Skip to main content

Air Pollution Stress

  • Chapter
Physiology of Cotton

Abstract

The atmosphere surrounding a plant is a complex mixture of gases and particles, some common and some present in only trace amounts. In addition to naturally-occurring gases such as N2, O2, CO2, water vapor, and methane, the lower atmosphere also contains a wide array of natural and anthropogenic compounds whose presence in the air can strongly affect the growth of plants. Many of these potentially toxic compounds occur naturally in the lower troposphere, but when present at concentrations significantly in excess of background concentrations they are classified as air pollutants. Industrialization and urbanization over the past 200 years have greatly increased the concentrations of these toxic compounds in the atmosphere, increasing the potential for adverse effects of air pollution on the growth and productivity of crop plants and forests (Heck et al., 1988; Smith, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Adams, R.M. and T.D. Crocker. 1988. Model requirements for economic evaluation of pollution impacts upon agriculture. In: W.W. Heck, O.C. Taylor, and D.T. Tingey (eds.). Assessment of Crop Loss from Air Pollutants. Elsevier Appl. Sci., London. pp. 463-471.

    Google Scholar 

  • Amthor, J.S. 1988. Growth and maintenance respiration in leaves of bean (Phaseolus vulgaris L.) exposed to ozone in open-top chambers in the field. New Phytol. 110:319-325.

    Article  CAS  Google Scholar 

  • Barrett, T.W. and H.M. Benedict. 1970. Sulfur dioxide. In: J.S. Jacobson and A.C. Hill (eds.). Recognition of Air Pollution Injury to Vegetation: a Pictorial Atlas. Air Pollut. Control. Assoc., Pittsburgh, PA. pp. C1-C17.

    Google Scholar 

  • Brewer, R.F. 1979. The effects of present and potential air pollution on San Joaquin Valley cotton. Final Report, ARB Agreement A7-119-39, CA Air Resources Board, Sacramento, CA.

    Google Scholar 

  • Castillo, F.J. and H. Greppin. 1988. Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ. Exp. Bot. 28:231-238.

    Article  CAS  Google Scholar 

  • Castillo, F.J. and R.L. Heath. 1990. Calcium transport in membrane vesicles from pinto bean leaves and its alteration after ozone exposure. Plant Physiol. 94:788-795.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, F.S. 1991. Effects of multiple environmental stresses on nutrient availability and use. In: H.A. Mooney, W.E. Winner, and E.J. Pell (eds.). Response of Plants to Multiple Stresses. Academic Press, San Diego. pp. 67-88.

    Google Scholar 

  • Cooley, D.R. and W.J. Manning. 1987. The impact of ozone on assimilate partitioning in plants: A review. Environ. Pollut. 47:95-113.

    Article  PubMed  CAS  Google Scholar 

  • Dann, M.S. and E.J. Pell. 1989. Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foliage. Plant Physiol. 91:427-432.

    Article  PubMed  CAS  Google Scholar 

  • Darrall, N.M. 1989. The effect of air pollutants on physiological processes in plants. Plant Cell Environ. 12:1-30.

    Article  CAS  Google Scholar 

  • Dugger, W.M., Jr. and I.P. Ting. 1970. Air pollution oxidants-their effects on metabolic processes in plants. Ann. Rev. Plant Physiol. 21:215-234.

    Article  CAS  Google Scholar 

  • Evans, L.S. and I.P. Ting. 1973. Ozone-induced membrane permebility changes. Amer. Jour. Bot. 60:155-162.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B.J. and J.N. Pitts, Jr. 1986. Atmospheric Chemistry: Fundamentals and Experimental Techniques. John Wiley Sons, N.Y.

    Google Scholar 

  • Flagler, R.B. (ed.). 1998. Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas, 2nd Ed. Air&Waste Management Assoc., Pittsburgh, PA.

    Google Scholar 

  • Grantz, D.A. and J.F. Farrar. 1999. Acute exposure to ozone inhibits rapid carbon translocation from source leaves of Pima cotton. Jour. Exp. Bot. 50:1253-1262.

    Article  CAS  Google Scholar 

  • Grantz, D.A. and J.R. Farrar. 2000. Ozone inhibits phloem loading from a transport pool: Compartmental efflux analysis in Pima cotton. Aust. Jour. Plant Physiol. 27:859-868.

    CAS  Google Scholar 

  • Grantz, D.A. and S. Yang. 1996. Effect of O3 on hydraulic architecture in Pima cotton. Plant Physiol. 112:1649-1657.

