Skip to main content

Ladakh Himalaya

  • Chapter
  • First Online:
Structural Geological Atlas

Abstract

The Ladakh Himalaya is present within the western part of the Himalayan orogenic belt. It is divided into five major zones from south to north, viz. Zanskar zone, Indus–Tsangpo suture zone (ITSZ), Ladakh Batholith, Shyok suture zone and Karakoram zone (Thanh et al. in Lithos 155:81–93, 2012; Dubey in Understanding an orogenic belt: structural evolution of the Himalaya. Springer International Publishing, Switzerland, pp. 292–294, 2014). The Zanskar zone is bounded by the South Tibetan Detachment System (STDS) and the ITSZ, to the south and north, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad T, Tanaka T, Sachan HK, Asahara Y, Islam R, Khanna PP (2008) Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: implications for the Neo-Tethyan subduction along the Indus suture zone. Tectonophysics 451:206–224

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Butler JP, Warren CJ (2009) Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett 287:116–129

    Article  Google Scholar 

  • Bose N, Mukherjee S (2019a) Field documentation and genesis of back-structures in ductile and brittle regimes from the foreland part of a collisional orogen: examples from the Darjeeling–Sikkim Lesser Himalaya, India. Int J Earth Sci 108:1333–1350

    Article  Google Scholar 

  • Bose N, Mukherjee S (2019b) Field documentation and genesis of the back-structures from the Garhwal Lesser Himalaya, Uttarakhand, India. In: Sharma, Villa IM, Kumar S (eds) Crustal architecture and evolution of the Himalaya-Karakoram-Tibet Orogen, vol 481. Geological Society of London Special Publications, pp 111–125

    Google Scholar 

  • de Sigoyer J, Guillot S, Dick P (2004) Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): a case study. Tectonics 23:1–18

    Article  Google Scholar 

  • Dubey A (2014) Understanding an orogenic belt: structural evolution of the Himalaya. Springer International Publishing, Switzerland, pp 292–294

    Book  Google Scholar 

  • Dutta D, Mukherjee S (2019) Opposite shear senses: geneses, global occurrences, numerical simulations and a case study from the Indian Western Himalaya. J Struct Geol 126:357–392

    Article  Google Scholar 

  • Epard JL, Steck A (2008) Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics 451:242–264

    Article  Google Scholar 

  • Finch M, Hasalová P, Weinberg RF, Fanning CM (2014) Switch from thrusting to normal shearing in the Zanskar shear zone, NW Himalaya: implications for channel flow. Bulletin 126:892–924

    Article  Google Scholar 

  • Goscombe BD, Passchier CW, Hand M (2004) Boudinage classification: end-member boudin types and modified boudin structures. J Struct Geol 26:739–763

    Article  Google Scholar 

  • Guillot S, De Sigoyer J, Lardeaux JM, Mascle G (1997) Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): evidence for continental subduction during India-Asia convergence. Contrib Miner Petrol 128:197–212

    Article  Google Scholar 

  • Hippertt JFM (1993) ‘V’-pull-apart microstructures: a new shear-sense indicator. J Struct Geol 15:1393–1403

    Article  Google Scholar 

  • Kellett DA, Cottle JM, Larson KP (2018) The South Tibetan Detachment system: history, advances, definition and future directions. Geological Society, London, Special Publications, 483. https://doi.org/10.1144/sp483.2

    Article  Google Scholar 

  • Misra AA, Mukherjee S (2017) Dyke-brittle shear relationships in the Western Deccan Strike Slip Zone around Mumbai (Maharashtra, India). In: Mukherjee S, Misra AA, Calvès G, Nemčok M. (eds) Tectonics of the Deccan Large Igneous Province. Geological Society, London, Special Publications 445:269–295

    Google Scholar 

  • Mukherjee S (2010) V-pull apart structure in garnet in macro-scale. J Struct Geol 32:605

    Article  Google Scholar 

  • Mukherjee S (2011a) Estimating the viscosity of rock bodies—a comparison between the Hormuz- and the Namakdan Salt Domes in the Persian Gulf, and the Tso Morari Gneiss Dome in the Himalaya. J Indian Geophys Union 15:161–170

    Google Scholar 

  • Mukherjee S (2011b) Mineral fish: their morphological classification, usefulness as shear sense indicators and genesis. Int J Earth Sci 100:1303–1314

    Article  Google Scholar 

  • Mukherjee S (2012) Simple shear is not so simple! kinematics and shear senses in newtonian viscous simple shear zones. Geol Mag 149:819–826

    Article  Google Scholar 

  • Mukherjee S (2013a) Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Earth Sci 102:1851–1870

    Article  Google Scholar 

  • Mukherjee S (2013b) Deformation microstructures in rocks. Springer Geochemistry/Mineralogy, Berlin, pp 1–111. ISBN 978-3-642-25608-0

    Book  Google Scholar 

  • Mukherjee S (2014a) Review of flanking structures in meso- and micro-scales. Geol Mag 151:957–974

    Article  Google Scholar 

  • Mukherjee S (2014b) Mica inclusions inside host mica grains from the Sutlej section of the Higher Himalayan Crystallines, India—morphology and constrains in genesis. Acta Geol Sin 88:1729–1741

    Article  Google Scholar 

  • Mukherjee S (2014c) Atlas of shear zone structures in meso-scale. Springer Geology. Cham. pp. 1–124. ISBN 978-3-319-0088-6

    Google Scholar 

  • Mukherjee S (ed) (2015) Atlas of structural geology. Elsevier, Amsterdam. ISBN 978-0-12-420152-1

