Skip to main content
Log in

Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Higher Himalayan Shear Zone (HHSZ) in the Sutlej section reveals (1) top-to-SW ductile shearing, (2) top-to-NE ductile shearing in the upper- and the lower strands of the South Tibetan Detachment System (STDSU, STDSL), and (3) top-to-SW brittle shearing corroborated by trapezoid-shaped minerals in micro-scale. In the proposed extrusion model of the HHSZ, the E1-phase during 25–19 Ma is marked by simple shearing of the upper sub-channel defined by the upper strand of the Main Central Thrust (MCTU) and the top of STDSU as the lower- and the upper boundaries, respectively. Subsequently, the E2a-pulse during 15–14 Ma was characterized by simple shear, pure shear, and channel flow of the entire HHSZ. Finally, the E2b-pulse during 14–12 Ma observed simple shearing and channel flow of the lower sub-channel defined by the lower strand of the Main Central Thrust (MCTL) and the top of the STDSL as the lower- and the upper boundaries, respectively. The model explains the constraints of thicknesses of the STDSU and the STDSL along with spatially variable extrusion rate and the inverted metamorphism of the HHSZ. The model predicts (1) shear strain after ductile extrusion to be maximum at the boundaries of the HHSZ, which crudely matches with the existing data. The other speculations that cannot be checked are (2) uniform shear strain from the MCTU to the top of the HHSZ in the E1-phase; (3) fastest rates of extrusion of the lower boundaries of the STDSU and the STDSL during the E2a- and E2b-pulses, respectively; and (4) variable thickness of the STDSL and rare absence of the STDSU. Non-parabolic shear fabrics of the HHSZ possibly indicate heterogeneous strain. The top-to-SW brittle shearing around 12 Ma augmented the ductile extruded rocks to arrive a shallower depth. The brittle–ductile extension leading to boudinage possibly did not enhance the extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Acharya SK, Ray KK (1977) Geology of the Darjeeling–Sikkim Himalaya. In: Guide to Excursion No. 4 Fourth International Gondwana Symposium, India, report, Calcutta, India, 25 pp

  • Annen C, Scaillet B, Sparks RSJ (2005) Thermal constraints on the emplacement rate of a large intrusive complex: the Manaslu Leucogranite, Nepal Himalaya. J Petrol 47:71–95. doi:10.1093/petrology/egi068

    Article  Google Scholar 

  • Argles TW, Edwards MA (2002) First evidence of high-grade, Himalayan age synconvergent extension recognized within the western syntaxis—Nanga Parbat, Pakistan. J Struct Geol 24:1327–2344. doi:10.1016/S0191-8141(01)00136-5

    Article  Google Scholar 

  • Arslan A, Passchier CW, Kohen D (2008) Foliation boudinage. J Struct Geol 30:291–309. doi:10.1016/j.jsg.2007.11.004

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH et al (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742. doi:10.1038/414738a

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH et al (2004) Crustal channel flows: 1. Numerical models with application to the tectonics of the Himalayan-Tibetan Orogen. J Geophys Res 109:B06406. doi:10.1029/2003JB002809

    Article  Google Scholar 

  • Beaumont C, Jamieson R, Nguyen M (2006) The Himalayan-Tibet system: models of long term lithosphere-mantle interactions and the short term tectonic response to variable denudation. In: Ahmad T et al (eds) 21st Himalaya-Karakoram-Tibet Workshop. 29–31 March 2006. University of Cambridge, UK. Abstract Volume. J Asian Earth Sci 26:126

  • Bèrthe D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non-coaxial deformation of granite: the example of the south Armorican shear zone. J Struct Geol 1:31–42. doi:10.1016/0191-8141(79)90019-1

    Article  Google Scholar 

  • Bhattacharya AR (1981) Stratigraphy and correlation of the Inner Kumaun Lesser Himalaya: implications of a mathematical study. In: Sinha AK (ed) Contemporary Geoscientific Research in Himalaya 1, pp 137–150

  • Bhattacharya AR (1999) Deformational regimes across the Kumaun Himalaya: a study in strain patterns. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya. Gond Res Gp Mem No 6 Field Science, Osaka, pp 81–90

  • Burbank DW (2005) Earth science: cracking the Himalaya. Nature 434:963–964. doi:10.1038/434963a

    Article  Google Scholar 

  • Burchfiel BC, Chen Z, Hodges KV et al (1992) The South Tibetan Detachment System, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol Soc Am Spec Pap 269:1–41

    Google Scholar 

  • Caldwell WB, Klemperer SL, Rai SS et al (2009) Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion. Tectonophysics. doi:10.1016/j.tecto.2009.01.013

    Google Scholar 

  • Carosi R, Musumeci G, Pertusali PC (1999) Extensional tectonics in the higher Himalayan Crystallines of Khumbu Himal, eastern Nepal. In: Macfarlane A, Sorkhabi RB, Quade J (eds) Himalaya and Tibet: mountain roots to mountain tops, 328. Geological Society of London, Special Publication, Boluder, Colorado, pp 211–223

  • Carosi R, Montomili C, Visonà D (2007) A structural transect in the lower Dolpo: insights in the tectonic evolution of Western Nepal. J Asian Earth Sci 29:407–423. doi:10.1016/j.jseaes.2006.05.001

    Article  Google Scholar 

  • Catlos EJ (2000) Geochronologic and Thermobarometric Constraints on the Evolution of the Main Central Thrust, Himalayan Orogen. Unpublished PhD Dissertation. University of California. Los Angeles, pp xix–xx

  • Catlos EJ, Harrison TM, Kohn MJ et al (2001) Geochronological and thermobarometric constraints on the evolution of the main central thrust, central Nepal. J Geophys Res-Solid Earth 106:16117–16204. ISSN:0148-0227

    Article  Google Scholar 

  • Chambers JA, Argles TW, Horstwood MSA et al (2008) Tectonic implications of Paleoproterozoic anatexis and Late Miocene metamorphism in the Lesser Himalayan Sequence, Sutlej Valley, NW India. J Geol Soc Lond 165:725–737. doi:10.1144/0016-76492007/090

    Article  Google Scholar 

  • Cottle JM, Jessup MJ, Newell DL et al (2006) Structure of the South Tibetan detachment system, Kharta region south Tibetan Himalaya. In: Ahmad T et al (eds) 21st Himalaya-Karakoram-Tibet Workshop. 29–31 March 2006. University of Cambridge, UK. Abstract Volume. J Asian Earth Sci 26:132

  • Cottle JM, Jessup MJ, Newell DL et al (2007) Structural insights into the early stages of exhumation along an orogen-scale detachment: the South Tibetan Detachment System, Dzakaa Chu section, Eastern Himalaya. J Struct Geol 29:1781–1797. doi:10.1016/j.jsg.2007.08.007

    Article  Google Scholar 

  • Dasgupta S, Chakraborty S, Neogi S (2009) Petrology of an inverted barrovian sequence of metapelites in Sikkim Himalaya, India: constraints on the tectonics of inversion. Am J Sci 309:43–84. doi:10.2475/01.2009.02

    Article  Google Scholar 

  • Davis GH, Reynolds SJ (1996) Structural Geology of Rocks and Regions, 2nd edn. Wiley, New York

