Skip to main content

Advertisement

Log in

Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Higher Himalayan Crystalline (HHC) in the Bhagirathi river section (India) on fieldwork reveals two extensional ductile top-to-N/NE shear sub-zones—the ‘South Tibetan Detachment System’ and the ‘Basal Detachment’—besides a preceding top-to-S/SW ductile shear. A top-to-N/NE brittle shear was identified as backthrusts from the HHC (except its northern portion) that occur repeatedly adjacent to numerous top-to-S/SW brittle shears as fore-thrusts. The northern portion of the HHC—the Gangotri Granite—exhibits infrequent total six extensional and compressional brittle shear senses. The backthrusts could be due to a low friction between the lower boundary of the HHC (i.e. the Main Central Thrust-Zone) and the partially molten hot rock materials of the HHC. Subduction of the Eurasian plate towards S/SW below the Indian plate more extensively in the Garhwal sector could be the second possible reason. Presence of two ductile extensional shear sub-zones may indicate channel flow (or several exhumation mechanisms) of the HHC in a shifting mode (similar to Mukherjee et al. in Int J Earth Sci 101:253–272, 2012). The top-to-S/SW extensional brittle shear exclusively within the upper (northern portion) of the HHC and a top-to-S/SW brittle shear within the remainder of it is a possible indicator of critical taper deformation mechanism. Thus, this work provides the field evidences of possibly both channel flow and critical taper conditions from a Higher Himalayan section, besides that by Larson et al. (Geol Soc Am Bull 122:1116–1134, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahlgren SG (2001) The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstones. J Struct Geol 23:1203–1214

    Article  Google Scholar 

  • Albanese C, Sulli A (2012) Backthrusts and passive roof duplexes in fold-and-thrust belts—the case of Central-Western Sicily based on seismic reflection data. Tectonophysics 514–517:180–198

    Article  Google Scholar 

  • Antolín B, Appel E, Montomoli C et al (2011) Kinematic evolution of the eastern Tethyan Himalaya: constraints from magnetic fabric and structural properties of the Triassic flysch in SE Tibet. In: Poblet J, Lisle RJ (eds) Kinematic evolution of and structural styles of fold-and-thrust belts. Geol Soc Lond Spec Publ 349:99–121

  • Argles TW, Edwards MA (2002) First evidence of high-grade, Himalayan age synconvergent extension recognized within the western syntaxis—Nanga Parbat, Pakistan. J Struct Geol 24:1327–2344

    Article  Google Scholar 

  • Ashish PadhiA, Rai SS et al (2009) Seismological evidence for shallow crustal melt beneath the Garhwal High Himalaya, India: implications for the Himalayan channel flow. Geophys J Int 177:1111–1120

    Article  Google Scholar 

  • Bahat D, Rabinovitch A, Frid V (2005) Tensile fracturing in rocks. Springer, Berlin

    Google Scholar 

  • Beaumont C, Jamieson RA (2010) Himalayan–Tibetan Orogeny: channel flow versus (critical) wedge models, a false dichotomy? In: Leech ML et al (eds) Proceedings for the 25th Himalaya–Karakoram–Tibet workshop: U.S. Geological Survey, Open-File Report

  • Beaumont C, Jamieson RA, Nguyen MH et al (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Berthé D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non-coaxial deformation of granite: the example of the south Armorican shear zone. J Struct Geol 1:31–42

    Article  Google Scholar 

  • Bilotti F, Shaw JH (2005) Deep water Niger Delta fold and thrust belt modeled as a critical taper wedge: the influence of elevated basal fluid pressure on structural styles. AAPG Bull 89:1475–1491

    Article  Google Scholar 

  • Brown RL, Gibson HD (2006) An argument for channel flow in the southern Canadian Cordillera and comparison with Himalayan tectonics. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones. Geol Soc Lond Spec Publ 268:541–557

  • Butler RWH (1987) Thrust sequences. J Geol Soc Lond 144:619–634

    Article  Google Scholar 

  • Caldwell WB, Klemperer SL, Lawrence JF et al (2012) Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth Planet Sci Lett (in review)

  • Carosi R, Lombardo B, Molli G et al (1998) The South Tibetan detachment system in the Rongbuk valley, Everest region. Deformation features and geological implications. J Asian Earth Sci 16:299–311

    Article  Google Scholar 

  • Carosi R, Montomoli C, Iaccarino S et al (2013) Tectono-metamorphic discontinuities in the Greater Himalayan Sequence and their role in the exhumation of crystalline units. Geophysical Research Abstracts, vol 15, European Geosciences Union General Assembly, Vienna, Austria (submitted)

