Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity

  • Guoyu PanEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1141)


Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug’s liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug’s liver disposition and DILI are reviewed.


Hepatic drug transporters Drug disposition Hepatotoxicity DILI 



This chapter was completed with the help of Yaru Xue, Li Han, Ying Wang, Le Wang, and other students of Dr. Guoyu Pan.




  1. Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA et al (2008) The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol 66:233–239CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akira T (2006) Impact of transporter-mediated drug absorption, distribution, elimination and drug interaction in antimicrobial chemotherapy. J Infect Chemother 12:10Google Scholar
  3. Aleksunes LM, Scheffer GL, Jakowski AB, Pruimboom-Brees IM, Manautou JE (2006) Coordinated expression of multidrug resistance-associated proteins (Mrps) in mouse liver during toxicant-induced injury. Toxicol Sci 89:370–379CrossRefGoogle Scholar
  4. Allen RM, Marquart TJ, Albert CJ, Suchy FJ, Wang DQ, Ananthanarayanan M et al (2012) miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med 4:882–895CrossRefPubMedPubMedCentralGoogle Scholar
  5. Allikmets R, Schriml L, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58:3Google Scholar
  6. Anderson PL, Lamba J, Aquilante CL, Schuetz E, Fletcher CV (2006) Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. Jaids J Acquir Immune Defic Syndr 42:441CrossRefGoogle Scholar
  7. Arrese M, Karpen SJ (2002) HNF-1 alpha: have bile acid transport genes found their "master"? J Hepatol 36:142–145CrossRefGoogle Scholar
  8. Backman JT, Kyrklund C, Kivisto KT, Wang JS, Neuvonen PJ (2000) Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther 68:122–129CrossRefGoogle Scholar
  9. Backstrom G, Taipalensuu J, Melhus H, Brandstrom H, Svensson AC, Artursson P et al (2003) Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Eur J Pharm Sci 18:359–364CrossRefGoogle Scholar
  10. Baghdasaryan A, Chiba P, Trauner M (2014) Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med 37:57–76CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ballatori NCW, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:10CrossRefGoogle Scholar
  12. Barnes SN, Aleksunes LM, Augustine L, Scheffer GL, Goedken MJ, Jakowski AB et al (2007) Induction of hepatobiliary efflux transporters in acetaminophen-induced acute liver failure cases. Drug Metab Dispos 35:1963–1969CrossRefGoogle Scholar
  13. Barrios JM, Lichtenberger LM (2000) Role of biliary phosphatidylcholine in bile acid protection and NSAID injury of the ileal mucosa in rats. Gastroenterology 118:1179–1186CrossRefGoogle Scholar
  14. Belinsky Mg CZ, Shchaveleva I, Zeng H, Kruh GD (2002) Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res 62:6Google Scholar
  15. Benichou C, Danan G, Flahault A (1993) Causality assessment of adverse reactions to drugs—II. An original model for validation of drug causality assessment methods: case reports with positive rechallenge. J Clin Epidemiol 46:1331–1336CrossRefGoogle Scholar
  16. Bergen Aa PA, Hu X, De Jong P, Gorgels TG (2007) ABCC6 and pseudoxanthoma elasticum. Pflugers Arch 453:7CrossRefGoogle Scholar
  17. Birmingham BK, Bujac SR, Elsby R, Azumaya CT, Wei C, Chen Y et al (2015a) Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: a class effect? Eur J Clin Pharmacol 71:341–355CrossRefGoogle Scholar
  18. Birmingham BK, Bujac SR, Elsby R, Azumaya CT, Zalikowski J, Chen Y et al (2015b) Rosuvastatin pharmacokinetics and pharmacogenetics in Caucasian and Asian subjects residing in the United States. Eur J Clin Pharmacol 71:329CrossRefGoogle Scholar
  19. Bjarnason I, Hayllar J, Macpherson AJ, Russell AS (1993) Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104:1832–1847CrossRefGoogle Scholar
  20. Bjornsson E, Jacobsen EI, Kalaitzakis E (2012) Hepatotoxicity associated with statins: reports of idiosyncratic liver injury post-marketing. J Hepatol 56:374–380CrossRefGoogle Scholar
  21. Bjornsson ES (2017) Hepatotoxicity of statins and other lipid-lowering agents. Liver Int 37:173–178CrossRefGoogle Scholar
  22. Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF et al (2006) Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 36:963–988CrossRefGoogle Scholar
  23. Bohme M, Buchler M, Muller M, Keppler D (1993) Differential inhibition by cyclosporins of primary-active ATP-dependent transporters in the hepatocyte canalicular membrane. FEBS Lett 333:193–196CrossRefGoogle Scholar
  24. Bohme M, Muller M, Leier I, Jedlitschky G, Keppler D (1994) Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology 107:255–265CrossRefGoogle Scholar
  25. Bonder MJ, Kasela S, Kals M, Tamm R, Lokk K, Barragan I et al (2014) Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics 15:860CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bonin S, Pascolo L, Croce LS, Stanta G, Tiribelli C (2002) Gene expression of ABC proteins in hepatocellular carcinoma, perineoplastic tissue, and liver diseases. Mol Med 8:318–325CrossRefPubMedPubMedCentralGoogle Scholar
  27. Borst PDWC, Van De Wetering K (2007) Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 453:13CrossRefGoogle Scholar
  28. Bosch TM, Kjellberg LM, Bouwers A, Koeleman BP, Schellens JH, Beijnen JH et al (2005) Detection of single nucleotide polymorphisms in the ABCG2 gene in a Dutch population. Am J Pharmacogenomics 5:123–131CrossRefGoogle Scholar
  29. Boyer Jl TM, Mennone A, Soroka CJ, Cai SY, Moustafa T, Zollner G, Lee JY, Ballatori N (2006) Upregulation of a basolateral FXRdependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. American Journal of Physiology Gastrointestinal and Liver Physiology 290:7CrossRefGoogle Scholar
  30. Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123:1649–1658CrossRefGoogle Scholar
  31. Callaghan R, Luk F, Bebawy M (2014) Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos 42:623–631CrossRefPubMedPubMedCentralGoogle Scholar
  32. Campion SN, Johnson R, Aleksunes LM, Goedken MJ, Van Rooijen N, Scheffer GL et al (2008) Hepatic Mrp4 induction following acetaminophen exposure is dependent on Kupffer cell function. Am J Physiol Gastrointest Liver Physiol 295:G294–G304CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cao X, Yu LX, Barbaciru C, Landowski CP, Shin HC, Gibbs S et al (2005) Permeability dominates in vivo intestinal absorption of P-gp substrate with high solubility and high permeability. Mol Pharm 2:329–340CrossRefGoogle Scholar
