Cotton Production and Uses

Abstract

Cotton plant is a warm-weather-loving perennial shrub and now has been domesticated to an annual crop cycle for commercial purposes. It belongs to genus Gossypium (G. hirsutum L., G. barbadense L., G. herbaceum L., G. arboreum L.), widely grown in arid, semiarid, and tropical climates. Globally, of these, G. hirsutum L. (the upland cottons) occupies about 95% of total 33–35 million hectares (2.5% of arable land) of land under cotton cultivation. Cotton crop is not only a natural fiber resource but also a food and feed for billions of humans and livestock. The projected increase in population is 9.0 billion by 2030, which would require an additional quantum of fiber and cotton seed production by more than 70% over the current level of productivity. Cotton plant having an indeterminate growth habit is highly vulnerable to occurrence of persistent and/or intermittent changes in the environments. The footprints of abiotic stresses are more visible on growth and development than those of biotic stresses. In the days to come, under the aegis of climate change, the sustainability of cotton productivity from productive and marginal lands rests by maintaining balance between vegetative and reproductive development from seedlings through maturity. The prevalence of imbalance state (either short or long duration) could lead to loss in farm income. The potential yield could be harvested by transitioning cotton plant from “green cotton” to “white cotton.” This is an effort to manipulate the plant for transporting its greater photo-assimilates from source to sink organs. Farm manager is ought to be proactive and skillful in adopting certain management tools, monitoring crop development, selection of tolerant/resistant cultivars, nutrient management, and phytosanitary measures to reinforce cotton plant for abreasting the external vagaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Ascorbate peroxidase

CAT:

Catalase

CO2 :

Carbon dioxide

DD:

Degree-days

DPA:

Days post-anthesis

EDU:

Ethylene diurea

ET:

Evapotranspiration

GHG:

Greenhouse gas

GR:

Glutathione reductase

HSP:

Heat shock proteins

LEA:

Late embryogenesis abundant

O3 :

Ozone

Pn:

Net photosynthesis

PPFD:

Photosynthetic photon flux density

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84

    Google Scholar 

  • Abdullah Z, Ahmad R (1986) Salinity induced changes in the reproductive physiology of cotton plants. In: Ahmad R, San Pietro A (eds) Prospects for biosaline research. Pakistan, Department of Botany, University of Karachi, pp 125–137

    Google Scholar 

  • Abul-Naas AA, Omran MS (1974) Salt tolerance of seventeen cotton cultivars during germination and early seedling development. Z Ack Pflanzenbau 140:229–236

    Google Scholar 

  • Ahmad FM (1994) Effect of saline water irrigation at different stages of growth on cotton plant. Assiut J Agric Sci 25:63–74

    Google Scholar 

  • Ahmad R, Abdullah Z (1980) Biomass production of food and fiber crops using highly saline water under desert conditions. In: San Peitro A (ed) Biosaline research. Plenum Press, New York, pp 149–163

    Google Scholar 

  • Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613

    Google Scholar 

  • Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415

    Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16

    Google Scholar 

  • Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610

    Google Scholar 

  • Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3&4):1664–1669

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192

    CAS  Google Scholar 

  • Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160

    Google Scholar 

  • Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cer Agron Moldova XLVII(4):71–81

    Google Scholar 

  • Alimov KH, Ibragimov S (1976) Trace elements in different cotton cultivars. Field Crop Abstr 29(9):7404

    Google Scholar 

  • Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R (2003) Glycine betaine protects the D1/D2/Cytb559 complex of PS II against the photo-induced and heat-induced inactivation. J Plant Physiol 160:41–49

    Article  CAS  PubMed  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib urRehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823

    CAS  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222

    Google Scholar 

  • Baker DN, Boker JT (2010) Cotton source/sink relationships. In: Stewart JM, Oosterhuis D, Heitholt JJ, Manuney J (eds) Physiology of cotton. The National Cotton Council, Springer Science + Business Media, New York, pp 80–96

    Chapter  Google Scholar 

  • Baker DN, Lambert JR, McKinion JM (1983) GOSSYM: a simulator of cotton crop growth and yield. South Carolina Agric Exp Stn Bull 1089:134p

