Skip to main content

Biogas: An Effective and Common Energy Tool – Part I

  • Chapter
  • First Online:
Biofuel Production Technologies: Critical Analysis for Sustainability

Abstract

Energy is a much crucial necessity for daily errands, either household or industrial. We use it as fuel (transportation or industrial commodity), to provide power, heat, electricity, etc., and we can’t imagine life without it. Several kinds of fuels are available in the market, mainly non-renewables – fossil based (coal, crude oil, etc.). However, due to awareness about long-term issues related to use of fossil fuels, several other types of renewable fuels are gaining much attention. Biogas, biofuels (bioethanol, biodiesel), and biohydrogen are some of the examples for such renewables with very high future potential. However, even with those recent developments, rural areas in some of the developing countries are still using agricultural remains, cow dung, etc., for cooking and heating purposes. This kind of crude practice significantly raises environmental, economic, and public health-related worries. To achieve a worldwide sustainable progress in both developed and developing countries, clean and affordable energy could be offered by using the existing biomass resources (crop residues, agro-industrial, animal, and other type of wastes) to produce a cleaner, more efficient, and reliable energy, such as biogas. Unlike other types of renewable biofuels, biogas production is a natural non-energy intensive process, and the raw materials are mostly renewable resource and wastes – thus serving both purposes, bioremediation and energy generation. Biogas is a blend of gases, mainly methane and carbon dioxide. Over the years, several biogas plant designs are available, which are compiled in present chapter along with its advantages and disadvantages. At present several countries are already utilizing biogas for various household and industrial applications. The main applications are generating electricity, cooking, heating, and using as a fuel for transportation. The ease of operation, maintenance, and easy availability of substrate – waste materials – are some of the key selling points for biogas to be an effective and common energy tool in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Sadi M (2010) Design and building of biogas digester for organic materials gained from solid waste. M. Sc. thesis, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine

    Google Scholar 

  • Alves MM, Pereira MA, Sousa DZ, Cavaleiro AJ, Picavet M, Smidt H, Stams AJM (2009) Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microbial Biotechnol 2:538–550

    Article  CAS  Google Scholar 

  • Alwis AD (2002) Biogas – a review of Sri Lanka’s performance with a renewable energy technology. Energy Sustain Dev 6(1):30–37

    Article  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3(2):117–129

    Article  CAS  Google Scholar 

  • Apte A, Cheernam V, Kamat M, Kamat S, Kashikar P, Jeswani H (2013) Potential of using kitchen waste in a biogas plant. Int J Environ Sci Dev 4:370

    Article  Google Scholar 

  • Armaha EK, Tetteha EK, Boamah BB (2017) Overview of biogas production from different feedstocks. Int J Sci Res Publ 7(12):158

    Google Scholar 

  • Attwood GT, Kelly WJ, Altermann EH, Leahy SC (2007) Analysis of the Methanobrevibacter ruminantium draft genome: understanding methanogen biology to inhibit their action in the rumen. Aust J Exp Agric 48:83–88

    Article  Google Scholar 

  • Balk M, Weijma J, Stams AJM (2002) Thermotogalettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368

    CAS  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist HA, Vavilin VA (2002) Anaerobic digestion model no. 1 (ADM1), task group for mathematical modelling of anaerobic digestion processes. IWA Publishing, London

    Google Scholar 

  • Bhardwaj S, Das P (2017) A review: advantages and disadvantages of biogas. Int Res J Eng Technol 04(10)

    Google Scholar 

  • Bischofsberger W, Dichtl N, Rosnwinkel KH, Bohnke CFSB (2005) Anaerob technik. 2. Auflage. Heidelberg. Germany. ISBN:978-3-540-06850-1

    Google Scholar 

  • Blumer SSE, Kataeva I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Article  CAS  Google Scholar 

  • Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15:347–354

    Article  Google Scholar 

  • Brown VJ (2006) Biogas: a bright idea for Africa. Environ Health Perspect 114(5):A301–A303

    Article  Google Scholar 

  • Brune A (2010) Methanogenesis in the digestive tracts of insects. In: Timmis KW (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Herdelberg, pp 707–728

    Chapter  Google Scholar 

  • Burrell PC, O’Sullivan C, Song H, Clarke WP, Black-all LL (2004) The identification, detection and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl Environ Microbiol 70:2414–2419

