Skip to main content
Log in

Shear Senses and Viscous Dissipation of Layered Ductile Simple Shear Zones

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Velocity profiles and shear heat profiles for inclined, layered Newtonian simple shear zones are considered. Reverse fault-like simple shear of the boundaries and upward net pressure gradient act together in such shear zones. As the velocity of the boundary increases, the point of highest velocity shifts from the lower layer of less viscosity into the upper layer. The shear heat profile shows a temperature peak inside the lower layer. For a more viscous upper layer, the point of highest velocity is located inside the upper layer and shifts towards the upper boundary of the shear zone. The shear heat profile shows a maximum temperature within the upper layer. Depending on the flow parameters of the two layers, the slip rate of the boundary, and the dip and thickness of the shear zone, a shear sense in reverse to the relative movement of the shear zone boundaries may develop. These models can decipher thermo-kinematics of layered shear zones in plate-scale hot orogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altenberger, U. (1997), Strain localization mechanisms in deep-seated layered rocks. Geol. Rund. 86 56–68.

  • Beaumont, C., Jamieson, R.A., Nguyen, M.H. and Lee, B. (2001), Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742.

  • Berthé, D., Choukroune, P., Jegouzo, P. (1979), Orthogneiss, mylonite and non-coaxial deformation of granites: the example from the south Armorican shear zone. J. Struct. Geol. 1, 31–42.

  • Chen, Y., Ziang, D., Zhu, G. and Xiang, B. (2014), The formation of micafish: A modelling investigation based on micromechanics. J. Struct. Geol. 68, 300–315.

  • Díaz Azpiroz, M. and Fernández, C. (2005), Kinematic analysis of the southern Iberian shear zone and tectonic evolution of the Acebuches metabasites (SW Variscan Iberian Massif). Tectonics 24, TC3010.

  • Druguet, E., Alsop, G.I. and Carreras, J. (2009), Coeval brittle and ductile structures associated with extreme deformation partitioning in a multilayer sequence. J.Struct. Geol. 31, 498–511.

  • Fleitout, L. and Froideavaux, C. (1980), Thermal and mechanical evolution of shear zones. J. Struct. Geol. 2, 159–164.

  • Godin, L., Grujic, D., Law, R.D. and Searle, M.P. (2006), Channel flow, extrusion and extrusion in continental collision zones: an introduction. In: Law RD, Searle MP (eds) Channel flow, extrusion and extrusion in continental collision zones. Geol. Soc. Lond. Spec. Publ. 268, 1–23.

  • Henderson, P., Henderson, G.M. (2009), The Cambridge Handbook of Earth Science Data. Cambridge University Press. pp. 65–67.

  • Hobbs, B.E. (1972), Deformation of non-Newtonian materials in simple shear. Flow and fracture of rocks. (H.C. Heard, I.Y. Borg, N.L. Carter and B.C. Raleigh, eds) Am. Geophys. Union, Geophys. Monograph 16, 243–258.

  • Hudleston, P.J. and Lan, L. (1993), Information from fold shapes. J. Struct. Geol. 15, 253–264.

  • Hudleston PJ, Treagus SH. (2010), Information from folds: A review. J. Struct. Geol. 32, 2042–2071.

  • Jousselin, D., Morales, L.F.G., Nicolle, M. and Stephent A. (2012), Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone. Earth Planet. Sci. Lett. 331–332, 55–66.

  • Larson, K.P., Godin, L. and Price, R.A. (2010), Relationships between displacement and distortion in orogens: linking the Himalayan foreland and hinterland in central Nepal. Geol. Soc. Am. Bull. 122, 1116–1134.

  • Lautrup, B. (2011), Physics of continuous matter. Second Edition. Taylor & Francis. p. 381.

  • Lister, G.S. and Williams, P.F. (1983), The partitioning of deformation in flowing rock masses. Tectonophysics 92, 1–33.