    Google Scholar 

  • Banks SW, Gossett DR, Manchandia A, Bellaire B, Lucas MC, Millhollon EP, Dugger P, Richter D (2000) The influence of alpha-amanitin on the induction of antioxidant enzymes during salt stress. In: 1998 Proc. Beltwide Cotton Conf., San Diego, California, USA, 5–9 January 1998, pp 1393–1395

    Google Scholar 

  • Bassett DM, Anderson WD, Werkhoven CHE (1970) Dry matter production and nutrient uptake in irrigated cotton (Gossypium hirsutum). Agron J 62:299–303

    Article  Google Scholar 

  • Bielorai H, Hopmans PAM (1975) Recovery of leaf water potential, transpiration, and photosynthesis of cotton during irrigation cycles. Agron J 67:629–632

    Article  Google Scholar 

  • Bolger TP, Upchurch DP, McMichael BL (1992) Temperature effects on cotton root hydraulic conductance. Environ Exp Bot 32:49–54

    Article  Google Scholar 

  • Boquet DJ, Breitenback GA (2000) Nitrogen rate effects on partitioning of nitrogen and dry matters by cotton. Crop Sci 40:1685–1693

    Article  Google Scholar 

  • Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681

    Article  CAS  Google Scholar 

  • Boyles MB, Verhalin LM, Johnson WM, Barnes BR (2005) Trends over time among cotton cultivation released by the Oklahoma Agricultural Experimental Station. Crop Sci 45:966–980

    Article  Google Scholar 

  • Bradow JM, Davidonis GH (2010) Effect of environment on fiber quality. In: Stewart JM, Oosterhuis D, Heitholt JJ, Manuney J (eds) Physiology of cotton. The National Cotton Council, Springer Science + Business Media, New York, pp 229–245

    Chapter  Google Scholar 

  • Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress - influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    Article  CAS  PubMed  Google Scholar 

  • Burke JJ, Wanjura DF (2009) Plant responses to temperature extremes. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, New York, pp 123–128

    Google Scholar 

  • Burke JJ, Wanjura DF (2010) Plant responses to temperature extremes. In: Stewart JM, Oosterhuis D, Heitholt JJ, Manuney J (eds) Physiology of cotton. The Cotton Foundation, Springer Science + Business Media, New York, pp 123–128

    Chapter  Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci U S A 197:12052–12057

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(2009):551–560

    Article  CAS  PubMed  Google Scholar 

  • Christiansen MN, Rowland RA (1986) Germination and stand establishment. In: Mauney JR, Stewart JMD (eds) Cotton physiology. The Cotton Foundation, Memphis, TN, pp 535–541

    Google Scholar 

  • Constable GA, Rawson HM (1980) Photosynthesis, respiration and transpiration of cotton fruit. Photosynthetica 14:557–563

    CAS  Google Scholar 

  • Constable GA, Rochester IJ, Cook JB (1988) Zinc, copper, iron, manganese, and boron uptake by cotton on cracking clay soils of high pH. Aust J Exp Agric 28:351–356

    Article  CAS  Google Scholar 

  • Constable GA, Rochester IJ, Betts JH, Herridge DF (1991) Prediction of nitrogen fertilizer requirement in cotton using petiole and sap nitrate. Commun Soil Sci Plant Anal 22:1315–1324

    Article  CAS  Google Scholar 

  • Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress. Plant Physiol 79:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and potassium responses of cotton (Gossypium hirsutum L.) to drought stress. Plant Physiol Biochem 53:6–18

    Article  CAS  PubMed  Google Scholar 

  • Dong HZ, Kong XQ, Luo Z, Li WJ, Xin CS (2010) Unequal salt distribution in the root zone increases growth and yield of cotton. Eur J Agron 33:285–292

    Article  CAS  Google Scholar 

  • Dugas WA, Heuer ML, Hunsaker D, Kimball BA, Lewin KF, Nagy J, Johnson M (1994) Sap flow measurements of transpiration from cotton grown under ambient and enriched CO2 concentrations. Agric For Meterol 70:231–246

    Article  Google Scholar 

  • Dumka D, Bednarz CW, Maw BW (2004) Delayed initiation of fruiting as a mechanism of improved drought avoidance in cotton. Crop Sci 44:528–544