    CAS  Google Scholar 

  • Grantz, D.A. and S. Yang. 2000. Ozone impacts on allometry and root hydraulic conductance are not mediated by source limitation nor developmental age. Jour. Exp. Bot. 51:919-927.

    Article  CAS  Google Scholar 

  • Heagle, A.S. 1989. Ozone and crop yield. Ann. Rev. Phytopathol. 27:397-423.

    Article  CAS  Google Scholar 

  • Heath, R.L. 1975. Ozone. In: J.B. Mudd and T.T. Kozlowski (eds.). Responses of Plants to Air Pollution. Academic Press, N.Y. pp. 23-55.

    Google Scholar 

  • Heath, R.L. 1987. The biochemistry of ozone attack on the plasma membrane of plant cells. Rec. Adv. Phytochem. 21:29-54.

    CAS  Google Scholar 

  • Heath, R.L. 1988. Biochemical mechanisms of pollutant stress. In: W.W. Heck, O.C. Taylor, and D.T. Tingey (eds.). Assessment of Crop Loss from Air Pollutants. Elsevier Appl. Sci., London. pp. 259-286.

    Google Scholar 

  • Heath, R.L. and P.E. Frederick. 1979. Ozone alteration of membrane permeability in Chlorella. Plant Physiol. 64:455-459.

    Article  PubMed  CAS  Google Scholar 

  • Heggestad, H.E. and M.N. Christiansen. 1982. Effects of air pollution on cotton. In: J.S. Jacobson and A.A. Miller (eds.). Symposium on the effects of air pollution on farm commodities. Izaak Walton League Amer., Arlington, VA. pp. 9-32.

    Google Scholar 

  • Hill, A.C. and N. Littlefield. 1969. Ozone: Effect on apparent photosynthesis, rate of transpiration and stomatal closure in plants. Environ. Sci. Technol. 3:52-56.

    Article  CAS  Google Scholar 

  • Howitt, R.G. and C. Goodman. 1988. Economic impacts of regional ozone standards on agricultural crops. Environ. Pollut. 53:387-395.

    Article  PubMed  CAS  Google Scholar 

  • Hursh, C.R. 1948. Local climate in the Copper Basin of Tennessee as modified by the removal of vegetation. U.S. Dep. Agric. Circ. 774:1-38.

    Google Scholar 

  • Kostka-Rick, R. and W.J. Manning. 1993. Dose-response studies with ethylenediurea (EDU) and radish. Environ. Pollut. 79:249-260.

    Article  PubMed  CAS  Google Scholar 

  • Lefohn, A.S. 1992. The characterization of ambient ozone exposures. In: A.S. Lefohn (ed.). Surface Level Ozone Exposures and their Effects on Vegetation. Lewis Publ. Inc., Chelsea, MI. pp. 31-92.

    Google Scholar 

  • Manning, W.J. and S.V. Krupa. 1992. Experimental methodology for studying the effects of ozone on crops and trees. In: A.S. Lefohn (ed.). Surface Level Ozone Exposures and their Effects on Vegetation. Lewis Publ. Inc., Chelsea, MI. pp. 93-156.

    Google Scholar 

  • McCool, P.M. 1988. Effect of air pollutants on mycorrhizae. In: S. Schulte-Hostede, N.M. Darrall, L.W. Blank, and A.R. Wellburn (eds.). Air Pollutants and Plant Metabolism. Elsevier Appl. Sci. Publ., London. pp. 356-363.

    Google Scholar 

  • McGartland, A.M. 1987. The implications of ambient ozone standards for U.S. agriculture: A comment and some further evidence. J. Environ. Manage. 24:139-146.

    Google Scholar 

  • McLaughlin, S.B. and R.K. McConathy. 1983. Effects of SO2 and O3 on allocation of 14C-labeled photosynthate in Phaseolus vulgaris. Plant Physiol. 73:630-635.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.E. 1988. Effects on photosynthesis, carbon allocation, and plant growth associated with air pollutant stress. In: W.W. Heck, O.C. Taylow, and D.T. Tingey (eds.). Assessment of Crop Loss from Air Pollutants. Elsevier Appl. Sci., London. pp. 287-314.

    Google Scholar 

  • Musselman, R.C. and W.J. Massman. 1999. Ozone flux to vegetation and its relationship to plant response and ambient air quality standards. Atmos. Environ. 33:65-73.

    Article  CAS  Google Scholar 

  • Ogata, G., and E.V. Maas. 1973. Interactive effects of salinity and ozone on growth and yield of garden beet. J. Environ. Qual. 2:518-520.