    Google Scholar 

  • Depietro JA, Pogue KR (2004) Tectonostratigraphic subdivision of the Himalaya—a view from the west. Tectonics 23:TC 5001. doi:10.1029/2003TC001554

  • Dewey L (2008) Continental lower-crustal flow: channel flow and laminar flow. Earth Sci Frontiers 15:130–139. doi:10.1016/S1872-5791(08)60065-2

    Article  Google Scholar 

  • Dèzes PJ (1999) Tectonic and Metamorphic evolution of the central Himalayan domain in southeast Zanskar (Kashmir India). PhD Thesis, University of Lausanne, Switzerland, pp 1–160

  • Dèzes PJ, Vannay JC, Steck A et al (1999) Synorogenic extension: quantitative constraints on the age and displacement of the Zanskar shear Zone. Geol Soc Am Bull 111:364–374. doi:10.1130/0016-7606(1999)111<0364:SEQCOT>2.3.CO;2

    Article  Google Scholar 

  • Druguet E, Carreras J (2006) Analogue modeling of syntectonic leucosomes in mylonitic schists. J Struct Geol 28:1734–1747. doi:10.1016/j.jsg.2006.06.015

    Article  Google Scholar 

  • Edwards MA, Kidd WSF, Li J et al (1996) Multi-stage development of the southern Tibet detachment system near Khula Kangri: new data from Gonto La. Tectonophysics 260:1–19. doi:10.1016/0040-1951(96)00073-X

    Article  Google Scholar 

  • Fraser G, Worley B, Sandiford M (2000) High-precision geothermometry across the High Himalayan metamorphic sequence, Langtang Valley, Nepal. J Meta Geol 18:665–681. doi:10.1046/j.1525-1314.2000.00283.x

    Article  Google Scholar 

  • Gansser A (1983) Geology of the Bhutan Himalaya. Birkhäuser Verlag, Switzerland

  • Ghosh SK (1993) Structural geology fundamental and modern development, Pergamon, Oxford

  • Godin L, Grujic D, Law RD et al (2006) Channel flow, extrusion and exhumation in continental collision zones: an introduction. In: Law RD, Searle MP (eds) Channel flow, extrusion and exhumation in continental collision zones, volL 268. Geological Society of London, Special Publication, pp 1–23. doi:10.1144/GSL.SP.2006.268.01.01

  • Goscombe B, Gray D, Hand M (2006) Crustal architecture of the Himalayan metamorphic front in eastern Himalaya. Gond Res 10:232–255. doi:10.1016/j.gr.2006.05.003

    Google Scholar 

  • Grasemann B, Vanney J-C (1999) Flow controlled inverted metamorphism in shear zones. J Struct Geol 21:743–750. doi:10.1016/S0191-8141(99)00071-1

    Article  Google Scholar 

  • Grasemann B, Fritz H, Vannay JC (1999) Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and extrusion of orogenic wedges. J Struct Geol 21:837–853. doi:10.1016/S0191-8141(99)00077-2

    Article  Google Scholar 

  • Grasemann B, Edwards MA, Wiesmayr G (2006) Kinematic dilatancy effects on orogenic extrusion. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collisional zones, vol 268. Geological Society of London, Special Publication, pp 183–199. doi:10.1144/GSL.SP.2006.268.01.08

  • Grujic D (2006) Channel flow and continental collision tectonics: an overview. In: Law RD, Searle MP (eds) Channel flow, extrusion and exhumation in continental collision zones, vol 268. Geological Society of London, Special Publication, pp 25–37. doi:10.1144/GSL.SP.2006.268.01.02

  • Grujic D, Casey M, Davidson C (1996) Ductile extrusion of the Higher Himalayan crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260:21–43. doi:10.1016/0040-1951(96)00074-1

    Article  Google Scholar 

  • Grujic D, Hollister LS, Parrish RR (2002) Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth Planet Sci Lett 198:177–191. doi:10.1016/S0012-821X(02)00482-X

    Article  Google Scholar 

  • Harris N (2007) Channel flow and the Himalayan–Tibetan orogen: a critical review. J Geol Soc Lond 164:511–523. doi:10.1144/0016-76492006-133

    Article  Google Scholar 

  • Hauck ML, Nelson KD, Brown LD et al (1998) Crustal structure of the Himalayan orogen at 900 east longitude from project INDEPTH deep seismic reflection profiles. Tectonics 17:481–500. doi:10.1029/98TC01314

    Article  Google Scholar 

  • Herren E (1987) Zanskar Shear Zone: northeast southwest extension within the Higher Himalaya (Ladakh, India). Geology 15:409–413. doi:10.1130/0091-7613(1987)15<409:ZSZNEW>2.0.CO;2

    Article  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two decades perspectives. Geol Soc Am Spec Bull 112:324–350. doi:10.1130/0016-7606(2000)112<0324:TOTHAS>2.3.CO;2

    Article  Google Scholar 

  • Hodges KV (2006) A synthesis of the channel flow-extrusion hypothesis as developed for the Himalayan-Tibetan orogenic system. In: Law RD, Searle MP (eds) Channel flow, extrusion and exhumation in continental collision zones, vol 268. Geological Society of London, Special Publication, pp 71–90. doi:10.1144/GSL.SP.2006.268.01.04

  • Hodges KV, Le Fort P, Pêcher A (1988) Possible thermal buffering by crustal anatexis in collisional orogens: Thermobarometric evidence from the Nepalese Himalaya. Geology 16:707–710. doi:10.1130/0091-7613(1988)016<0707:PTBBCA>2.3.CO;2

    Article  Google Scholar 

  • Hodges KV, Bowring SA, Davidek KL et al (1998) Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology 26:483–486. doi:10.1130/0091-7613(1998)026<0483:EFRDOH>2.3.CO;2

    Article  Google Scholar 

  • Hollister LS, Grujic D (2006) Himalaya Tiber Plateau. Pulsed channel flow in Bhutan. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones, vol 268. Geological Society of London, Special Publication, pp 415–423. doi:10.1144/GSL.SP.2006.268.01.19

  • Hubbard MS (1996) Ductile shear as a cause of inverted metamorphism: example from the Nepal Himalaya. J Geol 104:493–499

    Article  Google Scholar 

  • Israil M, Tyagi DK, Gupta PK et al (2008) Magnetotelluric investigations for imaging electrical structure of Garhwal Himalayan corridor, Uttarakhand, India. J Earth Syst Sci 117:189–200. doi:10.1007/s12040-008-0023-0

    Article  Google Scholar 

  • Jain AK, Anand A (1988) Deformational and strain patterns of an intracontinental ductile shear zone- an example from the Higher Garhwal Himalaya. J Struct Geol 10:717–734. doi:10.1016/0191-8141(88)90079-X

    Article  Google Scholar 

  • Jain AK, Manickavasagam RM (1993) Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics. Geology 21:407–410. doi:10.1130/0091-7613(1993)021<0407:IMITID>2.3.CO;2

    Article  Google Scholar 

  • Jain AK, Manickavasagam RM (1997) Ductile shear as a cause of inverted metamorphism: example from the Nepal Himalaya: a discussion. J Geol 105:511–514. doi:10.1086/515943

    Google Scholar 

  • Jain AK, Mukherjee S (2009) Cover photo: a flanking microstructure. Him Geol 30