  • Catlos EJ, Harrison TM, Manning CE et al (2002) Records of the evolution of the Himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. J Asian Earth Sci 20:459–479

    Article  Google Scholar 

  • Catlos EJ, Dubey CS, Marston RA et al (2007) Geochronologic constraints across the Main Central Thrust shear zone, Bhagirathi river (NW India): implications for Himalayan tectonics. In: Cloos M, Carlson WD, Gilbert MC et al (eds) Convergent margin terranes and associated regions: a tribute to W.G. Ernst. Geol Soc Am Spec Pap 135–151

  • Chalaron E, Mugnier JL, Mascle G (1995) Control on thrust tectonics in the Himalayan foothills: a view from a numerical model. Tectonophysics 248:139–163

    Article  Google Scholar 

  • Chambers J, Parrish R, Argles T et al (2011) A short duration pulse of ductile normal shear on the outer South Tibetan detachment in Bhutan: alternating channel flow and critical taper mechanics of the eastern Himalaya. Tectonics 30:TC2005

    Article  Google Scholar 

  • Chamoli A, Pandey AK, Dimri VP et al (2011) Crustal Configuration of the Northwest Himalaya based on modeling of gravity data. Pure Appl Geophys 168:827–844

    Article  Google Scholar 

  • Chen W-P, Martin M, Tseng T-L et al (2010) Shear-wave birefringence and current configuration of converging lithosphere under Tibet. Earth Planet Sci Lett 295:297–304

    Article  Google Scholar 

  • Corrie SL, Kohn MJ, McQuarrie N et al (2012) Flattening the Bhutan Himalaya. Earth Planet Sci Lett 349–350:67–74

    Article  Google Scholar 

  • Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions, 2nd edn. Wiley, New York

    Google Scholar 

  • de Paola N, Holdsworth RE, Clollettini C et al (1996) The structural evolution of dilational stepovers in regional transtensional zones. In: Cunningham WD, Mann P (eds) Tectonics of strike-slip restraining and releasing bends. Geol Soc Lond Spec Publ 290:433–445

  • Edwards MA, Kidd WSF, Li J et al (1996) Multi-stage development of the southern Tibet detachment system near Khula Kangri: new data from Gonto La. Tectonophysics 260:1–19

    Article  Google Scholar 

  • Fielding EJ (2000) Morphotectonic evolution of the Himalaya and Tibetan plateau. In: Summerfield MA (ed) Geomorphology and global tectonics. Wiley, New York, pp 201–222

    Google Scholar 

  • Fu YV, Chen YJ, Li A et al (2008) Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements. Geophys Res Lett 35:L02308

    Article  Google Scholar 

  • Fusseis F, Handy MR, Schrank C (2006) Networking of shear zones at the brittle to viscous transition (Cap de Creus, NE Spain). J Struct Geol 28:1228–1243

    Article  Google Scholar 

  • Gahalaut VK, Arora BR (2012) Seismicity along the Himalayan Arc due to structural heterogeneities in the underthrusting Indian plate and overriding Himalayan wedge. Episodes 35:493–500

    Google Scholar 

  • Gehrels G, Kapp P, DeCelles P et al (2011) Detrital zircon geochronology of pre-tertiary strata in the Tibetan–Himalayan orogens. Tectonics 30:TC5016

    Article  Google Scholar 

  • Godin L, Grujic D, Law RD et al (2006) Channel flow, extrusion and exhumation in continental collision zones: an introduction. In: Law RD, Searle MP (eds) Channel flow, extrusion and exhumation in continental collision zones. Geol Soc Lond Spec Publ 268:1–23

  • Goscombe B, Gray D, Hand M (2006) Crustal architecture of the Himalayan metamorphic front in eastern Himalaya. Gond Res 10:232–255

    Article  Google Scholar 

  • Grasemann B, Fritz H, Vannay JC (1999) Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and extrusion of orogenic wedges. J Struct Geol 21:837–853

    Article  Google Scholar 

  • Guha D, Bardhan S, Basir SR et al (2007) Imprints of Himalayan thrust tectonics on the Quaternary piedmont sediments of the Neora–Jaldhaka Valley, Darjeeling–Sikkim Sub-Himalayas, India. J Asian Earth Sci 30:464–473

    Article  Google Scholar 

  • Guillot S (1999) An overview of the metamorphic evolution in Central Nepal. J Asian Earth Sci 17:713–725

    Article  Google Scholar 

  • Guillot S, Replumaz A (2013) Importance of continental subductions for the growth of the Tibetan plateau. Bull de la Société Géol de France (in press)