    Article  Google Scholar 

  • El-Zik KM, Yamada H, Walhood VT (1980) The effects of management on blooming boll-retention, and productivity of Upland cotton (Gossypium hirsutum L.). In: Proc. Beltwide Cotton Prod. Res. Conf. National Cotton Council, Memphis, TN

    Google Scholar 

  • Faria T, Vaz M, Schwanz P, Polle A, Pereira JS, Chaves MM (1997) Responses of photosynthetic and defense systems to high temperature stress in Quercussuber seedlings grown under elevated CO2. Plant Biol 1:365–371

    Article  Google Scholar 

  • Fernandez CJ, Cothren JT, McInnes KJ (1993) Whole-plant photosynthetic rates of cotton under nitrogen stress. In: 1993 Proc. Beltwide Cotton Confs. National Cotton Council of America, Memphis, TN, pp 1256–1258

    Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Fry KE (1983) Heat unit calculation in cotton crop and inset models. USDA, ARS, Adv Agric Tech AAT-W-23, p 23

    Google Scholar 

  • Fye RE, Reddy VR, Baker DN (1984) The validation of GOSSYM: Part I. Arizona conditions. Agric Syst 14:85–105

    Article  Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285

    Article  CAS  Google Scholar 

  • Ghani Akbar G, Hussain Z, Yasin M (2007) Problems and potentials of permanent raised bed cropping systems in Pakistan. Pak J Water Res 11(1):11

    Google Scholar 

  • Giband M, Dessauuw D, Barroso PAV (2010) Cotton taxonomy, origin and domestication. In: Wakelyn PJ, Chaudhry MR (eds) Cotton: technology for 21st century. The International Cotton Advisory Committee, Washington, DC, pp 15–17

    Google Scholar 

  • Gorham J (1996) Mechanisms of salt tolerance of halophytes. In: Choukr-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, pp 31–53

    Google Scholar 

  • Gorham J, Jokinen J, Malik NA, Khan IA (2000) Glycine betaine treatment improves cotton yields in field trials in Pakistan. In: Proc. World Cotton Res. Conf. II. Athens, Greece, pp 624–627

    Google Scholar 

  • Gorham J, Lauchli A, Leidi EO (2009) Plant responses to salinity. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. National Cotton Council of America, Memphis, TN. Springer, London, pp 130–142

    Google Scholar 

  • Gorham J, Läuchli A, Leidi EO (2010) Plant responses to salinity. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, New York, pp 129–141

    Chapter  Google Scholar 

  • Gossett DR, Bellaire B, Banks SW, Lucas MC, Manchandia A, Millhollon EP, Dugger P, Richter D (2000) The influence of abscisic acid on the induction of antioxidant enzymes during salt stress. In: Proc. Beltwide Cotton Conf., San Diego, California, USA, 5–9 January 1998, pp 1396–1399

    Google Scholar 

  • Grantz DA, Farrar JR (2000) Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton. Aust J Plant Physiol 27:859–868

    CAS  Google Scholar 

  • Grantz DA, McCool PH (1992) Effect of ozone on Pima and Acala cottons in the San Joaquin Valley. In: Proc. 1992 Beltwide Cotton Conferences, vol 3. National Cotton Council of America, Memphis, TN, pp 1082–1084

    Google Scholar 

  • Grantz DA, Yang S (1996) Effect of O3 on hydraulic architecture in Pima cotton. Plant Physiol 112:1649–1657

    Article  CAS  PubMed Central  Google Scholar 

  • Grantz DA, Zhang XJ, Massmann WJ, Delany A, Pederson JR (1997) Ozone deposition to a cotton (Gossypium hirsutum L.) field: stomatal and surface wetness effects during the California Ozone Deposition Experiment. Agric For Meteorol 85:19–31

    Article  Google Scholar 

  • Halevy J, Marani A, Markovitz T (1987) Growth and N P K uptake of high-yielding cotton grown at different nitrogen levels in a permanent-plot experiment. Plant Soil 103:39–44

    Article  CAS  Google Scholar 

  • Heagle AS, Heck WW, Lesser VM, Rawlings JO, Mowry FL (1986) Injury and yield response of cotton to chronic doses of ozone and sulfur dioxide. J Environ Qual 15:375–382