  34. Cascorbi I (2006) Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 112:457–473CrossRefGoogle Scholar
  35. Cascorbi I (2011) P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb Exp Pharmacol:261–283Google Scholar
  36. Chan GN, Hoque MT, Bendayan R (2013) Role of nuclear receptors in the regulation of drug transporters in the brain. Trends Pharmacol Sci 34:361–372CrossRefGoogle Scholar
  37. Chang JH, Ly J, Plise E, Zhang X, Messick K, Wright M et al (2014) Differential effects of Rifampin and Ketoconazole on the blood and liver concentration of atorvastatin in wild-type and Cyp3a and Oatp1a/b knockout mice. Drug Metab Dispos 42:1067–1073CrossRefGoogle Scholar
  38. Chen C, Chin J, Ueda K, Clark D, Pastan I, Gottesman M (1986) Internal duplication and homology with bacterial transport proteins in the MDR1 (P-glycoprotein) gene from multidrugresistant human cells. Cell 47:9Google Scholar
  39. Chen CSA, Dieter MZ, Tanaka Y, Scheffer GL, Klaassen CD (2005) Up-regulation of Mrp4 expression in kidney of Mrp2-deficient TR- rats. Biochem Pharmacol 70:9CrossRefGoogle Scholar
  40. Chen J, Zhao KN, Liu GB (2013) Estrogen-induced cholestasis: pathogenesis and therapeuticimplications. Hepatogastroenterology 60:1289–1296PubMedGoogle Scholar
  41. Chen ZS, Kawabe T, Ono M, Aoki S, Sumizawa T, Furukawa T et al (1999) Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol 56:1219–1228CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chen Zs LK, Walther S, Raftogianis RB, Kuwanom Z et al (2002) Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 62:7Google Scholar
  43. Cheng Y, El-Kattan A, Zhang Y, Ray AS, Lai Y (2016a) Involvement of drug transporters in organ toxicity: The fundamental basis of drug discovery and development. Chem Res Toxicol 29:545–563CrossRefPubMedPubMedCentralGoogle Scholar
  44. Cheng Y, Woolf TF, Gan J, He K (2016b) In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review. Chem Biol Interact 255:23–30CrossRefPubMedPubMedCentralGoogle Scholar
  45. Cherrington NJ, Hartley DP, Li N, Johnson DR, Klaassen CD (2002) Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J Pharmacol Exp Ther 300:97–104CrossRefPubMedPubMedCentralGoogle Scholar
  46. Childs S, Yeh R, Georges E (1995) Identification of a sister gene to P-glycoprotein. Cancer Res 55:6Google Scholar
  47. Choi JH, Ahn BM, Yi J, Lee JH, Nam SW, Chon CY et al (2007) MRP2 haplotypes confer differential susceptibility to toxic liver injury. Pharmacogenet Genomics 17:403–415CrossRefPubMedPubMedCentralGoogle Scholar
  48. Chojkier M (2005) Troglitazone and liver injury: in search of answers. Hepatology 41:237–246CrossRefPubMedPubMedCentralGoogle Scholar
  49. Chu XY, Kato Y, Niinuma K, Sudo KI, Hakusui H, Sugiyama Y (1997a) Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J Pharmacol Exp Ther 281:304–314PubMedGoogle Scholar
  50. Chu XY, Kato Y, Sugiyama Y (1997b) Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res 57:1934–1938PubMedGoogle Scholar
  51. Chu XY, Kato Y, Ueda K, Suzuki H, Niinuma K, Tyson CA et al (1998) Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res 58:5137–5143PubMedGoogle Scholar
  52. Cropp C, Komori T, Shima J, Urban T, Yee S, More S et al (2008) Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol Pharmacol 73:8CrossRefGoogle Scholar
  53. Cropp Cd KT, Shima JE, Urban TJ, Yee SW, More SS, Giacomini KM (2008) Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol Pharmacol 73:8CrossRefGoogle Scholar
  54. Crouthamel MH, Wu D, Yang Z, Ho RJY (2006) A novel MDR1 G1199T variant alters drug resistance and efflux transport activity of P-glycoprotein in recombinant Hek cells. J Pharm Sci 95:2767–2777CrossRefGoogle Scholar
  55. Cui Y, Ko Nig J, Leier I (2001) Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 276:30Google Scholar
  56. Danan G, Benichou C (1993) Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 46:1323–1330CrossRefGoogle Scholar
  57. Darling RL, Romero JJ, Dial EJ, Akunda JK, Langenbach R, Lichtenberger LM (2004) The effects of aspirin on gastric mucosal integrity, surface hydrophobicity, and prostaglandin metabolism in cyclooxygenase knockout mice. Gastroenterology 127:94–104CrossRefPubMedPubMedCentralGoogle Scholar
  58. Dawson PA, Hubbert ML, Rao A (2010) Getting the mOST from OST: Role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism. Biochim Biophys Acta 1801:994–1004CrossRefPubMedPubMedCentralGoogle Scholar
  59. Dawson S, Stahl S, Paul N, Barber J, Kenna JG (2012) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos 40:130–138CrossRefGoogle Scholar
  60. De Jong FA, Marsh S, Mathijssen RH, King C, Verweij J, Sparreboom A et al (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10:5889–5894CrossRefGoogle Scholar
  61. Delzenne NM, Calderon PB, Taper HS, Roberfroid MB (1992) Comparative hepatotoxicity of cholic acid, deoxycholic acid and lithocholic acid in the rat: in vivo and in vitro studies. Toxicol Lett 61:291–304CrossRefGoogle Scholar
  62. Dh S (2005) Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicol Appl Pharmacol 204:18CrossRefGoogle Scholar
  63. Di Paolo A, Bocci G, Danesi R, Del Tacca M (2006) Clinical pharmacokinetics of irinotecan-based chemotherapy in colorectal cancer patients. Curr Clin Pharmacol 1:311–323CrossRefPubMedPubMedCentralGoogle Scholar
  64. Dietrich CG, Ottenhoff R, De Waart DR, Oude Elferink RP (2001) Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology 167:73–81CrossRefGoogle Scholar
  65. Djahanguiri B, Abtahi FS, Hemmati M (1973) Prevention of aspirin-induced gastric ulceration by bile duct or pylorus ligation in the rat. Gastroenterology 65:630–633CrossRefPubMedPubMedCentralGoogle Scholar
  66. Dobson Pd DBK (2008) Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 7:16CrossRefGoogle Scholar
  67. Dombrowski F, Stieger B, Beuers U (2006) Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver. Lab Invest 86:166–174CrossRefGoogle Scholar
  68. Dong Z, Ekins S, Polli JE (2015) Quantitative NTCP pharmacophore and lack of association between DILI and NTCP Inhibition. Eur J Pharm Sci 66:1–9CrossRefGoogle Scholar
  69. Drescher S, Glaeser H, Murdter T, Hitzl M, Eichelbaum M, Fromm MF (2003) P-glycoprotein-mediated intestinal and biliary digoxin transport in humans. Clin Pharmacol Ther 73:223–231CrossRefGoogle Scholar
  70. Drewes T, Senkel S, Holewa B, Ryffel GU (1996) Human hepatocyte nuclear factor 4 isoforms are encoded by distinct and differentially expressed genes. Mol Cell Biol 16:925–931CrossRefPubMedPubMedCentralGoogle Scholar