    Google Scholar 

  • Mukherjee S (2017a) Review on symmetric structures in ductile shear zones. Int J Earth Sci 106:1453–1468

    Article  Google Scholar 

  • Mukherjee S (2017b) Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane. J Earth Sys Sci 126(1)

    Google Scholar 

  • Mukherjee S (2019) Kinematics of pure shear ductile deformation within rigid walls: New analyses. In: Billi A, Fagereng A (eds) Problems and Solutions in Structural Geology and Tectonics. Series Editor: Mukherjee S. Developments in Structural Geology and Tectonics Book Series. Elsevier. pp. 81–88. ISSN: 2542-9000

    Chapter  Google Scholar 

  • Mukherjee S, Chakraborty R (2007) Pull-apart micro-structures and associated passive folds. In: Aho J (ed) Annual transactions of the Nordic rheology society, vol 15. 16th Nordic rheology conference, Stavanger, Norway, 13–15 June, pp 247–252

    Google Scholar 

  • Mukherjee S, Agarwal I (2018) Shear heat model for gouge free dip-slip listric normal faults. Mar Petrol Geol 98:397–400

    Article  Google Scholar 

  • Mukherjee S, Khonsari MM (2017) Brittle rotational faults and the associated shear heating. Mar Petrol Geol 88:551–554

    Article  Google Scholar 

  • Mukherjee S, Khonsari MM (2018) Inter-book normal fault-related shear heating in brittle bookshelf faults. Marine Petrol Geol 97:45–48

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010a) Higher Himalayan Shear Zone, Sutlej section—structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010b) Higher Himalayan Shear Zone, Zanskar section: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. Int J Earth Sci 99:1083–1110

    Article  Google Scholar 

  • Mukherjee S, Mulchrone KF (2012) Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome, Indian western Himalaya. Int J Earth Sci 101:1929–1947

    Article  Google Scholar 

  • Mukherjee S, Mulchrone KF (2013) Viscous dissipation pattern in incompressible Newtonian simple shear zones: an analytical model. Int J Earth Sci 102:1165–1170

    Article  Google Scholar 

  • Mukherjee S, Punekar J, Mahadani T, Mukherjee R (2015) A review on intrafolial folds and their morphologies from the detachments of the western Indian Higher Himalaya. In: Mukherjee S, Mulchrone KF (eds) Ductile shear zones: from micro- to macro-scales. Wiley Blackwell, pp 182–205

    Google Scholar 

  • Mulchrone KF, Mukherjee S (2015) Shear senses and viscous dissipation of layered ductile simple shear zones. Pure Appl Geophys 172:2635–2642

    Article  Google Scholar 

  • Mulchrone KF, Mukherjee S (2016) Kinematics and shear heat pattern of ductile simple shear zones with ‘slip boundary condition’. Int J Earth Sci 105: 1015–1020

    Article  Google Scholar 

  • Mulchrone K, Mukherjee S (2019) Kinematics of ductile shear zones with deformable or mobile walls. J Earth Sys Sci 128:218. DOI: https://doi.org/10.1007/s12040-019-1238-y

  • Mulchrone KF, Mukherjee S (submitted) Numerical modelling and comparison of the temporal evolution of mantle and tails surrounding rigid elliptical objects in simple shear regime under stick and slip boundary conditions. J Struct Geol

    Google Scholar 

  • Palin RM, Reuber GS, White RW, Kaus BJ, Weller OM (2017) Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: an integrated geodynamic and petrological modelling approach. Earth Planet Sci Lett 467:108–119

    Article  Google Scholar 

  • Paschier CW, Trouw RAJ (2005) Microtectonics. Springer, Heidelberg

    Google Scholar 

  • Samanta SK, Mandal N, Chakraborty C (2002) Development of different types of pull-apart microstructures in mylonites: an experimental investigation. J Struct Geol 24:1345–1355

    Article  Google Scholar 

  • St-Onge MR, Rayner N, Searle MP (2010) Zircon age determinations for the Ladakh batholith at Chumathang (Northwest India): implications for the age of the India-Asia collision in the Ladakh Himalaya. Tectonophysics 495:171–183

    Article  Google Scholar 

  • St-Onge MR, Rayner N, Palin RM, Searle MP, Waters DJ (2013) Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): implications for the burial and exhumation path of UHP units in the western Himalaya. J Metamorph Geol 31:469–504

    Article  Google Scholar 

  • Thakur VC (1992) Geology of western Himalaya. Pergamon, 363 pp

    Google Scholar 

  • Thanh NX, Rajesh VJ, Itaya T, Windley B, Kwon S, Park CS (2012) A Cretaceous forearc ophiolite in the Shyok suture zone, Ladakh, NW India: implications for the tectonic evolution of the Northwest Himalaya. Lithos 155:81–93

    Article  Google Scholar 

  • Trouw RA, Passchier CW, Wiersma DJ (2010) Atlas of mylonites-and related microstructures. Springer Science & Business Media, Berlin, p 322

    Google Scholar 

  • Wilke FDH, O’Brien PJ, Schmidt A, Zienmann MA (2015) Subduction, peak and multi-stage exhumation metamorphism: traces from one coesite-bearing eclogite, Tso Morari, western Himalaya. Lithos 231:77–91

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Mukherjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, S. et al. (2020). Ladakh Himalaya. In: Structural Geological Atlas . Springer, Singapore. https://doi.org/10.1007/978-981-13-9825-4_4

Download citation

Publish with us

Policies and ethics