    Article  CAS  Google Scholar 

  • Heck WW, Taylor OC, Tingey DT (eds) (1988) Assessment of crop loss from air pollutants. Elsevier Appl. Sci, London

    Google Scholar 

  • Hendrix DL (1992) Influence of elevated CO2 on leaf starch of field-grown cotton. Crit Rev Plant Sci 11:223–226

    CAS  Google Scholar 

  • Hesketh JD, Low A (1968) The effect of temperature on components of yield and fiber quality of cotton varieties of diverse origin. Cotton Grow Rev 45:243–257

    Google Scholar 

  • Hesketh JD, Baker DN, Duncan WG (1972) Simulation of growth and yield in cotton: II. Environmental control of morphogenesis. Crop Sci 12:436–439

    Article  Google Scholar 

  • Higbie SM, Wang F, Stewart JM, Sterling TM, Lindemann WC, Hughs E, Zhang J (2010) Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. Int J Agron 1:1–12

    Article  CAS  Google Scholar 

  • Hodges SC (1992) Nutrient deficiency disorders. In: Hillocks R (ed) Cotton diseases. CAB International, Wallingford, UK, pp 355–403

    Google Scholar 

  • Hodges SC, Constable G (2010) Plant responses to mineral deficiencies and toxicities. In: Stewart JM, Oosterhuis D, Heitholt JJ, Mauney J (eds) Physiology of cotton. The National Cotton Council, Springer Science + Business Media, New York, pp 142–173

    Chapter  Google Scholar 

  • Hsiao TC, Oliveira EC, Radulovich R (1982) Physiology and productivity of cotton under water stress. In: Proc. 1982 Cotton Prod. Res. Confs. Las Vegas, NV. National Cotton Council of America, Memphis, TN, p 60

    Google Scholar 

  • Ibrahim AA (1984) Effect of GA3 and boron on growth, yield and accumulation of Na, K, and Cl in cotton grown under saline conditions. Ann Agric Sci Moshtohor 21:519–531

    Google Scholar 

  • Inoue Y, Kimball BA, Mauney JR, Jackson RD, Pinter PJ Jr, Reginato RJ (1990) Stomatal behavior and relationship between photosynthesis and transpiration in field-grown cotton as affected by CO2 enrichment. Jap J Crop Sci 59:510–517

    Article  CAS  Google Scholar 

  • Iqbal RMS, Chaudhry MB, Aslam M, Bandesha AA (1991) Economic and agricultural impact of mutation breeding in cotton in Pakistan. A review. In: Kitto PH (ed) Plant mutation for crop improvement. IAEA, Vienna, pp 187–201

    Google Scholar 

  • Jafri AZ, Ahmad R (1995) Effect of soil salinity on leaf development, stomatal size, and its distribution in cotton (Gossypium hirsutum L.). Pak J Bot 27:297–303

    Google Scholar 

  • Jenkins JN, McCarty LC, Parrot WL Jr (1990) Effectiveness of fruiting sites in cotton: yield. Crop Sci 30:365–369

    Article  Google Scholar 

  • Kerby TA, Adams F (1985) Potassium nutrition of cotton. In: Munson RD (ed) Potassium in agriculture. ASA, CSSA, and SSSA, Madison, WI, pp 843–860

    Google Scholar 

  • Khan MB, Khaliq A, Ahmad S (2004) Performance of mashbean intercropped in cotton planted in different planting patterns. J Res (Sci) 15(2):191–197

    Google Scholar 

  • Khorsandi F, Anagholi A (2009) Reproductive compensation of cotton after salt stress relief at different growth stages. J Agron Crop Sci 195:278–283

    Article  Google Scholar 

  • Kimball BA, Mauney JR (1993) Response of cotton to varying CO2, irrigation, and nitrogen: yield and growth. Agron J 85:706–712

    Article  CAS  Google Scholar 

  • Kirkham MB, Gardner WR, Gerloff GC (1972) Regulation of cell division and cell enlargement by turgor pressure. Plant Physiol 49:961–962

    Article  Google Scholar 

  • Landivar JA, Benedict JH (1996) Monitoring system for the management of cotton growth and fruiting. Bulletin B-2. Texas A&M University Agricultural Research and Extension Center, Corpus Christi, TX