  • Guo Z, Wilson M (2011) The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting. Gond Res 22:360–376

    Google Scholar 

  • Handy MR, Hirth G, Bürgmann R (2007) Continental fault structure and rheology from the frictional-to-viscous transition downward. In: Handy MR, Hirth G, Hovius N (eds) Chapter 6: Tectonic faults: agents of change on a dynamic earth. The MIT Press, Cambridge, pp 139–181

    Google Scholar 

  • Harris NBW (2007) Channel flow and the Himalayan–Tibetan orogen: a critical review. J Geol Soc Lond 164:511–523

    Article  Google Scholar 

  • Harrison TM, Lovera OM, Grove M (1997) New insights into the origin of two contrasting Himalayan granite belts. Geology 25:899–902

    Article  Google Scholar 

  • Harrison TM, Yin A, Grove M et al (2000) The Zedong Window: a record of superposed tertiary convergence in southeastern Tibet. J Geophys Res 105:19211–19230

    Article  Google Scholar 

  • He D, Webb AAG, Larson KL et al (2012) New findings from crystalline rocks of the frontal klippen, Nepal Himalaya demonstrate mountain-building via underplating. Abstract in 27th Himalaya–Karakoram–Tibet workshop (HKT). J Nepal Geol Soc 45:40

    Google Scholar 

  • Hébert R, Bezard R, Guilmette C et al (2012) The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gond Res 22:377–397

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya, geological observations of the Swiss expeditions 1936. Memoires de la Société Helvetiques des Sciences Naturelles 73:1–245

    Google Scholar 

  • Hollister LS, Grujic D (2006) Pulsed channel flow in Bhutan. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones. Geol Soc Lond Spec Publ 268:415–423

  • Israil M, Tyagi DK, Gupta PK et al (2008) Magnetotelluric investigations for imaging electrical structure of Garhwal Himalayan corridor, Uttarakhand, India. J Earth Syst Sci 117:189–200

    Article  Google Scholar 

  • Jain AK, Singh S, Manickavasagam RM (2002) Himalayan collisional tectonics. Gondwana Research Group Memoir No. 7. Field Science, Hashimoto

  • Jain AK, Manickavasagam RM, Singh S et al (2005) Himalayan collision zone: new perspectives—its tectonic evolution in a combined ductile shear zone and channel flow model. Himal Geol 26:1–18

    Google Scholar 

  • Jain AK, Singh S, Sushmita et al (2012) Structurally controlled melt formation and accumulation: evidence for channel flow in the Himalaya. Abstract in 27th Himalaya–Karakoram–Tibet workshop (HKT). J Nepal Geol Soc 45:2

  • Johnson MRW, Harley SL (2012) Orogenesis: the making of mountains. Cambridge University Press, Cambridge, pp 1–325

    Book  Google Scholar 

  • Keary P, Klepeis KA, Vine FJ (2009) Global tectonics, 3rd edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Kellett DA, Grujic D (2012) New insight into the South Tibetan detachment system: not a single progressive deformation. Tectonics 31:TC2007

    Article  Google Scholar 

  • Khannal S, Robinson DM (2012) Upper crustal shortening and forward modeling of the Himalayan thrust belt along the Budhi-Gandaki River, central Nepal. Int J Earth Sci (submitted)

  • Kind R, Zhao J, Yuan X et al (2010) The structure of the colliding plates beneath Tibet. European Geosciences Union General Assembly, Abstract, 2–7 May 2010, Vienna, Austria, p 9422

  • Kirby E, Whipple KX (2012) Expression of active tectonics in erosional landscapes. J Struct Geol 44:54–75

    Google Scholar 

  • Koulakov I, Sobolev SV (2006) A tomographic image of Indian lithosphere break-off beneath the Pamir–Hindukush region. Geophys J Int 164:425–440

    Article  Google Scholar 

  • Kroehler ME, Mann P, Escalona A et al (2011) Late Cretaceous–Miocene diachronous onset of back thrusting along the South Caribbean deformed belt and its importance for understanding processes of arc collision and crustal growth. Tectonics 30:TC6003

    Article  Google Scholar 

  • Kumar P (2012) Seismic structure beneath Tibet from receiver functions: a review. Deep Cont Stud India Newsl 22:8–11

    Google Scholar 

  • Kumar P, Yuan X, Kind R et al (2006) Imaging the colliding Indian and Asian lithospheric plates beneath Tibet. J Geophys Res 111:B06308