    Article  CAS  Google Scholar 

  • Castellucci S, Cocchi S, Allegrini E, Vecchione L (2013) Anaerobic digestion and co-digestion of slaughterhouse wastes. J Agric Eng Res 44(s2)

    Google Scholar 

  • Cha GC, Chung HK, Kim DJ (2001) Characteristics of temperature change on the substrate degradation and bacterial population in one-phase and two-phase anaerobic digestion. Environ Eng Res 6:99–108

    Google Scholar 

  • Chambers AK, Potter I (2002) Gas utilization from sewage waste. Alberta Research Council, Alberta, pp 1–13

    Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43(1):273–282

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    Article  CAS  Google Scholar 

  • Chen Y, Yang G, Sweeney S, Feng Y (2010) Household biogas use in rural China: a study of opportunities and constraints. Renew Sust Energ Rev 14(1):545–549

    Article  Google Scholar 

  • Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32(8):1523–1534

    Article  CAS  Google Scholar 

  • Dana B (2009) Build manual: ARTI floating dome biodigester, Appropriate Infrastructure Development Group (AIDG)

    Google Scholar 

  • De Clercq D, Zongguo W, Fei F, Luis C (2016) Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: a case study in Beijing. Renew Sust Energ Rev 59:1676–1685

    Article  Google Scholar 

  • De Mes TZD, Stams AJM, Reith JH, Zeeman G (2003) Methane production by anaerobic digestion of wastewater and solid wastes. In: Reith JH, Wijffels RH, Barten H (eds) Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, Petten, pp 58–102

    Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190

    Article  CAS  Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources. Wiley. ISBN:978-3-527-31841-4

    Google Scholar 

  • Everson TM, Smith MT (2016) Improving rural livelihoods through biogas generation using livestock manure and rainwater harvesting. Volume 2: guideline report. Report to the water research commission

    Google Scholar 

  • Florentino H (2003) Mathematical tool to size rural digesters. Sci Agric 60(1):185–190. ISSN:0103-9016

    Article  Google Scholar 

  • Forster-Carneiro T, Pérez M, Romero LI (2008) Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour Technol 99(15):6994–7002

    Article  CAS  Google Scholar 

  • Fry LJ (1974) Practical building of methane power plants for rural energy independence. The EPA National Library Catalog, Andover. ISBN:10: 0960098410

    Google Scholar 

  • Fulford D (1988) Running a biogas programme: a handbook. Intermediate Technology Publications, London

    Book  Google Scholar 

  • Gao R, Yuan X, Zhu W, Wang X, Chen S, Cheng X, Cui Z (2012) Methane yield through anaerobic digestion for various maize varieties in China. Bioresour Technol 118:611–614

    Article  CAS  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digester. Wiley. ISBN:978-0-471-20693-4

    Google Scholar 

  • Guendouz AA, Brockmann D, Trably E, Dumas C, Delgenès JP, Steyer JP, Escudie R (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111:55–61

    Article  CAS  Google Scholar 

  • Haftu G, Solomon M, Giday G (2018) Qualitative and quantitative feasibility of biogas production from kitchen waste. Am J Energy Eng 6(1):1–5

    Article  CAS  Google Scholar 

  • Hamilton DW (2012) Organic matter content of wastewater and manure. BAE 1760, Oklahoma Cooperative Extension Service, Stillwater, Oklahoma

    Google Scholar 

  • Hattori S, Galushko AS, Kamagata Y, Schink B (2005) Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and formation by the syntrophically acetate oxidizing bacterium Thermacetogeniumphaeum. J Bacteriol 187:3471–3476

    Article  CAS  Google Scholar 

  • Heffels T, McKenna R, Fichtner W (2012) Direct marketing of electricity from biogas and biomethane: an economic analysis of several business models in Germany. J Manag Control 23:53–70

    Article  Google Scholar 

  • Hori T, Sasaki D, Haruta S, Shigematsu T, Ueno Y, Ishii M, Igarashi Y (2011) Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase expression profiling. Microbiology 157:1980–1989

    Article  CAS  Google Scholar 

  • Igoni AH, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD (2007) Designs of anaerobic digesters for producing biogas from municipal solid waste. Appl Energy 85:430–438