  71. Elferink RP, Tytgat GN, Groen AK (1997) Hepatic canalicular membrane 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. Faseb j 11:19–28CrossRefGoogle Scholar
  72. Emami Riedmaier A, Burk O, Van Eijck BA, Schaeffeler E, Klein K, Fehr S et al (2016) Variability in hepatic expression of organic anion transporter 7/SLC22A9, a novel pravastatin uptake transporter: impact of genetic and regulatory factors. Pharmacogenomics J 16:341–351CrossRefGoogle Scholar
  73. Engevik AC, Goldenring JR (2018) Trafficking ion transporters to the apical membrane of polarized intestinal enterocytes. Cold Spring Harb Perspect Biol:10Google Scholar
  74. Enokizono J, Kusuhara H, Sugiyama Y (2007) Involvement of breast cancer resistance protein (BCRP/ABCG2) in the biliary excretion and intestinal efflux of troglitazone sulfate, the major metabolite of troglitazone with a cholestatic effect. Drug Metab Dispos 35:209–214CrossRefGoogle Scholar
  75. Enomoto ATM, Shimoda M et al (2002) Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther 301:6CrossRefGoogle Scholar
  76. Evers R, Chu X (2008) Role of the murine organic anion-transporting polypeptide 1b2 (Oatp1b2) in durg disposition and hepatotoxicity. MolPharmacol 74:3Google Scholar
  77. Evers R, Haas M, Sparidans R (2000) Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 83:9Google Scholar
  78. Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B et al (2001) The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 69:223–231CrossRefGoogle Scholar
  79. Fehrenbach T, Cui Y, Faulstich H, Keppler D (2003) Characterization of the transport of the bicyclic peptide phalloidin by human hepatic transport proteins. Naunyn Schmiedebergs Arch Pharmacol 368:415–420CrossRefGoogle Scholar
  80. Fiorucci S, Mencarelli A, Cipriani S, Renga B, Palladino G, Santucci L et al (2011) Activation of the farnesoid-X receptor protects against gastrointestinal injury caused by non-steroidal anti-inflammatory drugs in mice. Br J Pharmacol 164:1929–1938CrossRefPubMedPubMedCentralGoogle Scholar
  81. Fork C, Bauer T, Golz S, Geerts A, Weiland J, Del Turco D et al (2011) OAT2 catalyses efflux of glutamate and uptake of orotic acid. Biochem J 436:8CrossRefGoogle Scholar
  82. Fouassier L, Kinnman N, Lefevre G, Lasnier E, Rey C, Poupon R et al (2002) Contribution of mrp2 in alterations of canalicular bile formation by the endothelin antagonist bosentan. J Hepatol 37:184–191CrossRefGoogle Scholar
  83. Friesema EC, Docter R, Moerings EP, Stieger B, Hagenbuch B, Meier PJ et al (1999) Identification of thyroid hormone transporters. Biochem Biophys Res Commun 254:5CrossRefGoogle Scholar
  84. Furihata T, Morio H, Zhu M, Suzuki Y, Ide H, Tsubota A et al (2017) Human organic anion transporter 2 is an entecavir, but not tenofovir, transporter. Drug Metab Pharmacokinet 32:116–119CrossRefGoogle Scholar
  85. Gao B, Yang FM, Yu ZT, Li R, Xie F, Chen J et al (2015) Relationship between the expression of MDR1 in hepatocellular cancer and its biological behaviors. Int J Clin Exp Pathol 8:6995–7001PubMedPubMedCentralGoogle Scholar
  86. Gatlik-Landwojtowicz E, AäNismaa P, Seelig A (2006) Quantification and characterization of P-glycoprotein-substrate interactions. Biochemistry 45:13CrossRefGoogle Scholar
  87. Geier A, Martin IV, Dietrich CG, Balasubramaniyan N, Strauch S, Suchy FJ et al (2008) Hepatocyte nuclear factor-4alpha is a central transactivator of the mouse Ntcp gene. Am J Physiol Gastrointest Liver Physiol 295:G226–G233CrossRefPubMedPubMedCentralGoogle Scholar
  88. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J et al (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273:10046–10050CrossRefGoogle Scholar
  89. Geyer J, Gavrilova O, Petzinger E (2009) Brain penetration of ivermectin and selamectin in mdr1a,b P-glycoprotein- and bcrp- deficient knockout mice. J Vet Pharmacol Ther 32:87–96CrossRefGoogle Scholar
  90. Giacomini K, Huang S, Tweedie D (2012) Membrane transporters in drug development. Nature 9:22Google Scholar
  91. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530CrossRefPubMedPubMedCentralGoogle Scholar
  92. Gores GJ, Miyoshi H, Botla R, Aguilar HI, Bronk SF (1998) Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases. Biochim Biophys Acta 1366:167–175CrossRefGoogle Scholar
  93. Gottesman Mm LV (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 580:12CrossRefGoogle Scholar
  94. Gottesman Mm PI (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:43CrossRefGoogle Scholar
  95. Graham DJ, Green L, Senior JR, Nourjah P (2003) Troglitazone-induced liver failure: a case study. Am J Med 114:299–306CrossRefGoogle Scholar
  96. Graham DY, Opekun AR, Willingham FF, Qureshi WA (2005) Visible small-intestinal mucosal injury in chronic NSAID users. Clin Gastroenterol Hepatol 3:55–59CrossRefGoogle Scholar
  97. Green JL, Heard KJ, Reynolds KM, Albert D (2013) Oral and intravenous acetylcysteine for treatment of acetaminophen toxicity: A systematic review and Meta-analysis. West J Emerg Med 14:218–226CrossRefPubMedPubMedCentralGoogle Scholar
  98. Grimm D, Lieb J, Weyer V, Vollmar J, Darstein F, Lautem A et al (2016) Organic Cation Transporter 1 (OCT1) mRNA expression in hepatocellular carcinoma as a biomarker for sorafenib treatment. BMC Cancer 16:94CrossRefPubMedPubMedCentralGoogle Scholar
  99. Gu X, Manautou JE (2010) Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 42:482–538CrossRefPubMedPubMedCentralGoogle Scholar
  100. Gulbis B, Adler M, Ooms HA, Desmet JM, Leclerc JL, Primo G (1988) Liver-function studies in heart-transplant recipients treated with cyclosporin A. Clin Chem 34:1772–1774PubMedGoogle Scholar
  101. Guo Y, Kotova E, Chen Z, Lee K, Hopper-Borge E, Belinsky M (2003) MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl) adenine. J Biol Chem 278:6Google Scholar
  102. Haenisch S, Werk AN, Cascorbi I (2014) MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol 77:587–596CrossRefPubMedPubMedCentralGoogle Scholar
  103. Haenisch S, Zimmermann U, Dazert E, Wruck C, Dazert P, Siegmund W et al (2007) Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics J 7:56–65CrossRefGoogle Scholar
  104. Hagenbuch BDP (2004) The Sodium bile salt cotransport family SLC10. Pflugers Arch 447:5Google Scholar
  105. Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 34:17CrossRefGoogle Scholar
  106. Han D, Dara L, Win S, Than TA, Yuan L, Abbasi SQ et al (2013) Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci 34:243–253CrossRefPubMedPubMedCentralGoogle Scholar
  107. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE et al (2008) Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer 59:69–75CrossRefGoogle Scholar