    Article  Google Scholar 

  • Kumarahara Y, Jayangondaperumal R (2013) Paleoseismic evidence of a surface rupture along the northwestern Himalayan Frontal Thrust (HFT). Geomorphology 180–181:47–56

    Google Scholar 

  • Iaccarino S, Montomoli C, Carosi R et al (2013) Linking microstructures, petrology and in situ U-(Th)-Pb geochronology to constrain P-T-t-D evolution of the Greater Himalyan Sequences in Western Nepal (Central Himalaya). Geophysical Research Abstracts, vol 15, European Geosciences Union General Assembly, Vienna, Austria (submitted)

  • Larson KP, Godin L (2009) Kinematics of the Himalayan metamorphic slab, Dhaulagiri Himal: implications for the structural framework of the central Nepalese Himalaya. J Geol Soc Lond 166:25–43

    Article  Google Scholar 

  • Larson KP, Godin L, Price RA (2010) Relationships between displacement and distortion in orogens: linking the Himalayan foreland and hinterland in central Nepal. Geol Soc Am Bull 122:1116–1134

    Article  Google Scholar 

  • Larson KP, Cottle JM, Godin L (2011) Petrochronologic record of metamorphism and melting in the upper Greater Himalayan sequence, Manaslu–Himal Chuli Himalaya, west-central Nepal. Lithosphere 3:379–392

    Article  Google Scholar 

  • Larson KP, Gervais F, Kellett DA (2013) Tectonic Insight from P-T-t paths, upper Tama Koshi region, Nepal. J Nepal Geol Soc 45:79

    Google Scholar 

  • Law RD, Searle MP, Simpson RL (2004) Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan slab, Everest massif. Tibet J Geol Soc Lond 161:305–320

    Article  Google Scholar 

  • Li C, van der Hilst RD, Meltzer AS (2008) Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett 274:157–168

    Article  Google Scholar 

  • Liang X, Sandvol E, Chen YJ et al (2012) A complex Tibetan upper mantle: a fragmented Indian slab and no south-verging subduction of Eurasian lithosphere. Earth Planet Sci Lett 333–334:101–111

    Article  Google Scholar 

  • Linero PR (2008) Analyses of vertical thermochronologic profiles in the High Crystalline Himalaya with allowance for advection of heat: interactions among exhumation, climate, and tectonics. University of Colorado, Denver, pp 27–30

    Google Scholar 

  • Lombardo B, Pertusati P, Borghi S (1993) Geology and tectonomagmatic evolution of the eastern Himalaya along the Chomolungma–Makalu transect. In: Treloar PL, Searle MP (eds) Himalayan tectonics. Geol Soc Lond Spec Publ 74:341–356

  • Long SP, McQuairrie N, Tobgay T et al (2012) Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: insights from multiple thermochronologic and geochronologic datasets tied to kinematic reconstructions. Tectonics 31:TC5004

    Article  Google Scholar 

  • Lukens CE, Carrapa B, Singer BS et al (2012) Miocene exhumation of the Pamir revealed by detrital geothermochronology of Tajik rivers. Tectonics 31:TC2014

    Article  Google Scholar 

  • Maeder X, Passchier CW, Koehn D (2009) Modelling of segment structures: boudins, bone-boudins, mullions and related single- and multiphase deformation features. J Struct Geol 31:817–830

    Article  Google Scholar 

  • Maillot B, Leroy YM (2003) Optimal dip based on dissipation of back thrusts and hinges in fold-and-thrust belts. J Geophys Res 108:2320

    Article  Google Scholar 

  • Malavieille J, Chemenda A, Larroque C (1998) Evolutionary model for Alpine Corsica: mechanism for ophiolite emplacement and exhumation of high-pressure rocks. Terra Nova 10:317–322

    Article  Google Scholar 

  • Malik J, Shah AA, Sahoo AK et al (2010) Active fault, fault growth and segment linkage along the Janauri anticline (frontal foreland fold), NW Himalaya, India. Tectonphysics 483:327–343

    Article  Google Scholar 

  • McQuarrie N, DeCelles P (2001) Geometry and structural evolution of the central Andean backthrust belt, Bolivia. Tectonics 20:669–692

    Article  Google Scholar 

  • Mechie J, Yuan X, Schurr B et al (2012) Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophys J Int 188:385–407

    Article  Google Scholar 

  • Metcalfe RP (1993) Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan slab in the Garhwal Himalaya. In: Treloar PJ, Searle MP (eds) Himalayan tectonics. Geol Soc Spec Publ 74:485–509

  • Mitra G, Bhattacharyya K, Mukul M (2010) The lesser Himalayan duplex in Sikkim: implications for variations in Himalayan shortening. J Geol Soc Ind 75:289–301