  • Jain AK, Patel RC (1999) Structure of the Higher Himalayan Crystallines along the Suru-Doda Valleys (Zanskar), NW-Himalaya. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya. Gond Res Gp Mem No 6. Field Science, Osaka, pp 91–110

    Google Scholar 

  • Jain AK, Manickavasagam RM, Singh S (1999) Collision tectonics in the NW Himalaya: deformation, metamorphism and emplacement of leucogranite along Beas-Parbati Valleys, Himachal Pradesh. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya, Gond Res Gp Mem No 6. Field Science, Osaka, pp 3–37

    Google Scholar 

  • Jain AK, Kumar D, Singh S et al (2000) Timing, quantification and tectonic modelling of Pliocene-Quaternary movements in the NW Himalaya: evidences from fission track dating. Earth Planet Sci Lett 179:437–451. doi:10.1016/S0012-821X(00)00133-3

    Article  Google Scholar 

  • Jain AK, Singh S, Manickavasagam RM (2002) Himalayan collisional tectonics. Gond Res Gp Mem No. 7.Field Science, Hashimoto, p 4

  • Jain AK, Manickavasagam RM, Singh S et al (2005a) Himalayan collision zone: new perspectives—its tectonic evolution in a combined ductile shear zone and channel flow model. Himal Geol 26(1):1–18

    Google Scholar 

  • Jain AK, Mukherjee S, Singh S (2005b) Great Himalayan orogenic channel: its structure and tectonic patterns. Abstract number: 58-SE-A1226. Solid earth. Asia Oceania Geosciences Society. 2nd Annual General Meeting 20–24 June 2005, Singapore. http://www.asiaoceania.org/abstract/se/58-SE-A1226.pdf

  • Jamieson RA, Beaumont C, Nguyen MH et al (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. J Meta Geol 20:9–24. doi:10.1046/j.0263-4929.2001.00357.x

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Medvedev S et al (2004) Crustal Channel Flows: 2. Numerical models with implications for metamorphism in the Himalayan–Tibetan Orogen. J Geophys Res 109:B06407. doi:10.1029/2003JB002811

    Article  Google Scholar 

  • Janda C, Hager C, Grasemann B et al (2002) The Karcham Normal Fault—implications for an active extruding wedge, Sutlej valley, NW Himalaya. J Asian Earth Sci 20:19–20

    Google Scholar 

  • Jessell MW (1987) Grain boundary migration microstructures in naturally deformed quartzite. J Struct Geol 9:1007–1014. doi:10.1016/0191-8141(87)90008-3

    Article  Google Scholar 

  • Jessup MJ, Law RD, Searle MP et al (2006) Structural evolution and vorticity of flow during extrusion and exhumation of the Greater Himalayan Slab, Mount Everest Massif, Tibet/Nepal: implications for orogen-scale flow partitioning, vol 268. Geological Society of London, Special Publication, pp 379–413. doi:10.1144/GSL.SP.2006.268.01.18

  • Kellet DAM (2006) Characterization and age of north-verging back structures in the Tethyan Sedimentary Sequence, Hidden Valley, central Nepal Himalaya. Unpublished M.Sc. thesis. Queen’s University, Canada, p 27

  • Kellett DA, Godin L (2009) Pre-Miocene deformation of the Himalayan superstructure, Hidden valley, cenral Nepal. J Geol Soc London 166:1–14. doi:10.1144/0016-76492008-097

    Article  Google Scholar 

  • Kohn MJ (2008) P–T–t data from central Nepal support critical taper and reduplicate large-scale channel flow of the Greater Himalayan Sequence. Geol Soc Am Bull 120:259–273. doi:10.1130/B26252.1

    Article  Google Scholar 

  • Koyi HA, Milnes G, Schmeling H et al (1999) Numerical models of ductile rebound of crustal roots beneath mountain belts. Geophys J Int 139:556–562. doi:10.1046/j.1365-246x.1999.00978.x

    Article  Google Scholar 

  • Kumar D, Jain AK, Lal N (2005) Tectonic exhumation and paleoseismic events from the Higher Himalayan Crystallines (HHC), NW Himalaya: evidences from fission track (FT) dating. Abstract Number: 58-SEA0725. Asia Oceania Geosciences Society. Session: Solid Earth. 2nd Annual General Meeting 20–24 June 2005, Singapore. http://www.asiaoceania.org/abstract/se/58-SEA0725.pdf

  • Kwatra SK, Singh S, Singh VP et al (1999) Geochemical and geochronological characteristics of the early Paleozoic granitoids from Sutlej-Baspa Valleys, Himachal Himalaya. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya. Gondwana Res Gp Mem 6, pp 144–158

  • Larson KP, Godin L (2009) Kinematics of the Greater Himalaya sequence, Dhaulagiri Himal: implications for the structural framework of central Nepal. J Geol Soc Lond 166:25–43. doi:10.1144/0016-76492007-180

    Article  Google Scholar 

  • Law R, Searle MP, Simpson RL (2004) Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. J Geol Soc Lond 161:305–320. doi:10.1144/0016-764903-047

    Article  Google Scholar 

  • LeCureux F, Burnett J (1975) Graphical methods used in the numerical solution of Jeffery–Hamel flow at fixed flow rates. Comput Graph ACM 1:233–238. doi:10.1016/0097-8493(75)90013-8

    Article  Google Scholar 

  • Lister LS, Snoke AW (1984) S-C mylonites. J Struct Geol 6:617–638. doi:10.1016/0191-8141(84)90001-4

    Google Scholar 

  • Lombardo B, Pertusati P, Borghi S (1993) Geology and tectonomagmatic evolution of the eastern Himalaya along the Chomolungma-Makalu transect, vol 74. Geological Society of London, Special Publication, pp 341–355. doi:10.1144/GSL.SP.1993.074.01.23

  • Manickavasagam RM, Jain AK, Singh S et al (1999) Metamorphic evolution of the NW-Himalaya, India: pressure temperature data, inverted metamorphism, and exhumation in the Kashmir, Himachal and Garhwal Himalaya. In: Macfarlane A, Sorkhabi RB, Quade J (eds) Himalaya and Tibet: mountain roots to mountain tops. Geol Soc Am Spec Pap 328:179–198

  • Marchildon N, Brown M (2003) Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany, France: implications for melt transfer at grain- to orogen-scale. Tectonophysics 364:215–235. doi:10.1016/S0040-1951(03)00061-1

    Article  Google Scholar 

  • Martin A, DeCelles P, Gehrels GE et al (2005) Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geol Soc Am Bull 117:926–944. doi:10.1130/B25646.1

    Google Scholar 

  • McClay KR, Insley MW (1986) Duplex structures in the lewis thrust sheet, crowsnest pass, rocky mountains, Alberta, Canada. J Struct Geol 8:911–922. doi:10.1016/0191-8141(86)90036-2

    Article  Google Scholar 

  • Molli G, Iacopini D, Pertusati PC et al (internet reference) Architecture, strain features and fault rock types of the South Tibetan Detachment system between Katra and Tingri (South Tibet Himalaya). http://209.85.175.104/search?q=cache:DWXY1Ve5_T8J:www.see.leeds.ac.uk/peachandhorne/friday/047_Mollietal.pdf+Architecture,+strain+features+and+fault+rock+types+of+the+South+Tibetan+Detachment+system+betwe&hl=en&ct=clnk&cd=1&gl=in; http://www.env.leeds.ac.uk/peachandhorne/friday/047_Mollietal.pdf (Accessed on 1 May 2008)