  • Mandal, N., Samanta, S.K. and Chakraborty, C. (2002), Flow and strain patterns at the terminations of tapered shear zones. J. Struct. Geol. 24, 297–309.

  • Masuda, T. and Kimura, N. (2004), Can a Newtonian viscous-matrix model be applied to microboudinage of columnar grains in quartzose tectonites? J. Struct. Geol. 26, 1749–1754.

  • Montesi, L.G.T. (2013), Fabric development as the key for forming ductile shear zones and enabling plate tectonics. J. Struct. Geol. 50, 254–266.

  • Mukherjee, S. (2010), Structures at Meso- and Micro-scales in the Sutlej section of the Higher Himalayan Shear Zone in Himalaya. e-Terra 7, 1–27.

  • Mukherjee, S. (2011), Mineral fish: their morphological classification, usefulness as shear sense indicators and genesis. Int. J. Earth Sci. 100, 1303–1314.

  • Mukherjee, S. (2012), Simple shear is not so simple! Kinematics and shear senses in Newtonian viscous simple shear zones. Geol. Mag. 149, 819–826.

  • Mukherjee, S. (2013a), Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int. J. Earth Sci. 102, 1811–1835.

  • Mukherjee, S. (2013b), Deformation Microstructures in Rocks. Springer.

  • Mukherjee, S. (2014), Atlas of shear zone structures in meso-scale. Springer.

  • Mukherjee, S. and Biswas, R. (2014), Kinematics of horizontal simple shear zones of concentric arcs (Taylor–Couette flow) with incompressible Newtonian rheology. Int. J. Earth Sci. 103, 597–602.

  • Mukherjee, S. and Mulchrone, K.F. (2012), Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome, Indian western Himalaya. Int. J. Earth Sci. 101, 1929–1947.

  • Mukherjee, S. and Mulchrone, K.F. (2013), Viscous dissipation pattern in incompressible Newtonian simple shear zones: an analytical model. Int. J. Earth Sci. 102, 1165–1170.

  • N i colas, A. (1992), Kinematics in magmatic rocks with special reference to gabbros. J. Petrol. 33, 891–915.

  • Passchier, C.W. and Trouw, R.A.J. (2005), Microtectonics. Springer. Second Edition. Berlin.

  • Papanstasiou, C.T., Georgioi, G.C. and Alexandrou, A.N. (2000), Viscous Fluid Flow. Florida: CRC Press.

  • Pili, E., Ricard, Y., Lardeaux, J.-M. and Sheppard, S.M.F. (1997), Lithospheric shear zones and mantle-crust connections. Tectonophysics 280, 15–29.

  • Pozrikidis, C. (2009), Fluid dynamics: Theory, Computation, and Numerical Simulation. Second Edition, Springer, New York, pp. 360–424.

  • Ramberg, H. (1981), Gravity, deformation and the Earth’s crust in theory, experiments and geological applications. 2nd edn. Academic Press, London.

  • Ramsay, J.G. (1980), Shear zone geometry: a review. J. Struct. Geol. 2, 83–99.

  • Ranal l i, G. (1984), On the possibility of Newtonian flow in the upper mantle. Tectonophysics 108, 179–192.

  • Regenauer-lieb, K. and Yuen, D.A. (2003), Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal–mechanical approaches. Earth Sci. Rev. 63, 295–349.

  • Rivers, T. (2009), The Grenville province as a large hot long-duration collisional orogen—insights from the spatial and thermal evolution of its orogenic fronts. Ancient Orogens and Modern Analogues. (J.B. Murphy, J.D. Keppie, and A.J. Hynes, eds) Geol Soc, London, Spec Publ 327, 405–444.

  • Regenauer-Lieb, K. and Yuen, D.A. (2003), Modeling shear zones in geological and planetary sciences: solid-and fluid-thermal-mechanical approaches. Earth Sci. Rev. 63, 295–349.

  • Rhodes, S. and Gayer, R.A. (1978), Non-cylindrical folds, linear structures in the X direction and mylonite developed during transtension of the Caledonian Kalak Nappe Complex of Finnmark. Geol. Mag. 114, 329–408.