    Google Scholar 

  • Läuchli A, Stelter W (1982) Salt tolerance of cotton genotypes in relation to K/Na-selectivity. In: San Pietro A (ed) Biosaline research. Plenum Press, New York, pp 511–514

    Chapter  Google Scholar 

  • Leidi EO, Nogales R, Lips SH (1991) Effect of salinity on cotton plants grown under nitrate or ammonium nutrition at different calcium levels. Field Crops Res 26:35–44

    Article  Google Scholar 

  • Li WJ, Dong HZ, Guo QZ, Pang JQ, Zhang J (1998) Physiological response of a good upland hybrid and its parent to PEG and NaCl stresses. China Cottons 25:7–10

    Google Scholar 

  • Lin J, Zhu Z, Fan B, Lin JD, Zhu ZY, Fan BX (1995) Physiological reaction of cotton varieties under different levels of salt stress. China Cottons 22:16–17

    Google Scholar 

  • Loka DA, Oosterhuis DM (2011) Effect of 1-MCP on the cotton flower under water-deficit stress. In: Oosterhuis DM (ed) Summaries of Arkansas Cotton Research, Ark Agric Exp Station. University of Arkansas System, Fayetteville

    Google Scholar 

  • Loka DA, Oosterhuis DM, Ritchie GL (2011) Water deficit stress in cotton. In: Oosterhuis DM (ed) Stress physiology in cotton. Cotton Foundation, Memphis, TN, pp 33–72

    Google Scholar 

  • Maas EV (1990) Crop salt tolerance. In: Tanji KJ (ed) Agricultural salinity assessment and management. American Society of Civil Engineers, New York, pp 262–304

    Google Scholar 

  • Makhdum MI, Shababuddin, Ahmad F, Chaudhry FI (2002) Using a chlorophyll meter to improve nitrogen management in cotton (Gossypium hirsutum L.). Pak J Soil Sci 21:60–67

    Google Scholar 

  • Malik MN, Makhdum MI (1987) Salinity tolerance of cotton cultivars (G. hirsutum L.) at germination. Pak Cottons 31:171–174

    Google Scholar 

  • Manning WJ, Krupa SV (1992) Experimental methodology for studying the effects of ozone on crops and trees. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis Publ. Inc., Chelsea, MI, pp 93–156

    Google Scholar 

  • Marani A, Baker DN, Reddy VR, McKinion JM (1985) Effect of water stress on canopy senescence and carbon exchange rates in cotton. Crop Sci 25:798–802

    Article  Google Scholar 

  • Mauney JR (2010) Responses of cotton to CO2 enrichment. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, New York, pp 174–178

    Chapter  Google Scholar 

  • Mauney JR, Kimball BA, Pinter PJ Jr, LaMorte RL, Lewin KF, Nagy J, Hendrey GR (1994) Growth and yield in cotton in response to a free-air carbon dioxide enrichment (FACE) environment. Agric For Meterol 70:49–67

    Article  Google Scholar 

  • McMichael BL, Burke JJ (1994) Metabolic activity of cotton roots in response to temperature. Environ Exp Bot 34:201–206

    Article  Google Scholar 

  • Meiri A, Frenkel H, Mantell A (1992) Cotton response to water and salinity under sprinkler and drip irrigation. Agron J 84(1):44

    Article  Google Scholar 

  • Miller JE, Patterson RP, Heagle AS, Pursley WA, Heck WW (1988) Growth of cotton under chronic ozone stress at two levels of soil moisture. J Environ Qual 17:635–643

    Article  CAS  Google Scholar 

  • Moreno F, Fernandez-Boy E, Cabrera F, Fernandez JE, Palomo MJ, Giron IF, Bellido B (1998) Irrigation with saline water in the reclaimed marsh soils of Southwest Spain: impact on soil properties and cotton crop. In: Ragab R (ed) The use of saline and brackish water for irrigation. Implications for the management of irrigation, drainage and crops. Proc. international workshop tenth ICID Afro-Asian Regional Conf. on Irrigation and Drainage, Denpasas, Bali, Indonesia, 19–26 July, 1998. Pearce-G, Indonesian National Committee on Irrigation and Drainage (INACID), Directorate General of Water Resources Development, Ministry of Public Works, Jakarta, Indonesia, pp 51–58