  108. Han JY, Lim HS, Yong HP, Lee SY, Jin SL (2009) Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer 63:115CrossRefGoogle Scholar
  109. Hannivoort RA, Dunning S, Borght SV, Schroyen B, Woudenberg J, Oakley F et al (2008) Multidrug resistance-associated proteins are crucial for the viability of activated rat hepatic stellate cells. Hepatology 48:624–634CrossRefGoogle Scholar
  110. Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D et al (2010) HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genomics 20:112–120CrossRefPubMedPubMedCentralGoogle Scholar
  111. He L, Yang Y, Guo C, Yao D, Liu HH, Sheng JJ et al (2014) Opposite regulation of hepatic breast cancer resistance protein in type 1 and 2 diabetes mellitus. Eur J Pharmacol 724:185–192CrossRefGoogle Scholar
  112. He MZS, Albers M, Baumeister SE, Rimmbach C, Nauck M, Wallaschofski H et al (2015a) Function-impairing polymorphisms of the hepatic uptake transporter SLCO1B1 modify the therapeutic efficacy of statins in a population-based cohort. Pharmacogenet Genomics 25:8CrossRefGoogle Scholar
  113. He Y, Chevillet JR, Liu G, Kim TK, Wang K (2015b) The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs. Br J Pharmacol 172:2733–2747CrossRefGoogle Scholar
  114. Hegade VS, Kendrick SF, Dobbins RL, Miller SR, Richards D, Storey J et al (2016) BAT117213: Ileal bile acid transporter (IBAT) inhibition as a treatment for pruritus in primary biliary cirrhosis: study protocol for a randomised controlled trial. BMC Gastroenterol 16:71CrossRefPubMedPubMedCentralGoogle Scholar
  115. Heise MLA, Knapstein J, Schattenberg JM, Hoppe-Lotichius M, Foltys D et al (2012) Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance. BMC Cancer 12:1CrossRefGoogle Scholar
  116. Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y (2005) Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 314:7CrossRefGoogle Scholar
  117. Hirota T, Ieiri I (2015) Drug-drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol 11:1435–1447CrossRefGoogle Scholar
  118. Hirota T, Tanaka T, Takesue H, Ieiri I (2017) Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 13:19–30CrossRefGoogle Scholar
  119. Ho R, Choi L, Lee W, Mayo G, Schwarz U, Tirona R et al (2007) Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics 17:647CrossRefPubMedPubMedCentralGoogle Scholar
  120. Hoffmeyer S, Burk O, Richter OV, Arnold HP, Brockmöller J, Johne A et al (2000) Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 97:3473CrossRefPubMedPubMedCentralGoogle Scholar
  121. Hong C, Nam Y (2014) Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics 4:32CrossRefGoogle Scholar
  122. Honjo Y, Morisaki K, Huff LM, Robey RW, Hung J, Dean M et al (2002) Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 1:696–702CrossRefGoogle Scholar
  123. Horikawa M, Kato Y, Sugiyama Y (2002) Reduced gastrointestinal toxicity following inhibition of the biliary excretion of irinotecan and its metabolites by probenecid in rats. Pharm Res 19:1345–1353CrossRefGoogle Scholar
  124. Hua WY, Ding L, Chen Y, Gong B, He JC, Xu GL (2007) Determination of berberine in human plasma by liquid chromatography-electrospray ionization-mass spectrometry. J Pharm Biomed Anal 44:931–937CrossRefGoogle Scholar
  125. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z et al (2014) Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14:370–384CrossRefGoogle Scholar
  126. Hulot JS, Villard E, Maguy A, Morel V, Mir L, Tostivint I et al (2005) A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet Genomics 15:277–285CrossRefGoogle Scholar
  127. Ieiri I (2012) Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 27:21Google Scholar
  128. Ieiri I, Higuchi S, Sugiyama Y (2009) Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 5:703–729CrossRefGoogle Scholar
  129. Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K et al (2002) Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J Hum Genet 47:285–310CrossRefGoogle Scholar
  130. Ikegami T, Ha L, Arimori K, Latham P, Kobayashi K, Ceryak S et al (2002) Intestinal alkalization as a possible preventive mechanism in irinotecan (CPT-11)-induced diarrhea. Cancer Res 62:179–187PubMedGoogle Scholar
  131. Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T et al (2002) C421A Polymorphism in the Human Breast Cancer Resistance Protein Gene Is Associated with Low Expression of Q141K Protein and Low-Level Drug Resistance. Mol Cancer Ther 1:611–616PubMedGoogle Scholar
  132. Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V et al (1998) Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 338:867–872CrossRefGoogle Scholar
  133. Itoda M, Saito Y, Shirao K, Minami H, Ohtsu A, Yoshida T et al (2003) Eight novel single nucleotide polymorphisms in ABCG2/BCRP in Japanese cancer patients administered Irinotecan. Drug Metab Pharmacokinet 18:212CrossRefGoogle Scholar
  134. Jacobsson Ja HT, Lindblom J, Fredriksson R (2007) Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. Genomics 90:15CrossRefGoogle Scholar
  135. Jia W, Du F, Liu X, Jiang R, Xu F, Yang J et al (2015) Renal tubular secretion of tanshinol: molecular mechanisms, impact on its systemic exposure, and propensity for dose-related nephrotoxicity and for renal herb-drug interactions. Drug Metab Dispos 43:10CrossRefGoogle Scholar
  136. Johnson Dr GG, Klaassen CD (2002) Expression of rat multidrug resistance protein 2 (Mrp2) in male and female rats during normal and pregnenolone-16alpha-carbonitrile (PCN)-induced postnatal ontogeny. Toxicology 178:11CrossRefGoogle Scholar
  137. Just G, Upeslacis J (1989) Novel polysaccharides novel macromolecular conjugates of the polysaccharides. European Patent OfficeGoogle Scholar
  138. Kadmon M, Klunemann C, Bohme M, Ishikawa T, Gorgas K, Otto G et al (1993) Inhibition by cyclosporin A of adenosine triphosphate-dependent transport from the hepatocyte into bile. Gastroenterology 104:1507–1514CrossRefGoogle Scholar
  139. Kaku K, Enya K, Nakaya R, Ohira T, Matsuno R (2015) Efficacy and safety of fasiglifam (TAK-875), a G protein-coupled receptor 40 agonist, in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab 17:675–681CrossRefPubMedPubMedCentralGoogle Scholar
  140. Kaku K, Enya K, Nakaya R, Ohira T, Matsuno R (2016) Long-term safety and efficacy of fasiglifam (TAK-875), a G-protein-coupled receptor 40 agonist, as monotherapy and combination therapy in Japanese patients with type 2 diabetes: a 52-week open-label phase III study. Diabetes Obes Metab 18:925–929CrossRefGoogle Scholar