    Article  Google Scholar 

  • Moores EM, Twiss RJ (1995) Tectonics. W.H. Freeman, New York, pp 1–415

    Google Scholar 

  • Morley CK (1988) Out-of-sequence thrusts. Tectonics 7:539–561

    Article  Google Scholar 

  • Mugnier JL, Delcaillau B, Huyghe P et al (1998) The break-back thrust splay of the Main Dun Thrust (Himalayas of western Nepal): evidence of an intermediate displacement scale between earthquake slip and finite geometry of thrust systems. J Struct Geol 20:857–864

    Article  Google Scholar 

  • Mugnier JL, Leturmy P, Mascle G et al (1999) The Siwaliks of western Nepal I. Geometry and kinematics. J Asian Earth Sci 17:629–642

    Article  Google Scholar 

  • Mukherjee S (2011) Mineral fish: their morphological classification, usefulness as shear sense indicators and genesis. Int J Earth Sci 100:1303–1314

    Google Scholar 

  • Mukherjee S (2012a) Viscous dissipation pattern in incompressible Newtonian simple shear zones—analytical model & application in the Higher Himalaya. Int J Earth Sci (submitted)

  • Mukherjee S (2012b) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci (in press)

  • Mukherjee S (2012c) Sequel of Mukherjee. Int J Earth Sci (submitted)

  • Mukherjee S (2012d) Simple shear is not so simple! Kinematics and shear senses in Newtonian viscous simple shear zones. Geol Mag 149:819–826

    Article  Google Scholar 

  • Mukherjee S, Bandyopadhyay A (2011) Structural geology of the Bhagirathi section of the Higher Himalayan Shear Zone with special reference to back-thrusting. International conference on Indian monsoon and Himalayan geodynamics, 2–5 Nov 2011. Wadia Institute of Himalayan Geology, Dehradun, India

  • Mukherjee S, Koyi HA (2010a) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010b) Higher Himalayan Shear Zone, Zanskar Indian Himalaya—microstructural studies & extrusion mechanism by a combination of simple shear & channel flow. Int J Earth Sci 99:1083–1110

    Article  Google Scholar 

  • Mukherjee S, Mukherjee B (2012) Meeting report: session: “geodynamics of collision type orogenic belts and plateaus and its response to climate and erosional processes—Himalaya, Pamir, 1638 Central Asia and Tibet” TS 4.5: European Geosciences Union 2012, Vienna, Austria. J Geol Soc Ind (submitted)

  • Mukherjee S, Mulchrone K (2012) Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome, Indian western Himalaya. Int J Earth Sci 101:1929–1947

    Article  Google Scholar 

  • Mukherjee S, Koyi HA, Talbot CJ (2012) Implications of channel flow analogue models for extrusion of the Higher Himalayan Shear Zone with special reference to the out-of sequence thrusting. Int J Earth Sci 101:253–272

    Article  Google Scholar 

  • Mukhopadhyay DK, Mishra P (2005) A balanced cross section across the Himalayan frontal fold-thrust belt, Subathu area, Himachal Pradesh, India: thrust sequence, structural evolution and shortening. J Asian Earth Sci 25:735–746

    Article  Google Scholar 

  • Murphy MA, Yin A (2003) Structural evolution and sequence of thrusting in the Tethyan fold-thrust belt and Indus–Yalu suture zone, southwest Tibet. GSA Bull 115:21–34

    Article  Google Scholar 

  • Negredo AM, Replumaz A, Villaseñor A et al (2007) Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region. Earth Planet Sci Lett 259:212–225

    Article  Google Scholar 

  • Nelson KD, Zhao W, Brown LD et al (1996) Partially molten middle crust beneath Southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1688

    Article  Google Scholar 

  • Nieuwland DA, Leutscher JH, Gast J (2010) Wedge equilibrium in fold-and-thrust belts: prediction of out-of-sequence thrusting based on sandbox experiments and natural examples. Geol en Mijn 79:81–91

    Google Scholar 

  • Panian J, Pilant W (1990) A possible explanation for foreland thrust propagation. J Geophys Res 95:8607–8615

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Patel RC, Singh S, Asokan A et al (1993) Extensional tectonics in the Himalayan orogen, Zanskar, NW India. In: Treloar PJ, Searle MP (eds) Himalayan Tectonics, vol 74. Geological Society of London, Special Publication, pp 445–459