    Google Scholar 

  • Moreno F, Fernandez BE, Cabrera F, Fernandez JE, Palomo MJ, Giron IF, Bellido B (2000) Irrigation with saline water in the reclaimed marsh soils of southwest Spain: impact on soil properties and cotton crop. The use of saline and brackish water for irrigation drainage and crops. In: Proc. international workshop at the tenth ICID Afro-Asian Regional Conference on Irrigation and Drainage, Denpasas, Bali, Indonesia, 19–26 July, 1998, pp 51–58; 4 ref., Denpasas, Bali, Indonesia

    Google Scholar 

  • Muhammed S, Makhdum MI (1973) Effect of soil salinity on the composition of oil and amino acids and on the oil content of sunflower seed. Pak J Agric Sci 10:71–76

    Google Scholar 

  • Mullins GL, Burmester CH (1991) Dry matter, nitrogen, phosphorus, and potassium accumulation by four cotton varieties. Agron J 82:729–736

    Article  Google Scholar 

  • Mullins GL, Burmester CH (1992) Uptake of calcium and magnesium by cotton grown under dryland conditions. Agron J 84:564–569

    Article  CAS  Google Scholar 

  • Mullins GL, Burmester CH (1993) Accumulation of copper, iron, manganese and zinc by four cotton cultivars. Field Crops Res 32:129–140

    Article  Google Scholar 

  • Mullins GL, Burmester CH (2010) Relation of growth and development to mineral nutrition. In: Stewart JM, Oosterhuis D, Heitholt JJ, Mauney J (eds) Physiology of cotton. The National Cotton Council, Springer Science + Business Media, New York, pp 97–105

    Chapter  Google Scholar 

  • Nawaz A, Ahmad N, Qureshi RH (1986) Salt tolerance of cotton. In: Ahmad R, Pietro AS (eds) Prospects for biosaline research. Karachi University, Pakistan, pp 285–291

    Google Scholar 

  • Oliveira FA, de TGS C, da Oliveira BC (1998) Effect of saline substrate on germination, vigor, and growth of herbaceous cotton. Engenharia Agricola 18:1–10

    Google Scholar 

  • Oosterhuis DM (1990) Growth and development of a cotton plant. In: Miley WN, Oosterhuis DM (eds) Nitrogen nutrition of cotton: practical issues. ASA, CSSA, and SSSA, Madison, WI, pp 1–24

    Google Scholar 

  • Oosterhuis DM, Snider JL (2010) High temperature stress on floral development and yield of cotton. In: Oosterhuis DM (ed) Stress physiology in cotton, vol 7. The Cotton Foundation, Cordova, TN, pp 1–24

    Google Scholar 

  • Oosterhuis DM, Wullschleger SD (1987) Osmotic adjustment in cotton (Gossypium hirsutum L.) leaves and roots in response to water stress. Plant Physiol 84:1154–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oosterhuis DM, Zhao D (1993) Physiological effects of PGR-IV on the growth and yield of cotton. In: Proc. Beltwide Cotton Prod. Res. Confs. National Cotton Council of America, Memphis, TN, p 1270

    Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep 1(1):37–48

    Article  Google Scholar 

  • Pervez H, Ashraf M, Makhdum MI (2005a) Response of cotton to potassium fertilizer on effectiveness of fruiting sites in Aridisoles. J Plant Nutr 28:1023–1039

    Article  CAS  Google Scholar 

  • Pervez H, Makhdum MI, Ashraf M (2005b) The interactive effects of potassium nutrition on the uptake of other nutrients in cotton (Gossypium hirsutum L.) under an arid environment. J Chem Soc Pak 27:1–17

    Google Scholar 

  • Radin JW, Kimball BA, Hendrix DL, Mauney JR (1987) Photosynthesis of cotton plants exposed to elevated levels of carbon dioxide in the field. Photosynth Res 12:191–203

    Article  CAS  PubMed  Google Scholar 

  • Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253–254:94–113

    Article  Google Scholar 

  • Rasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+ - pyrophosphatase gene (AVP 1) in cotton improves drought and salt tolerance and increases fiber yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  Google Scholar 