  141. Kamiyama Y, Matsubara T, Yoshinari K, Nagata K, Kamimura H, Yamazoe Y (2007) Role of human hepatocyte nuclear factor 4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab Pharmacokinet 22:287–298CrossRefGoogle Scholar
  142. Karlgren M, Ahlin G, Bergstrom CA, Svensson R, Palm J, Artursson P (2012) In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions. Pharm Res 29:411–426CrossRefGoogle Scholar
  143. Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM et al (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277:2908–2915CrossRefGoogle Scholar
  144. Kaur S, Siddiqui H, Bhat MH (2015) Hepatic progenitor cells in action liver regeneration or fibrosis? Am J Pathol 185:2342–2350CrossRefGoogle Scholar
  145. Kenna JG (2014) Current concepts in drug-induced bile salt export pump (BSEP) interference. Curr Protoc Toxicol 61:23.27.21–23.27.15Google Scholar
  146. Keppler D (2014) The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab Dispos 42:561–565CrossRefGoogle Scholar
  147. Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M (2009) ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86:197–203CrossRefGoogle Scholar
  148. Kipp H, Arias I (2000) Intracellular trafficking and regulation of canalicular ATP-binding cassette transporters. Semin Liver Dis 20:13CrossRefGoogle Scholar
  149. Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA (2016) Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med 9:97–106PubMedPubMedCentralGoogle Scholar
  150. Klaassen C, Aleksunes L (2010a) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62:96CrossRefGoogle Scholar
  151. Klaassen CD, Aleksunes LM (2010b) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62:1–96CrossRefPubMedPubMedCentralGoogle Scholar
  152. Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:III–XIII. 1–151PubMedGoogle Scholar
  153. Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, Kigawa J et al (2005a) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 33:94CrossRefGoogle Scholar
  154. Kobayashi K, Bouscarel B, Matsuzaki Y, Ceryak S, Kudoh S, Fromm H (1999) pH-dependent uptake of irinotecan and its active metabolite, SN-38, by intestinal cells. Int J Cancer 83:491–496CrossRefGoogle Scholar
  155. Kobayashi MNT, Nishi K, Higaki Y, Okudaira H, Ono M, Tsujiuchi T, Mizutani A, Nishii R, Tamai I et al (2014) Transport mechanisms of hepatic uptake and bile excretion in clinical hepatobiliary scintigraphy with 99mTc-N-pyridoxyl-5-methyltryptophan. Nucl Med Biol 41:5CrossRefGoogle Scholar
  156. Kobayashi YON, Sakai R, Ohbayashi M, Kohyama N, Yamamoto T (2005b) Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol 57:6CrossRefGoogle Scholar
  157. Kock K, Brouwer KLR (2012) A perspective on efflux transport proteins in the liver. Clin Pharmacol Ther 92:599–612CrossRefPubMedPubMedCentralGoogle Scholar
  158. Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34:413–435CrossRefPubMedPubMedCentralGoogle Scholar
  159. Kong LL, Zhuang XM, Yang HY, Yuan M, Xu L, Li H (2015) Inhibition of P-glycoprotein gene expression and function enhances Triptolide-induced hepatotoxicity in mice. Sci Rep 5:11747CrossRefPubMedPubMedCentralGoogle Scholar
  160. König J, Cui Y, Nies AT, Keppler D (2000) Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem 275:23161–23168CrossRefPubMedPubMedCentralGoogle Scholar
  161. Kool M, De Haas M, Scheffer GL, Scheper RJ, Van Eijk MJ, Juijn JA et al (1997) Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57:3537–3547PubMedGoogle Scholar
  162. Kool M, Van Der Linden M, De Haas M, Scheffer GL, De Vree JM, Smith AJ, Jansen G, Peters GJ, Ponne N, Schepter RJ et al (1999) MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci USA 96:6CrossRefGoogle Scholar
  163. Korita PV, Wakai T, Shirai Y, Matsuda Y, Sakata J, Takamura M et al (2010) Multidrug resistance-associated protein 2 determines the efficacy of cisplatin in patients with hepatocellular carcinoma. Oncol Rep 23:965–972PubMedGoogle Scholar
  164. Kostrubsky VE, Sinclair JF, Ramachandran V, Venkataramanan R, Wen YH, Kindt E et al (2000) The role of conjugation in hepatotoxicity of troglitazone in human and porcine hepatocyte cultures. Drug Metab Dispos 28:1192–1197PubMedGoogle Scholar
  165. Kostrubsky VE, Vore M, Kindt E, Burliegh J, Rogers K, Peter G et al (2001) The effect of troglitazone biliary excretion on metabolite distribution and cholestasis in transporter-deficient rats. Drug Metab Dispos 29:1561–1566PubMedGoogle Scholar
  166. Kovacsics D, Patik I, Ozvegy-Laczka C (2017) The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin Drug Metab Toxicol 13:409–424CrossRefGoogle Scholar
  167. Krishnamurthy PS (2006) Role of ABCG2/BCRP in biology and medicine. Annu. Rev. Pharmacol. Toxicol 46:30CrossRefGoogle Scholar
  168. Kromer A, Moosmann B (2009) Statin-Induced Liver Injury Involves Cross-Talk between Cholesterol and Selenoprotein Biosynthetic Pathways. Mol Pharmacol 75:1421–1429CrossRefGoogle Scholar
  169. Kruh G, Guo Y, Hopper-Borge E, Belinsky M, Chen Z (2007) ABCC10, ABCC11, and ABCC12. Pflugers Arch. 453:10CrossRefGoogle Scholar
  170. Kullak-Ublick G, Ismair MG, Kubitz R, Schmitt M, Haussinger D, Stieger B et al (2000) Stable expression and functional characterization of a Na+−taurocholate cotransporting green fluorescent protein in human hepatoblastoma HepG2 cells. Cytotechnology 34:9CrossRefGoogle Scholar
  171. Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F et al (2001) Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:9CrossRefGoogle Scholar
  172. Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126:322–342CrossRefGoogle Scholar
  173. Kunze A, Huwyler J, Camenisch G (2014) Prediction of organic aniontransporting polypeptide 1B1- and 1B3- mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab Dispos 42:8CrossRefGoogle Scholar
  174. Kuppens IE, Breedveld P, Beijnen JH, Schellens JH (2005) Modulation of oral drug bioavailability: from preclinical mechanism to therapeutic application. Cancer Invest 23:443–464CrossRefGoogle Scholar
  175. Kurz A, Graf D, Schmitt M, Vom Dahl S, Häussinger D (2001) Tauroursodeoxycholate-induced choleresis involves p38 (MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 121:13CrossRefGoogle Scholar
  176. Kwo P, Patel T, Bronk SF, Gores GJ (1995) Nuclear serine protease activity contributes to bile acid-induced apoptosis in hepatocytes. Am J Physiol 268:G613–G621PubMedGoogle Scholar
  177. Kwon M, Choi YA, Choi MK, Song IS (2015) Organic cation transporter-mediated drug-drug interaction potential between berberine and metformin. Arch Pharm Res 38:849–856CrossRefGoogle Scholar