    Article  CAS  Google Scholar 

  • Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45(3):885–892

    Article  CAS  Google Scholar 

  • Ingale S, Parnandi VA, Joshi SJ (2019) Bioethanol production using Saccharomyces cerevisiae immobilized in calcium alginate–magnetite beads and application of response surface methodology to optimize bioethanol yield. In: Srivastava N, Srivastava M, Mishra P, Upadhyay S, Ramteke P, Gupta V (eds) Sustainable approaches for biofuels production technologies, Biofuel and biorefinery technologies, vol 7. Springer, Cham, pp 147–181

    Chapter  Google Scholar 

  • Ion VI, Popescu F (2016) Efficiency improvement of a biogas engine-driven CHP plant. Sci Work Univ Food Technol 63(1)

    Google Scholar 

  • Itodo IN, Agyo GE, Yusuf P (2007) Performance evaluation of a biogas stove for cooking in Nigeria. J Energy S Afr 18(4):14–18

    Article  Google Scholar 

  • Jian L (2009) Socioeconomic barriers to biogas development in rural Southwest China: an ethnographic case study. Hum Organ 68(4):415–430

    Article  Google Scholar 

  • Karki AB (2005) Biogas, as renewable source of energy in Nepal theory and Development, BSP-Nepal

    Google Scholar 

  • Karki AB, Gautam KM, Karki A (1994) Biogas installation from elephant dung at Machan Wildlife Resort, Chitwan, Nepal. Biogas Newsletter, Issue No 45

    Google Scholar 

  • Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20:355–265

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste – review. Waste Manag 31(8):1737–1744

    Article  CAS  Google Scholar 

  • Khan BH (2009) Non-conventional energy resources, Mechanical engineering series. Mc Graw Hill Education, New Delhi

    Google Scholar 

  • Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Link B (2008) Characterization of the methanogenic archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 31:190–205

    Article  CAS  Google Scholar 

  • Kossmann W, Pönitz U, Habermehl S, Hoerz T, Krämer P, Klingler B, Kellner C, Wittur T, von Klopotek F, Krieg A, Euler H (1999) Biogas digest volume I – IV. German Agency for Technical Cooperation (GTZ), Eschborn

    Google Scholar 

  • Kudaravelli K (2013) Biogas plant construction manual – fixed dome Deenbandhu model digester: 2 to 6 cubic meter size. Egyptian Environmental Affairs Agency, Cairo

    Google Scholar 

  • Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energy Rev 34:491–500

    Article  CAS  Google Scholar 

  • Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6:3

    Article  CAS  Google Scholar 

  • Lozano CJS, Mendoza MV, de Arango MC, Monroy EFC (2009) Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment. Waste Manag 29:704–711

    Article  CAS  Google Scholar 

  • Macario DEC (2008) Taxonomy of methanogens. In: Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York

    Google Scholar 

  • Mata AJ (2003) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, London

    Google Scholar 

  • Mayer F, Gerin PA, Noo A, Foucart G, Flammang J, Lemaigre S, Sinnaeve G, Dardenne P, Delfosse P (2014) Assessment of factors influencing the biomethane yield of maize silages. Bioresour Technol 153:260–268

    Article  CAS  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schnink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  Google Scholar 

  • Metcalf E (2004) Wastewater engineering: treatment and reuse. In: Franklin L, Burton H, Stensel D (eds) Revised by George tchobanoglous, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Möller K (2015) Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron Sustain Dev 35:1021–1041

    Article  CAS  Google Scholar 

  • Moody LR, Burns R, Wu-Haan W, Spajić R (2009) Use of biochemical methane potential (BMP) assays for predicting and enhancing anaerobic digester performance. In: Proceedings of the 4th international and 44th Croatian symposium of agriculture, Optija

    Google Scholar 

  • Nealson KH (1997) Sediment bacteria: who’s there, what are they doing, and what’s new? Annu Rev Earth Planet Sci 25:403–434

    Article  CAS  Google Scholar 

  • Nges IA, Escobar F, Fu X, Björnsson L (2012) Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production. Waste Manag 32(1):53–59

    Article  CAS  Google Scholar 

  • Nzila C, Dewulf J, Spanjers H, Tuigong D, Kiriamiti H, van Langenhove H (2012) Multi criteria sustainability assessment of biogas production in Kenya. Appl Energy 93:496–506