  • Rathert G (1983) Effects of high salinity stress on mineral and carbohydrate metabolism of two cotton varieties. Plant Soil 73:247–256

    Article  CAS  Google Scholar 

  • Reddy VR, Acock B, Baker DN, Acock M (1989) Seasonal leaf area-leaf weight relationships in the cotton canopy. Agron J 81:1–4

    Article  Google Scholar 

  • Reddy VR, Baker DN, Hodges HF (1990) Temperature and mepiquat chloride effects on cotton canopy architecture. Agron J 82:190–195

    Article  CAS  Google Scholar 

  • Reddy VR, Reddy KR, Baker DN (1991) Temperature effect on growth and development of cotton during the fruiting period. Agron J 83:211–217

    Article  Google Scholar 

  • Reddy KR, Hodges HF, Reddy VR (1992) Temperature effects on cotton fruit retention. Agron J 84:26–30

    Article  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1993) A temperature model for cotton phenology. Biotronics 22:47–59

    Google Scholar 

  • Reddy VR, Reddy KR, Acock B (1995) Carbon dioxide and temperature interactions on stem extension, node initiation, and fruiting in cotton. Agric Ecosyst Environ 55:17–28

    Article  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1996) Weather and cotton growth: present and future. Bulletin 1061. Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi, p 23

    Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1997) A comparison of scenarios for the effect of global climate change on cotton growth and yield. Aust J Plant Physiol 24:707–713

    Google Scholar 

  • Reid R (2007) Update on boron toxicity and tolerance in plants. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi J (eds) Advances in plant and animal boron nutrition. Springer, Dordrecht, The Netherlands, pp 83–90

    Chapter  Google Scholar 

  • Ritchie GL, Whitaker JR, Bednarz CW, Hook JE (2009) Subsurface drip and over-head irrigation of cotton: a comparison of plant boll distribution in upland cotton. Agron J 101:1336–1344

    Article  Google Scholar 

  • Rochester IJ (2007) Nutrient uptake and export from an Australian cotton field. Nutr Cycl Agroecosyst 77:213–223

    Article  CAS  Google Scholar 

  • Rochester IJ (2012) Using seed nitrogen concentration to estimate crop N use efficiency in high-yielding irrigated cotton. Field Crop Res 127:140–145

    Article  Google Scholar 

  • Rosolem CA, Bogiani JC (2011) Physiology of boron stress in cotton. In: Oosterhuis DM (ed) Stress physiology in cotton, vol 7. The Cotton Foundation, Cordova, TN, pp 113–124

    Google Scholar 

  • Rosolem CA, Costa A (1999) Boron nutrition and growth of cotton as a function of temporary boron deficiency. Anain II Congresso Brasileiro de Algodao: O algodao no seculo XX, perspectivas para a seculo XXI, Ribeirao Preto, SP, Brasil, 5–10 Setembro 1999, pp 403–406

    Google Scholar 

  • Rosolem CA, Mikkelsen DS (1991) Potassium absorption and partitioning in cotton as affected by periods of potassium deficiency. J Plant Nutr 14:1001–1016

    Article  Google Scholar 

  • Runeckles VC, Chevone BI (1992) Crop responses to ozone. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis Publ. Inc., Chelsea, MI, pp 189–270

    Google Scholar 

  • Saini HS (1997) Injuries to reproductive development under water stress, and their consequences for crop productivity. J Crop Prod 1:137–144

    Article  Google Scholar 

  • Schwab GJ, Mullins GL, Burmester CH (2000) Growth and nutrient uptake by cotton roots under field conditions. Commun Soil Sci Plant Anal 31(1&2):149–164

    Article  CAS  Google Scholar 

  • Shalhevet J, Hsiao TC (1986) Salinity and drought. A comparison of their effects on osmotic adjustment, assimilation, transpiration and growth. Irrig Sci 7:249–264

    Article  CAS  Google Scholar 

  • Silberbush M, Ben-Asher J (1987) The effect of salinity on parameters of potassium and nitrate uptake of cotton. Commun Soil Sci Plant Anal 18:65–81

    Article  CAS  Google Scholar 

  • Sinclair TR, Ludlow MM (1985) Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Aust J Plant Physiol 12:213–217