  178. Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM (1997) Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol 51:9CrossRefGoogle Scholar
  179. Lai Y (2009) Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion. Expert Opin Drug Metab Toxicol 5:13CrossRefGoogle Scholar
  180. Lapham K, Novak J, Marroquin LD, Swiss R, Qin S, Strock CJ et al (2016) Inhibition of hepatobiliary transport activity by the antibacterial agent Fusidic Acid: Insights into factors contributing to Conjugated Hyperbilirubinemia/Cholestasis. Chem Res ToxicolGoogle Scholar
  181. Lau YY, Huang Y, Frassetto L, Benet LZ (2007) effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther 81:194–204CrossRefPubMedPubMedCentralGoogle Scholar
  182. Le Thai B, Dumont M, Michel A, Erlinger S, Houssin D (1988) Cholestatic effect of cyclosporine in the rat. An inhibition of bile acid secretion. Transplantation 46:510–512PubMedGoogle Scholar
  183. Le Vee M, Gripon P, Stieger B, Fardel O (2008) Down-regulation of organic anion transporter expression in human hepatocytes exposed to the proinflammatory cytokine interleukin 1beta. Drug Metab Dispos 36:217–222CrossRefGoogle Scholar
  184. Le Vee M, Lecureur V, Stieger B, Fardel O (2009) Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dispos 37:685–693CrossRefGoogle Scholar
  185. Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ (1996) Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271:12063–12067CrossRefGoogle Scholar
  186. Lee SS, Jeong HE, Yi JM, Jung HJ, Jang JE, Kim EY et al (2007) Identification and functional assessment of BCRP polymorphisms in a Korean population. Drug Metab Dispos 35:623CrossRefGoogle Scholar
  187. Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D (1994) The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 269:27807–27810PubMedGoogle Scholar
  188. Leslie EM, Deeley RG, SPC C (2005) Multidrug resistance proteins in toxicology: role of P-glycoprotein, MRP1, MRP2 and BCRP (ABCG2) in tissue defense. Toxicology and Applied Pharmacology 204:22CrossRefGoogle Scholar
  189. Leslie EM, Watkins PB, Kim RB, Brouwer KL (2007) Differential inhibition of rat and human Na+−dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) by bosentan: a mechanism for species differences in hepatotoxicity. J Pharmacol Exp Ther 321:1170–1178CrossRefGoogle Scholar
  190. Letschert K, Keppler D, König J (2004) Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics 14:441–452CrossRefGoogle Scholar
  191. Lewis JH (2015) The art and science of diagnosing and managing drug-induced liver injury in 2015 and beyond. Clin Gastroenterol Hepatol 13:2173–2189.e2178Google Scholar
  192. Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE et al (2007) Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 6:432–438CrossRefGoogle Scholar
  193. Li L, Tu M, Yang X, Sun S, Wu X, Zhou H et al (2014) The contribution of human OCT1, OCT3, and CYP3A4 to nitidine chloride-induced hepatocellular toxicity. Drug Metab Dispos 42:1227–1234CrossRefGoogle Scholar
  194. Li X, Zhong K, Guo Z, Zhong D, Chen X (2015) Fasiglifam (TAK-875) inhibits hepatobiliary transporters: A possible factor contributing to Fasiglifam-induced liver injury. Drug Metab Dispos 43:1751–1759CrossRefGoogle Scholar
  195. Ligumsky M, Golanska EM, Hansen DG, Kauffman GL Jr (1983) Aspirin can inhibit gastric mucosal cyclo-oxygenase without causing lesions in rat. Gastroenterology 84:756–761CrossRefGoogle Scholar
  196. Ligumsky M, Sestieri M, Karmeli F, Zimmerman J, Okon E, Rachmilewitz D (1990) Rectal administration of nonsteroidal antiinflammatory drugs. Effect on rat gastric ulcerogenicity and prostaglandin E2 synthesis. Gastroenterology 98:1245–1249CrossRefGoogle Scholar
  197. Liu Y, Zheng X, Yu Q, Wang H, Tan F, Zhu Q et al (2016) Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci Transl Med 8Google Scholar
  198. Liu YT, Hao HP, Xie HG, Lai L, Wang QO, Liu CX et al (2010) Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab Dispos 38:1779–1784CrossRefGoogle Scholar
  199. Liu YT, Hao HP, Xie HG, Lv H, Liu CX, Wang GJ (2009) Oxidative demethylenation and subsequent glucuronidation are the major metabolic pathways of Berberine in rats. J Pharm Sci 98:4391–4401CrossRefGoogle Scholar
  200. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Pinan MA, Garcia-Miguel P, Navajas A et al (2011) Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 57:612–619CrossRefGoogle Scholar
  201. Lozano E, Herraez E, Briz O, Robledo VS, Hernandez-Iglesias J, Gonzalez-Hernandez A et al (2013) Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. Biomed Res Int 2013:692071CrossRefPubMedPubMedCentralGoogle Scholar
  202. Lu H, Choudhuri S, Ogura K, Csanaky IL, Lei X, Cheng X et al (2008) Characterization of organic anion transporting polypeptide 1b2-null mice: essential role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol Sci 103:35–45CrossRefPubMedPubMedCentralGoogle Scholar
  203. Maeda K, Ikeda Y, Fujita T, Yoshida K, Azuma Y, Haruyama Y et al (2011) Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther 90:575–581CrossRefPubMedPubMedCentralGoogle Scholar
  204. Maeda T, Wakasawa T, Funabashi M, Fukushi A, Fujita M, Motojima K et al (2008) Regulation of Octn2 transporter (SLC22A5) by peroxisome proliferator activated receptor alpha. Biol Pharm Bull 31:1230–1236CrossRefPubMedPubMedCentralGoogle Scholar
  205. Maher JM, Aleksunes LM, Dieter MZ, Tanaka Y, Peters JM, Manautou JE et al (2008) Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol Sci 106:319–328CrossRefPubMedPubMedCentralGoogle Scholar
  206. Malik MY, Jaiswal S, Sharma A, Shukla M, Lal J (2016) Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metab Rev 48:281–327CrossRefGoogle Scholar
  207. Manautou JE, De Waart DR, Kunne C, Zelcer N, Goedken M, Borst P et al (2005) Altered disposition of acetaminophen in mice with a disruption of the Mrp3 gene. Hepatology 42:1091–1098CrossRefGoogle Scholar
  208. Mano Y, Usui T, Kamimura H (2007) Effects of bosentan, an endothelin receptor antagonist, on bile salt export pump and multidrug resistance-associated protein 2. Biopharm Drug Dispos 28:13–18CrossRefGoogle Scholar
  209. Mao Q, Unadkat JD (2015) Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J 17:65–82CrossRefGoogle Scholar
  210. Mao Q (2015) Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport-an update. AAPS J 17:18CrossRefGoogle Scholar
  211. Marada VV, Florl S, Kuhne A, Muller J, Burckhardt G, Hagos Y (2015) Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs. Pharmacol Res 91:78–87CrossRefGoogle Scholar