  • Pereira MF, Silva JB (2004) Development of local orthorhombic fabrics within a simple-shear dominated sinistral transpression zone: the Arronches sheared gneisses (Iberian Massif, Portugal). In: Alsop GI, Holdsworth RE, McCaffrey et al (eds) Flow processes in faults and shear zones, vol 224. Geological Society of London, Special Publication, pp 215–227

  • Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull 97:1037–1053

    Article  Google Scholar 

  • Ponce C, Carreras J, Druguet E (2010) Development of “lozenges” in anastomosing shear zone networks in foliated rocks. Geogaceta 48:207–210

    Google Scholar 

  • Ponce C, Druguet E, Carreras J (2012) Development of shear zone-related lozenges in foliated rocks. J Struct Geol (in press)

  • Powers PM, Lillie RJ, Yeats RS (1998) Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India. Geol Soc Am Bull 110:1010–1027

    Google Scholar 

  • Quidelleur X, Grove M, Lovera OM et al (1997) Thermal evolution and slip history of the Renbu-Zedong thrust, southeastern Tibet. J Geophys Res 102:2659–2679

    Google Scholar 

  • Rai S, Ramesh DS (2012) Seismic imaging of the Indian continental lithosphere. In: Singhvi AK, Banerjee DM (eds) Glimpse of geoscience research in India: Indian report to IUGS: 2008–2012. Proc Indian Nat Sci Acad 78:353–359

  • Replumaz A, Negredo AM, Guillot S et al (2010) Multiple episodes of continental subduction during India/Asia convergence: insight from seismic tomography and tectonic reconstruction. Tectonophysics 483:125–134

    Article  Google Scholar 

  • Replumaz A, Guillot S, Villaseñor A et al (2013) Amount of Asian lithospheric mantle subducted during the India/Asia collision. Gond Res (in press)

  • Rivers T (2009) The Grenville province as a large hot long-duration collisional orogen—insights from the spatial and thermal evolution of its orogenic fronts. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient orogens and modern analogues. Geol Soc Lond Spec Publ 327:405–444

  • Robinson AC, Ducea M, Lapen TJ (2012) Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics 31:TC2016

    Article  Google Scholar 

  • Roy AB, Valdiya KS (1988) Tectonometamorphic evolution of the Great Himalayan Thrust Sheets in Garhwal Region, Kumayaun Himalaya. J Geol Soc Ind 32:106–124

    Google Scholar 

  • Sachan HK, Sharma R, Sahai A et al (2001) Fluid events and exhumation history of the Main Central Thrust Zone, Garhwal Himalaya. J Asian Earth Sci 19:207–221

    Article  Google Scholar 

  • Sachan HK, Kohn MJ, Saxena A et al (2010) The Malari leucogranite, Garhwal Himalaya, northern India: chemistry, age and tectonic implications. Geol Soc Am Bull 122:1865–1876

    Article  Google Scholar 

  • Sapkota J, Sanislav IV (2012) Preservation of deep Himalayan PT conditions that formed during multiple events in garnet cores: mylonitization produces erroneous results for rims. Tectonophysics (in press)

  • Scaillet B, Pêcher A, Rochette P et al (1995) The Gangotri granite (Garhwal Himalaya): laccolithic emplacement in an extending collisional belt. J Geophys Res 100(B1):585–607

    Google Scholar 

  • Schmalholz SM, Maeder X (2012) Pinch-and-swell structure and shear zones in viscoplastic layers. J Struct Geol 37:75–88

    Article  Google Scholar 

  • Schneider FM, Yuan X, Sippl C et al (2012) Evidence for southward subduction beneath the eastern Pamir constrained by teleseismic converted seismic waves. European Geosciences Union General Assembly, Austria

    Google Scholar 

  • Searle MP (1999) Extensional and compressional faults in the Everest–Lhotse massif, Khumbu Himalaya, Nepal. J Geol Soc Lond 156:227–240

    Article  Google Scholar 

  • Searle MP, Metcalfe RP, Rex AJ et al (1993) Field relations, petrogenesis and emplacement of the Bhagirathi leucogra-nite, Garhwal Himalaya. In: Treloar PJ, Searle MP (eds) Himalayan tectonics. Geol Soc Lond Spec Publ 429–444

  • Searle MP, Noble SR, Hurford AJ et al (1999) Age of crustal melting, emplacement and exhumation history of the Shivling leucogranite, Garhwal Himalaya. Geol Mag 136:513–525

    Article  Google Scholar 

  • Searle MP, Cottle JM, Streule MJ et al (2010) Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Earth Env Sci Trans R Soc Edinb 100:219–233

    Google Scholar 

  • Sherrington HF, Zandt G, Frederiksen A (2004) Crustal fabric in the Tibetan plateau based on waveform inversions for seismic anisotropy parameters. J Geophys Res 109:B02312