  • Mukherjee S (2005) Channel flow, ductile extrusion and exhumation of lower-middle crust in continental collision zones. Current Sci 89:435–436. http://www.iisc.ernet.in/currsci/aug102005/435.pdf

    Google Scholar 

  • Mukherjee S (2007) Geodynamics, deformation and mathematical analysis of metamorphic belts of the NW Himalaya. Unpublished PhD thesis. Indian Institute of Technology Roorkee, pp 1–267

  • Mukherjee S (2008) Manifestation of brittle thrusting in micro-scale in terms of micro-duplexes of minerals in the Higher Himalayan Shear Zone, Sutlej & Zanskar section, northwest Indian Himalaya. GeoMod2008. International Geological Modelling Conference. Florence, Italy. 22–24 September. Bolletino di Geofisica Teorica e Applicata 49:254–257

  • Mukherjee S (2009a) Channel flow model of extrusion of the higher Himalaya-successes & limitations. Geophysical Research Abstract. European Geosciences Union. Vienna, Austria, 19–24 April. vol. 11, EGU2009-13966. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-13966.pdf

  • Mukherjee S (2009b) Flanking Microstructures from the Zanskar Shear Zone, NW Indian Himalaya. Int J Earth Sci (submitted)

  • Mukherjee S (2009c) Flanking microstructures from the western Indian Himalaya. Abstract. MicroAnalysis, processes, time (MAPT) session: mineral microstructures: their implications and applications. The Mineralogical Society of Great Britain and Ireland. 30 August–04 September 2009. University of Edinburg (submitted)

  • Mukherjee S (2009d) Boudins from the Sutlej & the Zanskar Sections of the Western Indian Higher Himalaya. Geophysical Research Abstract. European Geosciences Union. Vienna, Austria, 19–24 April. vol. 11, EGU2009–13972. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-13972.pdf

  • Mukherjee S (2009e) Macroscopic ‘V’ pull-apart structure in garnet. Photo of the month. J Struct Geol. doi:10.1016/j.jsg.2008.10.014

  • Mukherjee S, Koyi HA (2009a) Flanking microstructures. Geol Mag 146:517–526. doi:10.1017/S0016756809005986

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2009b) Higher Himalayan Shear Zone, Zanskar Indian Himalaya—microstructural studies & extrusion mechanism by a combination of simple shear & channel flow. Int J Earth Sci (in press). doi:10.1007/s00531-009-0447-z; http://www.springerlink.com/content/k64l47n84884j428/fulltext.pdf

  • Mukherjee S, Pal P (2000) Tectonic structures of the Karakoram metamorphic belt, its significance in the Geodynamic Evolution. Unpublished Report. Summer Undergraduate Research Award. University of Roorkee

  • Mukherjee S, Koyi HA, Talbot CJ (2008) Double detachments and secondary thrusting inside the Higher Himalayan Shear Zone—intrinsic to extrusive flow patterns and independent to climate—insights from analogue models. GeoMod2008. International Geological Modelling Conference. Florence, Italy. 22–24 September. Bolletino di Geofisica Teorica e Applicata 49:257–261

  • Mukherjee S, Koyi HA, Talbot CJ (2009) Out-of-sequence thrust in the Higher Himalaya—a review & possible genesis, vol 11, EGU2009-13783. European Geosciences Union General Assembly. Geophys Res Abs. Vienna, Austria, 19–24 April. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-13783.pdf

  • Nelson KD, Zhao W, Brown LD et al (1996) Partially molten middle crust beneath Southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1688. doi:10.1126/science.274.5293.1684

    Article  Google Scholar 

  • Pai S-I (1956) Viscous Flow Theory I—Laminar flow. D. Van Nostrand, New Jersey, p 51

  • Papanastasiou CT, Georgiou GC, Alexandrou AN (2000) Viscous fuid flow. CRC Press, Florida, p 253

    Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin, p 43

    Google Scholar 

  • Patel RC, Singh S, Asokan A et al (1993) Extensional tectonics in the Himalayan orogen, Zanskar, NW India. In: Treloar PJ, Searle MP (eds) Himalayan Tectonics. Geological Society of London, Special Publication No 74, pp 445–459. doi:10.1144/GSL.SP.1993.074.01.30

  • Ramsay JG, Lisle R (2000) The techniques of modern structural geology 3: applications of continuum mechanics in structural geology. Academic Press, San Diego, pp 837–884

    Google Scholar 

  • Robinson D, DeCelles P, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models. Geol Soc Am Bull 118:865–885. doi:10.1130/B25911.1

    Google Scholar 

  • Rogers RH (1978) Fluid mechanics. Routledge & Kegan Paul, London, pp 93–109

    Google Scholar 

  • Saklani PS (2005) Tectonic geology of the main central thrust, Garhwal-Uttaranchal. In: Saklani PS (ed) Himalaya (Geological aspects). Satish Serial Publishing House, Delhi, pp 173–189. ISBN:81-89304-04-6.3

  • Scaillet B, Holtz F, Pichavant M (1996) Viscosity of Himalayan Leucogranites: implications for mechanisms of granite magma ascent. J Geophys Res 101:27691–27699. doi:10.1029/96JB01631

    Article  Google Scholar 

  • Schlichting H, Gersten K (1999) Boundary layer theory, 8th revised enlarged edn. Springer, Berlin

    Google Scholar 

  • Searle MP (1999) Extensional and compressional faults in the Everest-Lhotse massif, Khumbu Himalaya, Nepal. J Geol Soc London 156:227–240. doi:10.1144/gsjgs.156.2.0227

    Article  Google Scholar 

  • Searle MP, Godin L (2003) The South Tibetan Detachment and the Manaslu Leucogranite: a structural reinterpretation and restoration of the Annapurna–Manaslu Himalaya, Nepal. J Geol 111:505–523. doi:10.1086/376763

    Article  Google Scholar 

  • Searle MP, Cooper DJW, Rex AJ (1988) Collision tectonics of the Ladakh-Zanskar Himalaya. In: Shackleton RM, Dewey JF, Windley BF (eds) Tectonic evolution of the Himalayas and Tibet Phil Trans Royal Soc London A326, London, pp 117–150. doi:10.1098/rsta.1988.0082

  • Searle MP, Waters DJ, Rex DC et al (1992) Pressure, temperature and time constraints on Himalayan metamorphism from eastern Kashmir and Western Zanskar. J Geol Soc London 149:753–773. doi:10.1144/gsjgs.149.5.0753

    Article  Google Scholar 

  • Searle MP, Simpson RL, Law RD (2003) The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. J Geol Soc London 160:345–366. doi:10.1144/0016-764902-126

    Article  Google Scholar 

  • Singh S (1993) Collision tectonics: metamorphic and geochronological constraints from parts of Himachal Pradesh, NW-Himalaya. Unpublished PhD Thesis. University of Roorkee, India, pp 1–289

  • Singh S, Jain AK, Barley ME (2005) Himalayan orogenic channel: when did it start? Abstract Number: 58-SE-A0396. Asia Oceania Geosciences Society. Session: solid earth. 2nd Annual General Meeting 20–24 June 2005, Singapore. http://www.asiaoceania.org/abstract/se/58-SEA0396.pdf