  212. Materna V, Liedert B, Thomale J, Lage H (2005) Protection of platinum-DNA adduct formation and reversal of cisplatin resistance by anti-MRP2 hammerhead ribozymes in human cancer cells. Int J Cancer 115:393–402CrossRefGoogle Scholar
  213. Matsunaga N, Kaneko N, Staub AY, Nakanishi T, Nunoya K, Imawaka H et al (2016) Analysis of the metabolic pathway of bosentan and of the cytotoxicity of bosentan metabolites based on a quantitative modeling of metabolism and transport in sandwich-cultured human hepatocytes. Drug Metab Dispos 44:16–27CrossRefGoogle Scholar
  214. Mayo SA, Song YK, Cruz MR, Phan TM, Singh KV, Garsin DA et al (2016) Indomethacin injury to the rat small intestine is dependent upon biliary secretion and is associated with overgrowth of enterococci. Physiological Reports 4:e12725CrossRefPubMedPubMedCentralGoogle Scholar
  215. Mei Q, Richards K, Strong-Basalyga K, Fauty SE, Taylor A, Yamazaki M et al (2004) Using real-time quantitative TaqMan RT-PCR to evaluate the role of dexamethasone in gene regulation of rat P-glycoproteins mdr1a/1b and cytochrome p450 3A1/2. J Pharm Sci 93:2488–2496CrossRefGoogle Scholar
  216. Meier-Abt F, Faulstich H, Hagenbuch B (2004) Identification of phalloidin uptake systems of rat and human liver. Biochim Biophys Acta 1664:64–69CrossRefGoogle Scholar
  217. Meier PJ (2002) Canalicular bile formation: beyond single transporter functions. J Hepatol 37:272–273CrossRefGoogle Scholar
  218. Meier PJ, Eckhardt U, Schroeder A, Hagenbuch B, Stieger B (1997) Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 26:11CrossRefGoogle Scholar
  219. Merino G, Jonker JW, Wagenaar E, Van Herwaarden AE, Schinkel AH (2005) The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol Pharmacol 67:1758–1764CrossRefPubMedPubMedCentralGoogle Scholar
  220. Mikkelsen TS, Thorn CF, Yang JJ, Ulrich CM, French D, Zaza G et al (2011) PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics 21:679–686CrossRefPubMedPubMedCentralGoogle Scholar
  221. Miriam Cantore RR, Sommerfeld A, Becker M, Häussinger D (2011) The Src family kinase Fyn mediates hyperosmolarity-induced Mrp2 and Bsep retrieval from canalicular membrane. J Biol Chem 286:16CrossRefGoogle Scholar
  222. Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Af H et al (2006) Inhibition of bile acid transport across Na+/taurocholate contransporting polypeptide (SLC10A1) and bile salt export pump (ABCB11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos 34:7CrossRefGoogle Scholar
  223. Mizuarai S, Aozasa N, † HK (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 109:238–246Google Scholar
  224. Monks Nr LS, Xu Y, Yu H, Bendelow AS, Moscow JA (2007) Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1- and OATP1B3-expressing HeLa cells. Mol Cancer Ther 6:587CrossRefGoogle Scholar
  225. Morisaki K, Robey RW, Ozvegylaczka C, Honjo Y, Polgar O, Steadman K et al (2005) Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol 56:161–172CrossRefGoogle Scholar
  226. Moriya Y, Nakamura T, Horinouchi M, Sakaeda T, Tamura T, Aoyama N et al (2002) Effects of polymorphisms of MDR1, MRP1, and MRP2 genes on their mRNA expression levels in duodenal enterocytes of healthy Japanese subjects. Biol Pharm Bull 25:1356–1359CrossRefGoogle Scholar
  227. Moriyama Y, Hiasa M, Matsumoto T, Omote H (2008) Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 38:1107–1118CrossRefGoogle Scholar
  228. Moseley RH (1997) Sepsis-associated cholestasis. Gastroenterology 112:302–306CrossRefGoogle Scholar
  229. Naesens M, Kuypers DR, Verbeke K, Vanrenterghem Y (2006) Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation 82:1074–1084CrossRefGoogle Scholar
  230. Nakabori T, Hikita H, Murai K, Nozaki Y, Kai Y, Makino Y et al (2016) Sodium taurocholate cotransporting polypeptide inhibition efficiently blocks hepatitis B virus spread in mice with a humanized liver. Sci Rep:6Google Scholar
  231. Nakajima M, Yokoi T (2011) MicroRNAs from biology to future pharmacotherapy: regulation of cytochrome P450s and nuclear receptors. Pharmacol Ther 131:330–337CrossRefGoogle Scholar
  232. Niemi M, Pasanen M, Neuvonen P (2011) Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 63:81CrossRefGoogle Scholar
  233. Nies AT, Keppler D (2007) The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 453:643–659CrossRefGoogle Scholar
  234. Nies AT, Koepsell H, Damme K, Schwab M (2010) Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 201:63Google Scholar
  235. Niesat KH, Winter S, Burk O, Klein K, Kerb R et al (2009) Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50:14Google Scholar
  236. Ning B, Su Z, Mei N, Hong H, Deng H, Shi L et al (2014) Toxicogenomics and cancer susceptibility: advances with next-generation sequencing. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32:121–158CrossRefPubMedPubMedCentralGoogle Scholar
  237. Nishimura M, Yamaguchi M, Yamauchi A, Ueda N, Naito S (2005) Role of soybean oil fat emulsion in the prevention of hepatic xenobiotic transporter mRNA up- and down-regulation induced by overdose of fat-free total parenteral nutrition in infant rats. Drug Metab Pharmacokinet 20:46–54CrossRefGoogle Scholar
  238. Nkongolo S, Ni Y, Lempp FA, Kaufman C, Lindner T, Esser-Nobis K et al (2014) Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J Hepatol 60:723–731CrossRefGoogle Scholar
  239. Noguchi KK, Sugimoto Y (2014) Human ABC transporter ABCG2/BCRP expression in chemoresistance: Basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers. Med 7:12Google Scholar
  240. Nozawa T, Nakajima M, Tamai I, Noda K, Nezu J, Sai Y et al (2002) Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J Pharmacol Exp Ther 302:804–813CrossRefGoogle Scholar
  241. Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F (2013) Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet 52:751–762CrossRefPubMedPubMedCentralGoogle Scholar
  242. Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A et al (2012) Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 40:10CrossRefGoogle Scholar
  243. Oostendorp RL, Buckle T, Beijnen JH, Van Tellingen O, Schellens JH (2009) The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs 27:31–40CrossRefGoogle Scholar
  244. Otieno MA, Snoeys J, Lam W, Ghosh A, Player MR, Pocai A et al (2017a) Fasiglifam (TAK-875): Mechanistic investigation and retrospective identification of hazards for Drug Induced Liver Injury (DILI). Toxicol SciGoogle Scholar
  245. Otieno MA, Snoeys J, Lam W, Ghosh A, Player MR, Pocai A et al (2017b) Fasiglifam (TAK-875): Mechanistic investigation and retrospective identification of hazards for drug induced liver injury. Toxicol SciGoogle Scholar