    Article  Google Scholar 

  • Ogur EO, Mbatia S (2013) Conversion of kitchen waste into biogas. Int J Eng Sci 2(11):70–76

    Google Scholar 

  • Ovueni UJ (2014) Comparative study of the heating capacity of biogas and conventional cooking gas. Int J Eng Sci 3(1):7–10

    Google Scholar 

  • Patel J (1951) Digestion of waste organic matter and organic fertilizer and a new economic apparatus for small scale digestion. Poona Agri Coll Mag (India) 42(3):150–159

    Google Scholar 

  • Pathak H, Jain N, Mohanty S, Gupta N (2009) Global warming mitigation potential of biogas plants in India. Environ Monit Assess 157:407–418

    Article  CAS  Google Scholar 

  • Peter JJ (2009) Biogas –green energy. Digisource Danmark A/S. ISBN:978-87-992243-2-1

    Google Scholar 

  • Pfeifer J, Obernberger I (2007) Technology evaluation of an agricultural biogas CHP plant as well as definition of guiding values for the improved design and operation. In: 15th European biomass conference & exhibition, 7–11 May 2007, Berlin, Germany, pp 1864–1868

    Google Scholar 

  • Pourmovahed A, Opperman T, Lemke B (2011) Performance and efficiency of a biogas CHP system utilizing a stirling engine. In: Proceedings of international conference on renewable energies and power quality, Las Palmas de Gran Canaria, Spain (Vol. 1315)

    Google Scholar 

  • Prakash O, Anil K, Pandey A, Kumara A, Laguria V (2015) A review on biogas plant. Int J New Technol Sci Eng 2(4). ISSN:2349-0780

    Google Scholar 

  • Pruthviraj NB (2016) Introduction to biogas & applications. Int J Adv Res Mech Eng Technol (IJARMET) 2(4)

    Google Scholar 

  • Reddy SN, Satyanarayana SV, Sudha G (2017) Bio gas generation from biodegradable kitchen waste. Int J Environ Agric Biotechnol 2(2):0689–0694

    Article  Google Scholar 

  • Rutz D, Mergner R, Janssen R (2015) Sustainable heat use of biogas plants. A handbook, biogas heat. WIP Renewable Energies, Munich

    Google Scholar 

  • Salminen E, Einola J, Rintala J (2003) The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poultry feather. Environ Technol 24:1079–1086

    Article  CAS  Google Scholar 

  • Samah E (2016) Measuring small-scale biogas capacity and production. International Renewable Energy Agency (IRENA), Abu Dhabi. ISBN:978-92-95111-12-7

    Google Scholar 

  • Samer M (2012). Chapter 17: Biogas plant constructions, biogas. In: Kumar S (ed). ISBN:978-953-51-0204-5. InTech

    Google Scholar 

  • Sasse L (1988) Biogas Plants by A Publication of the Deutsches Zentrum für Entwicklungstechnologien – GATE in: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH

    Google Scholar 

  • Sasse L, Kellner C, Kimaro A (1991) Improved biogas unit for developing countries. Vieweg and Sohn, Eschborn

    Google Scholar 

  • Schievano A, Scaglia B, D’Imporzano G, Malagutti L, Gozzi A, Adani F (2009) Prediction of biogas potentials using quick laboratory analyses: upgrading previous models for application to heterogeneous organic matrices. Bioresour Technol 100(23):5777–5782

    Article  CAS  Google Scholar 

  • Sharma KR (2008) In: Khanal SK (ed) Kinetics and modeling in anaerobic processes in anaerobic technology for bioenergy production: principles and applications. Wiley-Blackwell, Ames

    Google Scholar 

  • Sharma N, Giuseppe P (1991) Anaerobic biotechnology and developing countries – technical status. Energy Conversion 32:447–469

    Article  CAS  Google Scholar 

  • Sibiya NT, Muzenda E, Mbohwa C (2017) Evaluation of potential substrates for biogas production via anaerobic digestion: a review. In: Proceedings of the world congress on engineering and computer science WCECS 2017, vol II, October 25–27, San Francisco, USA

    Google Scholar 

  • Singh TS, Sankarlal P (2015) Production of biogas from kitchen waste using cow manure as co-substrate. In: Proceedings of the conference on “Energy conversion and conservation”, 27/03/2015