  • Spurk J (1993) Fluid mechanics problems and solutions. Springer, Berlin, pp 58–60

    Google Scholar 

  • Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh. Geological Society of India, Bangalore, pp 1–406

    Google Scholar 

  • Stephenson BJ, Waters DJ, Searle MP (2000) Inverted metamorphism and the Main Central Thrust: field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya. J Meta Geol 18:571–590. doi:10.1046/j.1525-1314.2000.00277.x

    Article  Google Scholar 

  • Stephenson BJ, Searle MP, Waters DJ et al (2001) Structure of the Main Central Thrust zone and extrusion of the High Himalayan deep crustal wedge, Kishtwar–Zanskar Himalaya. J Geol Soc Lond 158:637–652

    Article  Google Scholar 

  • Talbot CJ, Aftabi P (2004) Geology and models of salt extrusion at Qum Kuh, central Iran. J Geol Soc London 161:321–334. doi:10.1144/0016-764903-102

    Article  Google Scholar 

  • ten Grotenhuis SM, Passchier CW, Bons PD (2002) The influence of strain localization on the rotation behaviour of rigid objects in experimental shear zones. J Struct Geol 24:485–499. doi:10.1016/S0191-8141(01)00072-4

    Article  Google Scholar 

  • Thakur VC (1992) Geology of Western Himalaya. Oxford, Pergamon

    Google Scholar 

  • Thiede RC, Bookhagen B, Arrowsmith JR et al (2004) Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet Sci Lett 222:791–806. doi:10.1016/j.epsl.2004.03.015

    Article  Google Scholar 

  • Treagus S, Lan L (2004) Deformation of square objects and boudins. J Struct Geol 26:1361–1376. doi:10.1016/j.jsg.2003.12.002

    Article  Google Scholar 

  • Treagus SH, Hudleston PJ, Lan L (1996) Non-ellipsoidal inclusions as geological strain markers and competence indicators. J Struct Geol 18:1167–1172. doi:10.1016/0191-8141(96)00039-9

    Article  Google Scholar 

  • Tripathi A, Gairola VK (1999) P–T conditions of metamorphism in the Garhwal Nappe. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya. Gond Res Gr Mem No 6. Field Science, Osaka, pp 167–172

    Google Scholar 

  • Valdiya KS (1998) Dynamic Himalaya. University Press, Bangalore

    Google Scholar 

  • Valdiya KS (2001) Reactivation of terrane-defining boundary thrusts in central sectors of the Himalaya: implications. Curr Sci 81:1418–1431

    Google Scholar 

  • Vannay J-C, Grasemann B (1998) Inverted metamorphism in the High Himalaya of Himachal Pradesh (NW India): phase equilibria versus thermobarometry. Schweiz Mineral Petrogr Mitt 78:107–132

    Google Scholar 

  • Vannay J-C, Grasemann B (2001) Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol Mag 138:253–276. doi:10.1017/S0016756801005313

    Article  Google Scholar 

  • Vannay J-C, Sharp DZ, Grasemann B (1999) Himalayan inverted metamorphism constrained by oxygen thermometry. Contrib Mineral Petrol 137:90–101. doi:10.1007/s004100050584

    Article  Google Scholar 

  • Vannay JC, Grasemann B, Rahn M et al (2004) Miocene to Holocene exhumation of metamorphic crustal wedge in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23(TC1014):1–24. doi:10.1029/2002TC001429

    Google Scholar 

  • Walker JD, Martin MW, Bowring SA et al (1999) Metamorphism, melting and extension: age constraints from the High Himalayan slab of southeast Zanskar and northwest Lahul. J Geol 107:473–495. doi:10.1086/314360

    Article  Google Scholar 

  • Walker CB, Searle MP, Waters DJ (2001) An integrated tectonothermal model for the evolution of the High Himalaya in western Zanskar with constraints from thermobarometry and metamorphic modeling. Tectonics 20:810–833. doi:10.1029/2000TC001249

    Article  Google Scholar 

  • Whipp DM Jr, Ehlers TA, Blythe AE et al (2005) Kinematic and erosion History of the Greater Himalayan Sequence, Central Nepal from Integrated Thermochronology and Numerical Modeling. Salt Lake City Annual Meeting. October 16–19. Geol Soc Am Abstr with Programs vol 37, 346 pp

  • Wobus C, Heimsath A, Whipple K (2005) Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434:1008–1011. doi:10.1038/nature03499

    Article  Google Scholar 

  • Wu C, Nelson KD, Wortman G et al (1998) Yadong cross structure and South Tibetan Detachment in the east central Himalaya (890–900 E). Tectonics 17:28–45. doi:10.1029/97TC03386

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, extrusion history, and foreland sedimentation. Earth-Sci Rev 76:1–131. doi:10.1016/j.earscirev.2005.05.004

    Article  Google Scholar 

Download references

Acknowledgments

SM acknowledges the Guest Scholarship (2005–2006) of Swedish Institute, 2002–2007 Junior and Senior Research Fellowships (grant numbers: F.NO.2-48/2001(II)EU.II and 9/143(441)/2003-EMR-I, respectively) of the Council of Scientific and Industrial Research (India), 2008 Research Associateship of Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR, India) and 2009 onwards ‘Seed Grant’ (Spons/GS/SM-1/2009) of Indian Institute of Technology Bombay. Swedish Research Council supported HAK. Discussions with K. C. Sahu (Imperial College) and C. J. Talbot (Uppsala University) on channel flow, and with A. K. Jain (Indian Institute of Technology Roorkee) on Himalayan geology were beneficial. C. J. Talbot owes additional thanks to help us in designing the ‘channel flow box’ (Fig. 22), fine tuning the English and sharpening research problems. R. Chakrabarti (Harvard University), S. Bhattacharyya (Alabama University) and A. Ghatak (Rochester University) constantly updated us on Himalayan Geology. Several interactions with R. Govindarajan (JNCASR) led SM to correlate channel flow with the Himalayan tectonics. The ‘channel flow box’ was manufactured by Sören Karlson (Uppsala University). A number of constructive reviews by B. C. Burchfiel (Massachusetts Institute of Technology) significantly improved the manuscript. W-C. Dullo, M. Dullo and the Indian Springer team are thanked for their efficient editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Mukherjee.