    Article  Google Scholar 

  • Singh K, Thakur VC (2001) Microstructures and strain variation across the footwall of the Main Central Thrust Zone, Garhwal Himalaya, India. J Asian Earth Sci 19:17–29

    Article  Google Scholar 

  • Singh S, Mukherjee PK, Jain AK (2003) Source characterization and possible emplacement mechanism of collision-related Gangotri Leucogranite alonh Bhagirathi Valley, NW-Himalaya. In: Singh S (ed) Granitoids of the Himalayan collisional belt. J Virtual Explor 11:Paper 06

  • Singh P, Patel RC, Lal N (2012) Plio-Plistocene in-sequence thrust propagation along the Main Central Thrust zone (Kumaon–Garhwal Himalaya, India): new thermochronological data. Tectonophysics 574–575:193–203

    Article  Google Scholar 

  • Sorkhabi RB, Stump E, Foland KA et al (1996) Fissiontrack and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India. Tectonophysics 260:187–199

    Article  Google Scholar 

  • Sorkhabi RB, Stump E, Foland K, Jain AK (1999) Tectonic and cooling history of the Garhwal Higher Himalaya (Bhagirathi Valley): constraints from thermochronological data. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya, vol 6. Gondwana Research, Group Memoir, pp 217–235

  • Srivastava HB, Tripathi NR (2007) Geometrical analysis of mesoscopic shear zones in the crystalline rocks of MCT zone of Garhwal Higher Himalaya. J Asian Earth Sci 30:599–612

    Article  Google Scholar 

  • Srivastava HB, Sahai A, Lal SN (2000) Strain and crystallographic fabric in mesoscopic ductile Shear Zones of Garhwal Himalaya. Gond Res 3:395–405

    Article  Google Scholar 

  • St-Onge MR, Searle MP, Wodicka N (2006) Trans-Hudson Orogen of North America and Himalaya-Karakoram-tibet Orogen of Asia: structural and thermal characteristics of the lower and upper plates. Tectonics 25:TC4006

  • Streule MJ, Strachan RA, Searle MP et al (2010) Comparing Tibet–Himalayan and Caladonian crustal architecture, evolution and mountain building processes. In: Law RD, Butler RWH, Holdsworth RE et al (eds) Continental tectonics and mountain building: the legacy of peach and hone. Geol Soc Lond Spec Publ 335:207–232

  • Takagi H, Arita K, Sawaguchi T et al (2003) Kinematic history of the Main Central Thrust zone in the Langtang area, Nepal. Tectonophysics 366:151–163

    Article  Google Scholar 

  • Tchalenko JS (1970) Similarities between Shear Zones of different magnitudes. Geol Soc Am Bull 81:1625–1640

    Article  Google Scholar 

  • Thakur VC, Pande AK, Suresh N (2007) Late Quaternary–Holocene evolution of Dun structure and the Himalayan Frontal Fault zone of the Garhwal Sub-Himalaya, NW India. J Asian Earth Sci 29:305–319

    Article  Google Scholar 

  • Tiwari VM, Singh B, Arora K et al (2010) The potential of satellite gravity and gravity gradiometry in deciphering structural setting of the Himalayan collision zone. Curr Sci 99:1795–1800

    Google Scholar 

  • Tripathi A (2011) Exploring the history of India–Eurasia collision and subsequent deformation in the Indus Basin, NW Indian Himalaya. PhD thesis, Arizona State University, pp 146–150

  • Tripathi NR, Srivastava HB (2005) Mesoscopic ductile shear zones from the Main Central Thrust zone of Bhagirathi Valley, Garhwal Higher Himalaya. Curr Sci 88:815–821

    Google Scholar 

  • Tripathi N, Srivastava HB, Mamtani M (2009) Evaluation of a regional strain gradient in mylonitic quartzites from the footwall of the Main Central Thrust Zone (Garhwal Himalaya, India): inferences from finite strain and AMS analyses. J Asian Earth Sci 34:26–37

    Article  Google Scholar 

  • Twiss RJ, Moores EM (2007) Structural Geology, 2nd edn. W.H. Freeman, New York

    Google Scholar 

  • van Hinsbergen DJJ, Lippert PC, Dupont-Nivet G et al (2012) Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. PNAS 109:7659–7664

    Google Scholar 

  • Vannay J-C, Grasemann B, Rahn M et al (2004) Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23:TC1014