  • Shields, J. K., Mader, H. M., Pistone, M., Caricchi, L., Floess, D.and Putlitz B. (2014), Strain-induced outgassing of three-phase magmas during simple shear. J. Geophys. Res. Solid Earth 119, 6936–6957.

  • Starin, L., Yuen, D.A., Bergeron, S.Y. (2000), Thermal evolution of sedimentary basin formation with variable thermal conductivity. Geophys. Res. Lett. 27, 265–268.

  • Rosenberg, C.L., Handy, M.R. (2000), Syntectonic melt pathways during simple shearing of a partially molten rock analogue (Norcamphor-Benzamide). J. Geophys. Res. 105, 3135–3149.

  • Turcotte, D. and Schubert, G. (2014), Geodynamics. Third Edition. Cambridge University Press.

  • Twiss, R.J. and Moores, E.M. (2007), Structural Geology. 2nd ed. New York: W. H Freeman and Company, 736 pp.

  • Vigneresse, J.L. (2004), Rheology of a two-phase material with applications to partially molten rocks, plastic deformation and saturated soils. In: Flow Processes in Faults and Shear Zones. (G.I. Alsop, R.E. Holdsworth and K.J.M. McCafrey, eds) Geol. Soc., London, Special Publication 224, pp. 79–94.

  • Vitale, S. and Mazzoli, S. (2008), Heterogeneous shear zone evolution: the role of shear strain hardening/softening. J. Struct. Geol. 30, 1363–1395.

  • Vitale, S. and Mazzoli, S. (2015), From finite to incremental strain: insights into heterogeneous shear zone evolution. In: Mukherjee S, Mulchrone KF (Eds) Kinematics of Ductile Shear Zones in Meso- and Micro-scales. Wiley Blackwell.

  • Warren, C.J., Beaumont, C. and Jamieson, R.A. (2008a), Deep subduction and rapid exhumation: role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation. Tectonics 27, TC6002.

  • Warren, C.J., Beaumont, C. and Jamieson, R.A. (2008b), Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet. Sci. Lett. 267, 129–145.

  • Warren, C.J., Beaumont, C. and Jamieson, R.A. (2008c), Formation and exhumation of ultra-high pressure rocks during continental collision: role of detachment in the subduction channel. Geochem. Geophys. Geosys. 9, Q04019.

  • Xypolias, P. (2010), Vorticity analysis in shear zones: a review of methods and applications. J. Struct. Geol. 32, 2072–2092.

  • Yin, A. (2006), Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 76, 1–131.

Download references

Acknowledgments

Department of Science and Technology’s (New Delhi) satellite project: IR/S4/ESF-16/2009(G) supported SM. Thanks to two anonymous reviewers for critical comments, Eugenio Carminati for editorial handling and reviewing, Rakesh Biswas for discussions, and Priyanka Ganesh for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Mukherjee.

Appendix

Appendix

Solutions of Eq. (12): shear heat profile for layer-1 and 2:

$$ \begin{aligned} T_{1} \left( y \right) & = \frac{1}{{24k\left( {h_{1} + h_{2} } \right)\mu_{1} \mu_{2} \left( {h_{2} \mu_{1} + h_{1} \mu_{2} } \right)^{2} }}\left( { - G_{2}^{2} h_{2}^{4} \left( { - y + h_{1} + h_{2} } \right)\mu_{1} (h_{2}^{2} \mu_{1} \left( {\mu_{1} - 3\mu_{2} } \right)} \right) \\ & \quad + 3yh_{2} \mu_{1} \mu_{2} + h_{1} \mu_{2} \left( {3y\mu_{1} + 2h_{1} \mu_{2} } \right)) + 2G_{2} (y - h_{1} \\ & \quad - h_{2} )h_{2}^{2} \mu_{1} \mu_{2} (2U\mu_{1} (h_{2}^{2} (\mu_{1} - 3\mu_{2} ) + 3yh_{1} \mu_{2} + (3y - 2h_{1} )h_{2} \mu_{2} ) \\ & \quad + G_{1} (2(y - h_{2} )^{2} h_{2}^{2} \mu_{1} - h_{1}^{3} (y - 2h_{2} )\mu_{2} + h_{1}^{2} (yh_{2} (2\mu_{1} - 5\mu_{2} ) - h_{2}^{2} (\mu_{1} \\ & \quad - 3\mu_{2} ) + 2y^{2} \mu_{2} ) + 2h_{1} (y - h_{2} )h_{2} (y\mu_{1} + (y - h_{2} )\mu_{2} ))) + \mu_{2} (4UG_{1} (y \\ & \quad - h_{1} - h_{2} )\mu_{1} \mu_{2} (2(y - h_{2} )^{2} h_{2}^{2} \mu_{1} - yh_{1}^{3} \mu_{2} + h_{1}^{2} (2y - 3h_{2} )(h_{2} (\mu_{1} - \mu_{2} ) \\ & \quad + y\mu_{2} ) + 2h_{1} (y - h_{2} )h_{2} (y\mu_{1} (y - h_{2} )\mu_{2} )) - 12\mu_{1} (h_{1} ( - 2kh_{1}^{2} T_{l} \\ & \quad - U^{2} y^{2} \mu_{1} + yh_{1} (2kT_{l} - 2kT_{u} + U^{2} \mu_{1} ))\mu_{2}^{2} + h_{2}^{3} \mu_{1} ( - 2KT_{l} \mu_{1} + U^{2} (\mu_{1} \\ & \quad - \mu_{2} )\mu_{2} ) - h_{2} \mu_{2} (U^{2} y^{2} \mu_{1} \mu_{2} + 2kh_{1}^{2} T_{l} (2\mu_{1} + \mu_{2} ) - 2yh_{1} \mu_{1} (2kT_{l} \\ & \quad - 2KT_{u} + U^{2} \mu_{2} )) + h_{2}^{2} \mu_{1} ( - 2kyT_{u} \mu_{1} + U^{2} \mu_{2} (( - y + h_{1} )\mu_{1} + (2y \\ & \quad - h_{1} )\mu_{2} ) + 2kT_{l} ((y - h_{1} )\mu_{1} - 2h_{1} \mu_{2} ))) + G_{1}^{2} (y - h_{1} \\ & \quad - h_{2} )(2(y - h_{2} )^{3} h_{2}^{3} \mu_{1}^{2} + 2h_{1} (y - h_{2} )^{2} h_{2}^{2} \mu_{1} (y\mu_{1} + 2(y \\ & \quad - h_{2} )\mu_{2} ) + h_{1}^{4} \mu_{2} (3h_{2}^{2} (\mu_{1} - \mu_{2} ) - 2y^{2} \mu_{2} + 5yh_{2} \mu_{2} + 2h_{1}^{2} (y \\ & \quad - h_{2} )h_{2} (y^{2} \mu_{2} (2\mu_{1} + \mu_{2} ) + h_{2}^{2} \mu_{2} (2\mu_{1} + \mu_{2} ) + yh_{2} (\mu_{1}^{2} - 4\mu_{1} \mu_{2} - 2\mu_{2}^{2} )) \\ & \quad + 2h_{1}^{3} (y^{3} \mu_{2}^{2} - 4y^{2} h_{2} \mu_{2}^{2} - 2h_{2}^{3} \mu_{2}^{2} + yh_{2}^{2} (\mu_{1}^{2} + 5\mu_{2}^{2} ))))) \\ \end{aligned} $$