Appendices

Appendix 1: Simple shear flow (line 1 in Fig. 16a)

Steady plane laminar flow of an incompressible Newtonian fluid within a very long NE–SW oriented channel with parallel- and horizontal walls is given by

$$ {\text{d}}P/{\text{d}}x = \mu \left( {{\text{d}}^{2} x/{\text{d}}y^{2} } \right) $$
(1)

(Schlichting and Gersten 1999) Here, dP/dx pressure gradient along X-direction, μ viscosity. Putting dP/dx = 0, for simple shear,

$$ \left( {{\text{d}}^{2} x/{\text{d}}y^{2} } \right) = 0 $$
(2)

Integrating twice, taking the channel thickness ‘2y o’ and velocity of walls x = −U 2, U 1 at y = −y 0, y 0, respectively, the flow profile is:

$$ x = 0.5\left( {U_{1} - U_{2} } \right) + 0.5yy_{0}^{ - 1} \left( {U_{1} + U_{2} } \right) $$
(3)

Putting x = 0 in Eq. 3, the coordinate of the pivot, defined by intersection between the y-axis and the velocity profile, is P 1 ≡ [0,y 0(U 1 − U 2)(U 1 + U 2)−1]

Appendix 2: Channel flow/Poiseuille flow (curve 2 in Fig. 16a)

A channel with geometry, orientation and rheology same as that of the previous case is considered. Here U 1,U 2 = 0 at y = + y 0, −y 0, dP/dx is a constant ≠0. Integrating Eq. 2 twice and using these boundary conditions, the profile as in many fluid mechanics text e.g. Pai (1956) is

$$ x = - 0.5\mu^{ - 1} \left( {dP/dx} \right)\left( {y_{0}^{2} -y^{2} } \right) $$
(4)

The vertex of this parabolic profile is [0.5μ−1 y 20 (dP/dx), 0]

Appendix 3: Velocity profile of general shearing (Fig. 15b)

We first consider pure shear on a rectangle ABCD where a pair of opposite walls, AD and BC, move with unequal velocities U 3 and U 4, respectively (U 3 > U 4) (Fig. 15a). Let AD and AB are of lengths ‘l’ and ‘2y 0’, respectively. Points A (0, y 0) and B (0, −y 0) on the two walls, after instant ‘t’ come to A′(0, y 0 − U3 t) and B′(0, U 4 t − y 0). The line AB is deformed into a parabolic velocity profile P1 (Spurk 1993, pp 58–60), which is the velocity profile at A and B. The vertex of the parabolic profile is equidistant from these two points. Therefore, the Y-ordinate of vertex is −0.5 t (U 3 − U 4). Let the X-ordinate of the vertex is ‘p’. Thus the vertex has the coordinate [p, −0.5 t (U 3 − U 4)]. Let the equation of this parabola is

$$ y^{2} + Dx + Ey + F = 0 $$
(5)

Putting the co-ordinate of A′and B′ in Eq. 5, E and F are solved, put back in Eq. 5, and is rewritten,

$$ x = - D^{ - 1} \left[ {\left( {U_{3} - U_{4} } \right)ty + \left( {y_{0} - U_{3} t} \right)\left( {U_{4} t - y_{0} } \right) + y^{2} } \right] $$
(6)

Area bounded by this parabola with the y-axis between coordinates A′[0, (y 0 − U3 t)] and B′[0, (U 4 t − y 0)] is

$$ A_{1} = - D^{ - 1} \int\limits_{{\left( {U_{4} t - y_{0} } \right)}}^{{\left( {y_{0} - U_{3} t} \right)}} {\left[ {y^{2} + \left( {U_{3} - U_{4} } \right)ty + \left( {y_{0} - U_{3} t} \right).\left( {U_{4} t - y_{0} } \right)} \right]} {\text{dy}} $$
(7)

or,

$$ A_{1} = - 0.17D_{.}^{ - 1} \left( {2y_{0} -U_{3} t - U_{4} t} \right)\left\{ {4\left( {y_{0} - U_{3} t} \right)\left( {U_{4} t - y_{0} } \right) - t^{2} \left( {U_{3} - U_{4} } \right)^{2} } \right\} $$
(8)

Assuming a constant area deformation (Spurk 1993), it can be stated that the area bounded by the parabola P1 with the y-axis is half to that of area lost from the original rectangle due to compression, i.e.

$$ A_{1} = 0.5\left( {U_{3} + U_{4} } \right)tL $$
(9)

Eliminating ‘A 1’ from Eqs. 8 and 9

$$ D = - 0.33t^{ - 1} L^{ - 1} \left( {U_{3} + U_{4} } \right)^{ - 1} \left( {2y_{0} - U_{3} t-U_{4} t} \right)\left[ {t\left( {U_{3} + U_{4} } \right)\left\{ {4y_{0} - \left( {U_{3} + U_{4} } \right)t} \right\} - {4y_{0} }^{2} } \right] $$
(10)

Putting this in Eq. 5 along with the values of E and F, the parabolic velocity profile for pure shear at point A is

$$ \begin{aligned} x = & \left( {2y_{0} - U_{3} t - U_{4} t} \right)^{ - 1} \left[ {\left( {U_{3} + U_{4} } \right)t\left\{ {4y_{0} - \left( {U_{3} + U_{4} } \right)t} \right\} - {4y_{0} } ^{2} } \right]^{ - 1} \\ & \quad \times 3Lt\left( {U_{3} + U_{4} } \right)\left[ {y^{2} + \left( {U_{3} - U_{4} } \right)ty + \left( {y_{0} - U_{3} t} \right)\left( {U_{4} t - y_{0} } \right)} \right] \\ \end{aligned} $$
(11)

Now a NE–SW oriented rectangle with very long length sides and full of incompressible Newtonian rheology and viscosity μ undergoing general shear by a pure shear and another component of top-to-SW sense of simple shearing (Fig. 15b) is represented by

$$ x_{\text{general\;shear}} = x_{\text{pure\;shear}} + x_{\text{simple\;shear}} $$
(12)

Putting the expressions for x pure shear and x simple shear from Eqs. 3 and 11 in 12.

$$ \begin{aligned} x_{\text{general\;shear}} = & \left( {2y_{0} - U_{3} t - U_{4} t} \right)^{ - 1} \left[ {\left( {U_{3} + U_{4} } \right)t\left\{ {4y_{0} - t\left( {U_{3} + U_{4} } \right)} \right\} - {4y_{0} } ^{2} } \right]^{ - 1} 3Lt\left( {U_{3} + U_{4} } \right) \\ & \quad \left[ {y^{2} + \left( {U_{3} - U_{4} } \right)yt + \left( {y_{0} - U_{3} t} \right)\left( {U_{4} t - y_{0} } \right)} \right] + 0.5\left( {{\text{U}}_{1} -{\text{U}}_{2} } \right) + {0.5{\text{yy}}_{0}^{ - 1} \left( {{\text{U}}_{1} + {\text{U}}_{2} } \right)} \\ \end{aligned} $$
(13)

As this is a quadratic expression of y, it represents a parabola. The Y-ordinate of the vertex is

$$ \begin{gathered} Y \equiv 0.5[\left( {U_{4} - U_{3} } \right)t - \left( {U_{1} + U_{2} } \right)\{ \left( {2y_{0} - U_{3} t - U_{4} t} \right) \hfill \\ \times\left\{ {\left( {U_{3} + U_{4} } \right)t\left( {4y_{0} - U_{3} t - U_{4} t} \right) - 4y_{0}^{2} } \right\}\left\{ {1.5Lt\left( {U_{3} + U_{4} } \right)} \right\}^{ - 1} {\text{y}}_{0}^{ - 1} ] \hfill \\ \end{gathered} $$
(14)

Therefore, the thickness of the STDSU characterized by a top-to-NE sense of shearing within the top of the deformed rectangle is given by

$$ T^{\prime} = \left( {y_{0} - U_{3} t} \right) - Y $$
(15)

The zone of top-to-NE shearing does not form when

$$ T^\prime \le 0 $$
(16)

Appendix 4: A combination of simple shear and channel flow in a shifting mode (curve 3 in Fig. 17)

A channel with geometry, orientation and rheology same as that of "Appendix 1" is considered. The velocities are x = U 11, –x = U 21 at y = y 0, −y 0, respectively, at the boundaries; also a pressure gradient (dP 1/dx) acts. Using these in Eq. 2, the velocity profile, defined within y = y 0,−y 0, is

$$ x = 0.5\left( {U_{11} -U_{21} } \right) + 0.5yy_{0}^{ - 1} \left( {U_{11} + U_{21} } \right)-0.5\mu^{ - 1} \left( {{\text{d}}P_{1} /{\text{d}}x} \right)\left( {y_{0}^{2} -y^{2} } \right) $$
(17)

From Eqs. 3, 4 and 17, we note that x combined flow = x simple shear + x channel flow.