    Google Scholar 

  • Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM (2009) Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol Plant 137:125–138

    Article  CAS  PubMed  Google Scholar 

  • Stark C, Schmidt R (1991) Behaviour of 22Na in salt-stressed crops as affected by the growth regulator MCBuTTB. Beitragezur Tropischen Landwirtschaft und Veterinarmedizin 29:435–443

    CAS  Google Scholar 

  • Stewart JMD (1986) Integrated events in the flower and fruit. In: Mauney J Jr, Stewart JMD (eds) Cotton physiology. Cotton Foundation, Memphis, TN, pp 261–297

    Google Scholar 

  • Subbarao KV, Chassot A, Gordon TR, Hubbard JC, Bonello P, Mullin R, Okamoto D, Davis RM, Koike ST (1995) Genetic relationships and cross pathogenicities of Verticillium dahliae isolates from cauliflower and other crops. Phytopathology 85:1105–1112

    Article  Google Scholar 

  • Taha MA, Malik MNA, Chaudhry FI, Makhdum I (1981) Heat induced sterility in cotton sown during early April in West Punjab. Exp Agric 17:189–194

    Article  Google Scholar 

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262

    Google Scholar 

  • Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crops Res 229:37–43

    Article  Google Scholar 

  • Temple PJ (1990) Growth form and yield responses of four cotton cultivars to ozone. Agron J 82:1045–1050

    Article  CAS  Google Scholar 

  • Temple PJ, Grants DA (2010) Air pollution stress. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, New York, pp 162–178

    Chapter  Google Scholar 

  • Terry N, Waldron LJ, Ulrich A (1971) Effects of moisture stress on the multiplication and expansion of cells in leaves of sugar beet. Planta (Berl) 97:281–289

    Article  CAS  Google Scholar 

  • Tiwari RJ (1994) Response of gypsum on morpho-physiochemical properties of cotton cultivars under salt affected vertisols of Madhya Pradesh. Crop Res Hisar 7:197–200

    Google Scholar 

  • Tiwari RJ, Dwivedi K, Verma SK (1993) Effect of gypsum on leaf-water potential of cottons (Gossypium hirsutum, G. herbaceum, and G. arboreum) varieties grown in salt-affected vertisol of Madhya Pradesh. Indian J Agric Sci 63:734–736

    CAS  Google Scholar 

  • Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3&4):386–391

    Google Scholar 

  • Warner DA, Burke JJ (1993) Cool night temperatures alter leaf starch and photosystem II: chlorophyll fluorescence in cotton. Agron J 85:836–840

    Article  CAS  Google Scholar 

  • Waseem M, Athar HU, Ashraf M (2006) Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pak J Bot 38:1127–1136

    Google Scholar 

  • William S, Bange M (2018) The cotton plant. In: Australian cotton production manual. Cotton Research and Development Corporation, Australia, p 2018

    Google Scholar 

  • Wullschleger SD, Oosterhuis DM (1990) Photosynthesis of individual field-grown cotton leaves during ontogeny. Photosynth Res 23:163–170

    Article  CAS  PubMed  Google Scholar 

  • Zhang HJ, Dong HZ, Li WJ, Zhang DM (2012) Effects of soil salinity and plant density on yield leaf senescence of field grown cotton. J Agron Crop Sci 198:27–37

    Article  CAS  Google Scholar 

  • Zhao D, Oosterhuis DM (1997) Physiological response of growth chamber-grown cotton plants to the plant growth regulator PGR-IV under water-deficit stress. Environ Exp Bot 38:7–14

    Article  CAS  Google Scholar 

  • Zhao D, Oosterhuis DM (2002) Cotton carbon exchange, nonstructural carbohydrates, and boron distribution in tissues during development of boron deficiency. Field Crops Res 78:75–87

    Article  Google Scholar 

  • Zhao D, Oosterhuis DM (2003) Cotton: growth and physiological responses of cotton to boron deficiency. J Plant Nutr 26:855–867

    Article  CAS  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Koti S, Gao W (2005) Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiol Plant 124:189–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sibgha Noreen or Shakeel Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noreen, S. et al. (2020). Abiotic Stresses Mediated Changes in Morphophysiology of Cotton Plant. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_18

Download citation

Publish with us

Policies and ethics