    Article  Google Scholar 

  • Vignon V, Replumaz A, Guillot S et al (2011) Geometry, timing and consequences of subduction processes in the Pamir and Hindu Kush regions. Geophysical Research Abstracts, vol 13, European Geosciences Union 2011-8944

  • Wang K (2007) Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. In: Dixon TH, Moore JC (eds) The seismogenic zone of subduction thrust faults. Columbia University Press, New York, pp 540–575

    Google Scholar 

  • Webb AA, He D (2012) The South Tibetan Detachment is a backthrust: new evidence from studies along the length of the Himalayan orogen. Abstract in the 27th Himalaya–Karakoram–Tibet workshop (HKT). J Nepal Geol Soc 45:1

    Google Scholar 

  • Webb AAG, Yin A, Harrison TM et al (2007) The leading edge of the Greater Himalayan crystallines revealed in the NW Indian Himalaya: implications for the evolution of the Himalayan Orogen. Geology 35:955–958

    Article  Google Scholar 

  • Yakymchuk C, Godin L (2012) Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences: an example from far-northwest Nepal. J Meta Geol 30:513–535

    Article  Google Scholar 

  • Yang J, Xu Z, Robinson PL et al (2011) HP-UHP metamorphic belts in the Eastern Tethyan Orogenic System in China. In: Dobrzhinetskaya LF, Faryad SW, Wallis S et al (eds) Ultrahigh-pressure metamorphism: 25 years after the discovery of coesite and diamond. Part IV: ultrahigh-pressure metamorphic belts and protolith history of eclogite and garnet peridotite. Elsevier, Amsterdam, pp 459–499

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, extrusion history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

  • Yin A, Harrison TM, Murphy MA et al (1999) Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. GSA Bull 111:1644–1664

    Article  Google Scholar 

  • Yue H, Chen J, Sandvol E et al (2012) Lithospheric and upper mantle structure of the northeast Tibetan Plateau. J Geophys Res 117:B05307

    Article  Google Scholar 

  • Zahirovic S, Müller D, Seton M et al (2012) Insights on the kinematics of the India–Eurasia collision from global geodynamic models. Geochem Geophys Geosys 13:Q04W11

    Article  Google Scholar 

  • Zeng R-S, Wu Q-J, Ding Z-F et al (2007) Indian Eurasian collision vs. ocean–continent collision. Acta Seismol Sin 20:1–10

    Article  Google Scholar 

  • Zhang ZM, Zhao GC, Santosh M et al (2010) Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. J Meta Geol 28:719–733

    Article  Google Scholar 

  • Zhang R, Murphy MA, Lapen TJ et al (2011) Late Eocene crustal thickening followed by Early-Late Oligocene extension along the India–Asia suture zone: evidence for cyclicity in the Himalayan orogen. Geosphere 7:1249–1268

    Article  Google Scholar 

  • Zhang H, Zhao D, Zhao J et al (2012) Convergence of the Indian and Eurasian plates under eastern Tibet revealed by seismic tomography. Geochem Geophys Geosys 13:Q06W14

    Article  Google Scholar 

  • Zhao J, Yuan X, Liu H et al (2010) The boundary between the Indian and Asian tectonic plates below Tibet. Proc Natl Acad Sci 107:11229–11233

    Article  Google Scholar 

  • Zhao W, Kumar P, Mechie J et al (2011) Tibetan plate overriding the Asian plate in central and northern Tibet. Nat Geosci 4:870–873

    Google Scholar 

Download references

Acknowledgments

This study was supported by Department of Science and Technology’s (New Delhi) grant: SR/FTP/ES-117/2009. Arpan Bandyopadhyay (IIT Bombay) identified backthrusts. Arpita Roy assisted in the laboratory. Unconventional questions on Himalayan geology raised by Rajkumar Ghosh (IIT Bombay) led me think critically. Sidhartha Bhattacharyya (Alabama University) supplied papers. Payel Mukherjee took care of household activities and gave free time. Positive critical exhaustive reviews in two rounds by Rodolfo Carosi (University of Torino) and an anonymous researcher significantly improved this paper. The anonymous reviewer owes additional thanks for suggesting the term ‘basal detachment’. The author thanks the Chief Editor: Wolf-Christian Dullo (IFM-Geomar) and the Managing Editor: his wife Monika Dullo. IIT Bombay funded SM to present this work in the Session TS4.5 on Himalayan tectonics in EGU 2012, Vienna (Mukherjee and Mukherjee 2012). This work is encapsulated in Mukherjee and Bandyopadhyay (2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S. Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Earth Sci (Geol Rundsch) 102, 1851–1870 (2013). https://doi.org/10.1007/s00531-012-0861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0861-5

Keywords

Navigation