$$ \begin{aligned} T_{2} \left( y \right) & = \frac{1}{{24k(h_{1} + h_{2} )\mu_{1} \mu_{2} (h_{2} \mu_{1} + h_{1} \mu_{2} )^{2} }}(yG_{2}^{2} \mu_{1} ( - h_{2}^{3} ( - 2y^{3} + 4y^{2} h_{2} - 3yh_{2}^{2} \\ & \quad + h_{2}^{3} )\mu_{1}^{2} + 2h_{1}^{3} (y^{3} - 4y^{2} h_{2} + 6yh_{2}^{2} - 4h_{2}^{3} )\mu_{2}^{2} + h_{1} h_{2}^{2} \mu_{1} ((2y^{3} - 4y^{2} h_{2} \\ & \quad + 3yh_{2}^{2} - 2h_{2}^{3} )\mu_{1} + 4(y - h_{2} )^{3} \mu_{2} ) + h_{1}^{2} h_{2} \mu_{2} ((4y^{3} - 12y^{2} h_{2} + 12yh_{2}^{2} \\ & \quad - 7h_{2}^{3} )\mu_{1} + 2(y^{3} - 4y^{2} h_{2} + 6yh_{2}^{2} - 3h_{3}^{2} )\mu_{2} )) \\ & \quad - 2yG_{2} \mu_{1} \mu_{2} ( - 2U\mu_{1} (h_{2}^{2} (2y^{2} - 3yh_{2} + h_{2}^{2} )\mu_{1} + h_{1}^{2} (2y^{2} - 6yh_{2} \\ & \quad + 3h_{2}^{2} )\mu_{2} + h_{1} h_{2} (y(2y - 3h_{2} )\mu_{1} + 2(y^{2} - 3yh_{2} + 2h_{2}^{2} )\mu_{2} )) \\ & \quad + G_{1} h_{1}^{2} (h_{2}^{2} (2y^{2} - 3yh_{2} + h_{2}^{2} )\mu_{1} + h_{1}^{2} (2y^{2} - 6yh_{2} + 5h_{2}^{2} )\mu_{2} \\ & \quad + h_{1} h_{2} ((2y^{2} - 3yh_{2} + 2h_{2}^{2} )\mu_{1} + 2(y^{2} - 3yh_{2} + 2h_{2}^{2} )\mu_{2} ))) \\ & \quad + \mu_{2} ( - 4UyG_{1} h_{{^{1} }}^{2} \mu_{1} \mu_{2} (h_{1} (3y - 4h_{2} )\mu_{1} + 3(y - h_{2} )h_{2} \mu_{1} - h_{1}^{2} \mu_{2} ) \\ & \quad + yG_{1}^{2} h_{1}^{4} (3(y - 2h_{1} )h_{2} \mu_{1} \mu_{2} - h_{2}^{2} \mu_{1} (2\mu_{1} + 3\mu_{2} ) + h_{1} \mu_{2} (3y\mu_{1} - h_{1} \mu_{2} )) \\ & \quad - 12\mu_{1} ( - 2kh_{3}^{2} T_{l} \mu_{1}^{2} + h_{1} \mu_{2} ( - U^{2} y^{2} \mu_{1}^{2} - 2kh_{1} (( - y + h_{1} ))T_{l} + yT_{u} )\mu_{2} \\ & \quad + U^{2} yh_{1} \mu_{1} \mu_{2} ) - h_{2} \mu_{2} (U^{2} y^{2} \mu_{1}^{2} - 2yh_{1} \mu_{1} (2kT_{l} - 2kT_{u} + U^{2} \mu_{1} ) \\ & \quad + 2kh_{1}^{2} T_{l} (2\mu_{1} + \mu_{2} )) + h_{2}^{2} \mu_{1} (y\mu_{1} ( - 2kT_{u} + U^{2} \mu_{2} ) + 2kT_{l} ((y - h_{1} )\mu_{1} \\ & \quad - 2h_{1} \mu_{2} ))))) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulchrone, K.F., Mukherjee, S. Shear Senses and Viscous Dissipation of Layered Ductile Simple Shear Zones. Pure Appl. Geophys. 172, 2635–2642 (2015). https://doi.org/10.1007/s00024-015-1035-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1035-8

Keywords

Navigation