    Article  CAS  Google Scholar 

  • Olsen, R.A. 1957. Absorption of sulfur dioxide from the atmosphere by cotton plants. Soil Science 84:107- 111.

    Article  CAS  Google Scholar 

  • Oosterhuis, D.M. and M.J. Urwiler. 1988. Cotton mainstem leaves in relation to vegetative development and yield. Agron. J. 80:65-67.

    Article  Google Scholar 

  • Pell, E.J. and E. Brennan. 1973. Changes in respiration, photosynthesis, adenosine 5’-triphosphate, and total adenylate content of ozonated pinto bean foliage as they relate to symptom expression. Plant Physiol. 51:378-381.

    Article  PubMed  CAS  Google Scholar 

  • Pryor, W.A. 1992. How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts? Free Radical Biol. Med. 12:83-88.

    Article  CAS  Google Scholar 

  • Reiling, K. and A.W. Davison. 1992. The response of native, herbaceous species to ozone: Growth and fluorescence screening. New Phytol. 120:29-37.

    Article  Google Scholar 

  • Robinson, J.M. and S.J. Britz. 2000. Tolerance of a field grown soybean cultivar to elevated ozone level correlates with higher leaflet ascorbic acid level and higher ascorbate:dehydroascorbate redox status and long term photosynthetic productivity. Photosynthesis Research 64:77-87.

    Article  CAS  Google Scholar 

  • Runeckles, V.C. and B.I. Chevone. 1992. Crop responses to ozone. In: A.S. Lefohn (ed.). Surface Level Ozone Exposures and their Effects on Vegetation. Lewis Publ. Inc., Chelsea, MI. pp. 189-270.

    Google Scholar 

  • Schenone, G. 1993. Impact of air pollutants on plants in hot, dry climates. In: M.B. Jackson and C.R. Black (eds.). Interacting Stresses on Plants in a Changing Climate. NATO ASI Series, Vol. I 16. Springer- Verlag, Berlin. pp. 139-152.

    Google Scholar 

  • Smith, W.H. 1990. Air Pollution and Forests, Second Ed. Springer-Verlag, N.Y.

    Google Scholar 

  • Sutton, R. and I.P. Ting. 1977. Evidence for the repair of ozone induced membrane injury. Am. J. Bot. 64:404-411.

    Article  CAS  Google Scholar 

  • Taylor, O.C. and D.C. MacLean. 1970. Nitrogen oxides and the peroxyacyl nitrates. In: J.S. Jacobson and A.C. Hill (eds.). Recognition of Air Pollution Injury to Vegetation: a Pictorial Atlas. Air Pollut. Control. Assoc., Pittsburgh, PA. pp. E1-E14.

    Google Scholar 

  • Taylor, O.C. and J.D. Mersereau. 1963. Smog damage to cotton. Calif. Agric., Nov. 1963, pp. 2-3.

    Google Scholar 

  • Temple, P.J. 1986. Stomatal conductance and transpirational responses of field-grown cotton to ozone. Plant, Cell and Environ. 9:315-321.

    Google Scholar 

  • Temple, P.J. 1990a. Water relations of differentially irrigated cotton exposed to ozone. Agron. J. 82:800-805.

    Article  CAS  Google Scholar 

  • Temple, P.J. 1990b. Growth form and yield responses of four cotton cultivars to ozone. Agron. J. 82:1045-1050.

    Article  CAS  Google Scholar 

  • Temple, P.J. 1991. Variations in responses of dry bean (Phaseolus vulgaris) cultivars to ozone. Agric. Ecosys. Environ. 36:1-11.

    Article  CAS  Google Scholar 

  • Thorne, L. and G.P. Hanson. 1976. Relations between genetically controlled ozone sensitivity and gas exchange rate in Petunia hybrida Vilm. J. Am. Soc. Hort. Sci. 101:60-63.

    CAS  Google Scholar 

  • Ting, I.P. and W.M. Dugger, Jr. 1968. Factors affecting ozone sensitivity and susceptibility of cotton plants. J. Air Pollut. Control Assoc. 18:810-813.

    PubMed  CAS  Google Scholar 

  • Yang, S. and M.T. Tyree. 1993. Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiol. 12:231-242.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Temple, P.J., Grantz, D.A. (2010). Air Pollution Stress. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds) Physiology of Cotton. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3195-2_15

Download citation

Publish with us

Policies and ethics