    Google Scholar 

  • Singh JB, Myles R, Dhussa A (1987) Manual on Deenbandhu biogas plant. Tata McGraw Hill Publishing Company Limited, New Delhi

    Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville

    Google Scholar 

  • Stalin N (2007) Performance evaluation of partial mixing anaerobic digester. ARPN J Appl Sci 2:1–6

    Google Scholar 

  • Stefan M (2004) Biogas fuel for internal combustion engines. Annals of the Faculty of Engineering Hunedoara – 2004 Tome II. Fascicole 3

    Google Scholar 

  • Surendra KC, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sust Energ Rev 31:846–859

    Article  Google Scholar 

  • Syamsuri S, Yustia WM (2015) Performance analysis of biogas stoves with variations of flame burner for the capacity of biogas 1 m3/day. ARPN J Eng Appl Sci 10:22

    Google Scholar 

  • Takeno T, Sato K (1979) An excess enthalpy theory. Combust Sci Technol 23:73–84

    Article  Google Scholar 

  • Tucker MF (2008) Farm digesters for small dairies in Vermont. Bio Cycle 49:44

    Google Scholar 

  • Van DDL, Weber JA (1994) Biogas production from animal manures: what is the potential?’ Industrial uses of agricultural materials, USDA/ERS outlook report IUS–4

    Google Scholar 

  • Vandevivere P, Baere LD, Verstraete W (2003) In: Mata-Alvarez J (ed) Types of anaerobic digesters for solid wastes, in biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, Barcelona, pp 111–140

    Google Scholar 

  • Vavilin VA, Qu X, Mazéas L, Lemunier M, Duquennoi C, He P, Bouchez T (2008) Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie Van Leeuwenhoek 94:593–605

    Article  CAS  Google Scholar 

  • Ver Eecke HC, Butterfield DA, Huber JA, Lilley MD, Olson EJ, Roe KK, Evans LJ, Merkel AY, Cantin HV, Holden JF (2012) Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents. Proc Natl Acad Sci 109(34):13674–13679

    Article  Google Scholar 

  • Verma S (2002) Anaerobic digestion of biodegradable organics in municipal solid wastes. Department of Earth & Environmental Engineering Fu Foundation School of Engineering and Applied Science, Columbia University

    Google Scholar 

  • Vögeli Y, Lohri CR, Gallardo A, Diener S, Zurbrügg C (2014) Anaerobic digestion of biowaste in developing countries: practical information and case studies. Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf. ISBN:978-3-906484-58-7

    Google Scholar 

  • Wang X, Lu X, Li F, Yang G (2014) Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PLoS One 9(5):e97265

    Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860

    Article  CAS  Google Scholar 

  • Werner U, Stöhr U, Hees N (1989) Biogas plants in animal husbandry. A publication of the Deutsches Zentrum für Entwicklungstechnologien – GATE, a division of the Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH

    Google Scholar 

  • Westerholm M, Roos S, Schnürer A (2010) Syntrophaceticusschinkii gen. nov., sp. nov., an anaerobic syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309:100–104

    CAS  Google Scholar 

  • Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two stage thermophilic anaerobic membrane bioreactor. Bioresour Technol 102(9):5353–5360

    Article  CAS  Google Scholar 

  • Wirth R, Kovács E, Maròti G, Bagi Z, Rakhely G, Kovács KL (2012) Characterization of a biogas—Producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41

    Article  CAS  Google Scholar 

  • Zhu W, Reich CI, Olsen GJ, Giometti CS, Yates JR (2004) Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis. J Proteome Res 3:538–548

    Article  CAS  Google Scholar 

  • Ziana Z, Rajesh P (2015) Production and Analysis of Biogas from Kitchen Waste. Int Res J Eng Technol 02:04

    Google Scholar 

  • Zupančič GD, Roš M (2003) Heat and energy requirements in thermophilic anaerobic sludge digestion. Renew Energy 28(14):2255–2267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket J. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elangovan, S., Pandian, S.B.S., S. J., G., Joshi, S.J. (2020). Biogas: An Effective and Common Energy Tool – Part I. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V. (eds) Biofuel Production Technologies: Critical Analysis for Sustainability . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-8637-4_3

Download citation

Publish with us

Policies and ethics