The parabolic profile given by Eq. 17 has its vertex at:

  • X-ordinate: 0.5 (U11 − U21) – 0.125 y −20 (U11 + U21)2 μ (dx/dP1) – 0.5 μ−1y 20 (dP1/dx)

  • Y-ordinate: −0.5y −10 μ (U11 + U21)(dx/dP1)

The maximum value of the X-ordinate on profile 17 is obtained at the vertex. Therefore, the fluid attains highest velocity U 3 = X-ordinate at the vertex. For another combined simple shear and channel flow in the sub-channel defined by the walls y = −t, −y 0 due to their shear velocities x = U 12, −U 22, respectively, and a pressure gradient (dP 2/dx < 0), the velocity profile is to be deduced. Transforming O′[0,−0.5 (y 0 + t)] as the new origin [0,0], the old coordinates [0,−t] and [0,0] become [0,0.5 (y 0 − t)], and [0,0.5 (y 0 + t)], respectively. Substituting y 0 = 0.5 (y 0 − t), U 11 = U 12, U 21 = U 22 and (dP 1/dx) = (dP 2/dx) in Eq. 17, the velocity profile, defined within y = 0.5 (y 0 − t), 0.5 (y 0 + t), with reference to the new coordinate axes, is

$$ x = 0.5\left( {U_{12} - U_{22} } \right) + 0.5\left( {U_{12} + U_{22} } \right)\left( {y_{0} - t} \right)^{ - 1} y-0.5\mu^{ - 1} \left( {{\text{d}}P_{2} /{\text{d}}x} \right)\left[ {\left\{ {0.5\left( {{\text{y}}_{0} - {\text{t}}} \right)} \right\}^{2} - {\text{y}}^{2} } \right] $$
(18)

Now going back from new origin O′[0,0] to the old origin O [0,0.5 (y 0 + t)], Eq. 18 is rewritten

$$ \begin{aligned} x = & 0.5\left( {U_{12} - U_{22} } \right) + \left( {U_{12} + U_{22} } \right)\left( {y_{0} - t} \right)^{ - 1} \left[ {y - 0.5\left( {y_{0} + t} \right)} \right] \\ & \quad -0.5\mu^{ - 1} \left( {{\text{d}}P_{2} /{\text{d}}x } \right)\left[ {\left( {y_{0} + t} \right) - \left\{ {0.5\left( {y_{0}^{2} + t^{2} } \right)} \right\} - y^{2} } \right] \\ \end{aligned} $$
(19)

The profiles given by Eqs. 17 and 19 have zones of top-to-NE shearing, the STDSU and the STDSL, respectively, with thicknesses

$$ T_{1} = y_{0} -0.5y_{0}^{ - 1} \left( {U_{11} + U_{21} } \right)\mu_{1} \left( {{\text{d}}P_{1} /{\text{d}}x} \right)^{ - 1} $$
(20)
$$ T_{2} = 0.5\left( {y_{0} - t} \right)-\left( {y_{0} - t} \right)^{ - 1} \left( {U_{12} + U_{22} } \right)\mu_{2} \left( {{\text{d}}P_{2} /{\text{d}}x} \right)^{ - 1} $$
(21)

The thickness of the HHSZ outside the respective detachments are

$$ T_{1} {}^{\prime} = \left[ {y_{0} + 0.5y_{0}^{ - 1} \left( {U_{11} + U_{21} } \right)\mu_{1} \left( {{\text{d}}P_{1} /{\text{d}}x} \right)^{ - 1} } \right] $$
(22)
$$ {\text{T}}_{2}^{\prime} = \left[ {\left( {{\text{y}}_{0} - {\text{t}}} \right) + 0.5\left( {{\text{y}}_{0} - {\text{t}}} \right)^{ - 1} \left( {{\text{U}}_{12} + {\text{U}}_{22} } \right)\mu_{2} \left( {{\text{dP}}_{2} /{\text{dx}}} \right)^{ - 1} } \right] $$
(23)

From Eqs. 2023, we note T 1 < T 1′and T 2 < T 2′. From Eq. 19, the STDSU does not form when

$$ \left( {U_{11} + U_{21} } \right)\left( {{\text{d}}P_{1} /{\text{d}}x} \right)^{ - 1} = {\text{or}} > \left( {2y_{0}^{2} \mu_{1}^{ - 1} } \right);\quad T_{1} = {\text{or}} < 0 $$
(24)

From Eq. 21, the STDSL does not form when

$$ \left( {U_{12} + U_{22} } \right)\left( {{\text{d}}P_{2} /{\text{d}}x} \right)^{ - 1} = {\text{or}} > \left[ {2\left( {y_{0} - {\text{t}}} \right)^{2} \mu_{2}^{ - 1} } \right];\quad T_{2} = {\text{or}} < 0 $$
(25)

Note that for certain combination of flow parameters (y 0, U 11, U 21, μ1, dP 1/dx, t, U 12, U 22, μ2 and dP 2/dx), T 2 is <T 1.

Appendix 5: Combined flow through a two-layer HHSZ (Fig. 20)

A channel of same geometry and geographic orientation as "Appendix 1" is considered. The channel is assumed to be full with two immiscible Newtonian fluids- the top and the bottom layers with viscosities μ1 and μ2, respectively (μ1 < μ2). The line y = t (0 < t < −y 0) is taken as the fluid interface. The top- and the bottom walls are sheared with velocities U 1 and −U 2, respectively, and (dP/dx) < 0. The distribution of velocities in the top- and the bottom layers of the fluid are x1 and x2, respectively. The following deductions are based on steps similar to those in Papanastasiou et al. (2000). From Navier–Stokes equation, for the top and the bottom fluid layers

$$ \left( {{\text{d}}P/{\text{d}}x} \right) = \mu_{1} \left( {{\text{d}}^{2} x_{1} /{\text{d}}y_{2} } \right) $$
(26)
$$ \left( {{\text{d}}P/{\text{d}}x} \right) = \mu_{2} \left( {{\text{d}}^{2} x_{2} /{\text{d}}y_{2} } \right) $$
(27)

At the fluid interface, i.e. at the line y = t, the momentum flux is continuous through fluid–fluid interface. In other words, at y = t,

$$ \mu_{1} \left( {{\text{d}}x_{1} /{\text{d}}y} \right) = \mu_{2} \left( {{\text{d}}x_{2} /{\text{d}}y} \right) $$
(28)

Integrating Eqs. 26 and 27:

$$ \left( {{\text{d}}x_{1} /{\text{d}}y} \right)\mu_{1} = y\left( {{\text{d}}P/{\text{d}}x} \right) + C $$
(29)
$$ \left( {{\text{d}}x_{2} /{\text{d}}y} \right)\mu_{2} = y\left( {{\text{d}}P/{\text{d}}x} \right) + C^{\prime} $$
(30)

From Eqs. 28, 29, and 30, C = C′. Integrating Eqs. 29 and 30

$$ x_{1} = 0.5y^{2} \mu_{1}^{ - 1} \left( {{\text{d}}P/{\text{d}}x} \right) + Cy\mu_{1}^{ - 1} + C_{1} $$
(31)
$$ x_{2} = 0.5y^{2} \mu_{2}^{ - 1} \left( {{\text{d}}P/{\text{d}}x} \right) + Cy\mu_{2}^{ - 1} + C_{2} $$
(32)

Now at y = t, x 1 = x 2; at y =+y 0, x 1 = U 1; and at y = −y 0, x 2 = −U 2. Using these in Eqs. 31 and 32, C 1 = C 2. Using this back in Eqs. 31 and 32, C and C 1 are solved and put in those equations:

$$ \begin{aligned} x_{1} = & 0.5\mu_{1}^{ - 1} y^{2} \left( {{\text{d}}P/{\text{d}}x} \right) \\ & + y\mu_{1}^{ - 1} \left[ {\left( {U_{1} + U_{2} } \right)y_{0}^{ - 1} \left( {\mu_{1}^{ - 1} + \mu_{2}^{ - 1} } \right)^{ - 1} - 0.5y_{0} \left( {{\text{d}}P/{\text{d}}x} \right)\left( {\mu_{1}^{ - 1} - \mu_{2}^{ - 1} } \right)\left( {\mu_{1}^{ - 1} + \mu_{2}^{ - 1} } \right)^{ - 1} } \right] \\ & + \left[ {\left\{ {\left( {U_{1} \mu_{1} - U_{2} \mu_{2} } \right)-{\text{y}}_{0}^{2} \left( {{\text{d}}P/{\text{d}}x} \right)} \right\}\left( {\mu_{1} + \mu_{2} } \right)^{ - 1} } \right] \\ \end{aligned} $$
(33)
$$ \begin{aligned} x_{2} = & 0.5y^{2} \mu_{2}^{ - 1} \left( {{\text{d}}P/{\text{d}}x} \right) \\ & + y\mu_{2}^{ - 1} \left[ {\left( {U_{1} + U_{2} } \right)y_{0}^{ - 1} \left( {\mu_{1}^{ - 1} + \mu_{2}^{ - 1} } \right)^{ - 1} - 0.5y_{0} \left( {{\text{d}}P/{\text{d}}x} \right)\left( {\mu_{1}^{ - 1} - \mu_{2}^{ - 1} } \right)\left( {\mu_{1}^{ - 1} + \mu_{2}^{ - 1} } \right)^{ - 1} } \right] \\ & + \left[ {\left\{ {\left( {U_{1} \mu_{1} - U_{2} \mu_{2} } \right) - y_{0}^{2} \left( {{\text{d}}P/{\text{d}}x} \right)} \right\}\left( {\mu_{1} + \mu_{2} } \right)^{ - 1} } \right] \\ \end{aligned} $$
(34)

As these are quadratic equations of ‘y’, they represent parabolas with the same ‘Y’-ordinate of their vertices

$$ Y \equiv - \left( {U_{1} + U_{2} } \right)y_{0}^{ - 1} \left( {\mu_{1}^{ - 1} + \mu_{2}^{ - 1} } \right)^{ - 1} \left( {{\text{d}}P/{\text{d}}x} \right)^{ - 1} + 0.5y_{0} \left( {\mu_{1}^{ - 1} - \mu_{2}^{ - 1} } \right)\left( {\mu_{1}^{ - 1} + \mu_{2}^{ - 1} } \right)^{ - 1} $$
(35)

Appendix 6: Flow restricted within the upper parts of the HHSZ (Fig. 21)

We choose a channel with a geometry, geographic orientation and rheology same as that of case- (I). A simple shear of top-to-SW sense with velocities of its top and bottom walls as U 1 and −U 2, respectively, and that only top portion of the channel (y = t to y 0) have an additional flow component imparted by the pressure gradient (dP/dx). Replacing ‘t’ in ‘y’ in Eq. 3, velocity along the X-direction at coordinate (0,t) is

$$ x = 0.5\left( {U_{1} - U_{2} } \right) + 0.5y_{0}^{ - 1} {\text{t}}\left( {U_{1} + U_{2} } \right) $$
(36)

Thus, in the upper sub-channel, velocities of its boundaries are: x =+U 1, at y = y 0 and at y = t, x = 0.5 (U 1 − U 2) +0.5 y −10 t (U 1 + U 2).

Using these conditions and parameters in Eq. 2, the velocity profile in the upper sub-channel is

$$ \begin{aligned} {{x}} = & 0.5\mu^{ - 1} y^{2} \left( {{\text{d}}P/{\text{d}}x} \right) + \left\{ {0.5yy_{0}^{ - 1} \left( {U_{1} + U_{2} } \right)} \right\}-0.5y\mu^{ - 1} \left( {{\text{d}}P/{\text{d}}x} \right)\left( {y_{0} + t} \right) \\ & \quad + 0.5\left( {U_{1} - U_{2} } \right) + 0.5t\mu^{ 1} y_{0} \left( {{\text{dP}}/{\text{dx}}} \right) \\ \end{aligned} $$
(37)

The Y-ordinate of the vertex of the parabolic profile is

$$ {{Y}} \equiv 0.5\left[ {({\text{y}}_{0} + {\text{t}}) - \mu ({\text{d}}P/{\text{d}}x)^{ - 1} y_{0}^{ - 1} ({\text{U}}_{1} + {\text{U}}_{2} )} \right]. $$
(38)

Three profiles 3, 2, and 1 are presented in Fig. 21 for Y>, =, and <y 0, respectively. Only in the former case, an STDSU forms with a thickness

$$ T = (y_{0} - Y) $$
(39)

Appendix 7: Calculations for analogue models

The Reynolds Number is defined as

$$ R_{e} = \rho {\text{vy}}_{0} \mu^{ - 1} $$
(40)

where ρ density of the fluid, μ dynamic viscosity of the fluid, y 0 half the width of the channel, and v velocity of flow. In the real situation of the HHSZ, taking crustal density ρ = 2.7 gm cm−3, viscosity of partially molten mid-crustal rocks μ = 1019 Pa s (as taken by Jamieson et al. 2004), v = 4.8 mm year−1 (the maximum value for the Zanskar Shear Zone, a continuation of the STDSU, as given by Dèzes et al. 1999), Re comes out in the order of 10−21.

In the model, taking the density of the PDMS ρ = 0.95 gm cm−3, μ = 105 Pa s (Talbot and Aftabi 2004 and references therein), the slowest velocity of extrusion attained v = 3 mm per 10 min, half the width of the model HHSZ (y 0) = 1.25 cm in few experiments, Re comes out in the order of 10−14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Koyi, H.A. Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci (Geol Rundsch) 99, 1267–1303 (2010). https://doi.org/10.1007/s00531-009-0459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0459-8

Keywords

Navigation