  246. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y (2005) A humantransporter protein that mediates the final excretion step for toxic organiccations. Proc Natl Acad Sci U S A 76:10Google Scholar
  247. Oude Elferink RP, Beuers U (2011) Targeting the ABCB4 gene to control cholesterol homeostasis. Expert Opin Ther Targets 15:1173–1182CrossRefGoogle Scholar
  248. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M (2007) Different effects of SLCO1B1 polymorphism on the pharmacokinetics of Atorvastatin and Rosuvastatin. Clin Pharmacol Ther 82:726–733CrossRefGoogle Scholar
  249. Patel M, Taskar KS, Zamek-Gliszczynski MJ (2016) Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J Clin Pharmacol 56(Suppl 7):S23–S39CrossRefGoogle Scholar
  250. Patel T, Steer CJ, Gores GJ (1999) Apoptosis and the liver: A mechanism of disease, growth regulation, and carcinogenesis. Hepatology 30:811–815CrossRefGoogle Scholar
  251. Paulusma CC, Kool M, Bosma PJ, Scheffer GL, Ter Borg F, Scheper RJ et al (1997) A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology 25:1539–1542CrossRefGoogle Scholar
  252. Polgar O, Robey RW, Bates SE (2008) ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 4:1–15CrossRefGoogle Scholar
  253. Priyamvada C, Kim L (2004) The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res 21:17Google Scholar
  254. Reid G, Wielinga P, Zelcer N, Haas MD, Deemter LV, Wijnholds J et al (2003) Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol 63:10CrossRefGoogle Scholar
  255. Reuter BK, Davies NM, Wallace JL (1997) Nonsteroidal anti-inflammatory drug enteropathy in rats: role of permeability, bacteria, and enterohepatic circulation. Gastroenterology 112:109–117CrossRefGoogle Scholar
  256. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259CrossRefGoogle Scholar
  257. Ringseis R, Posel S, Hirche F, Eder K (2007) Treatment with pharmacological peroxisome proliferator-activated receptor alpha agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats. Pharmacol Res 56:175–183CrossRefGoogle Scholar
  258. Ripperger A, Benndorf RA (2016) The C421A (Q141K) polymorphism enhances the 3′-untranslated region (3’-UTR)-dependent regulation of ATP-binding cassette transporter ABCG2. Biochem Pharmacol 104:139–147CrossRefGoogle Scholar
  259. Rodrigues AD, Lai Y, Cvijic ME, Elkin LL, Zvyaga T, Soars MG (2014) Drug-induced perturbations of the bile acid pool, cholestasis, and hepatotoxicity: mechanistic considerations beyond the direct inhibition of the bile salt export pump. Drug Metab Dispos 42:566–574CrossRefGoogle Scholar
  260. Roman ID, Coleman R (1994) Disruption of canalicular function in isolated rat hepatocyte couplets caused by cyclosporin A. Biochem Pharmacol 48:2181–2188CrossRefGoogle Scholar
  261. Roman ID, Fernandez-Moreno MD, Fueyo JA, Roma MG, Coleman R (2003) Cyclosporin A induced internalization of the bile salt export pump in isolated rat hepatocyte couplets. Toxicol Sci 71:276–281CrossRefGoogle Scholar
  262. Roman ID, Monte MJ, Gonzalez-Buitrago JM, Esteller A, Jimenez R (1990) Inhibition of hepatocytary vesicular transport by cyclosporin A in the rat: relationship with cholestasis and hyperbilirubinemia. Hepatology 12:83–91CrossRefGoogle Scholar
  263. Ros JE, Roskams TA, Geuken M, Havinga R, Splinter PL, Petersen BE et al (2003) ATP binding cassette transporter gene expression in rat liver progenitor cells. Gut 52:1060–1067CrossRefPubMedPubMedCentralGoogle Scholar
  264. Rukov JL, Vinther J, Shomron N (2011) Pharmacogenomics genes show varying perceptibility to microRNA regulation. Pharmacogenet Genomics 21:251–262CrossRefGoogle Scholar
  265. Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174CrossRefGoogle Scholar
  266. Russo MW, Scobey M, Bonkovsky HL (2009) Drug-induced liver injury associated with statins. Semin Liver Dis 29:412–422CrossRefGoogle Scholar
  267. Sadighara M, Amirsheardost Z, Minaiyan M, Hajhashemi V, Naserzadeh P, Salimi A et al (2017) Toxicity of atorvastatin on pancreas mitochondria: A justification for increased risk of diabetes mellitus. Basic Clin Pharmacol Toxicol 120:131–137CrossRefGoogle Scholar
  268. Sai K, Saito Y, Maekawa K, Kim SR, Kaniwa N, Nishimaki-Mogami T et al (2010) Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother Pharmacol 66:95–105CrossRefGoogle Scholar
  269. Sakaeda T (2005) MDR1 genotype-related pharmacokinetics: fact or fiction? Drug Metab Pharmacokinet 20:24CrossRefGoogle Scholar
  270. Schaeffeler EHC, Nies AT, Winter S, Kruck S, Hofmann U et al (2011) DNA methylation is associated with downregulation of the oranic cation transporter OCT1 (SLC22A1) in human hepatocellular carcinoma. Genome Med 3:1CrossRefGoogle Scholar
  271. Schoen RT, Vender RJ (1989) Mechanisms of nonsteroidal anti-inflammatory drug-induced gastric damage. Am J Med 86:449–458CrossRefGoogle Scholar
  272. Seferian A, Simonneau G (2013) Therapies for pulmonary arterial hypertension: where are we today, where do we go tomorrow? Eur Respir Rev 22:217–226CrossRefGoogle Scholar
  273. Sheng J, Tian X, Xu G, Wu Z, Chen C, Wang L et al (2015) The hepatobiliary disposition of timosaponin b2 is highly dependent on influx/efflux transporters but not metabolism. Drug Metab Dispos 43:63–72CrossRefGoogle Scholar
  274. Shin HJ, Anzai N, Enomoto A, He X, Kim DK, Endou H et al (2007) Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 45:1046–1055CrossRefGoogle Scholar
  275. Shitara YHT, Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pham Sci 27:22Google Scholar
  276. Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y (2003) Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 304:610–616CrossRefPubMedPubMedCentralGoogle Scholar
  277. Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y (2013) Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 34:45–78CrossRefGoogle Scholar
  278. Simonneau G, Galie N, Jansa P, Meyer GM, Al-Hiti H, Kusic-Pajic A et al (2014) Long-term results from the EARLY study of bosentan in WHO functional class II pulmonary arterial hypertension patients. Int J Cardiol 172:332–339CrossRefGoogle Scholar
  279. Singh S, Hynan LS, Lee WM (2013) Improvements in hepatic serological biomarkers are associated with clinical benefit of intravenous N-acetylcysteine in early stage non-acetaminophen acute liver failure. Dig Dis Sci 58:1397–1402CrossRefPubMedPubMedCentralGoogle Scholar
  280. Slaviero KA, Clarke SJ, Rivory LP (2003) Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol 4:224–232CrossRefPubMedPubMedCentralGoogle Scholar
  281. Slijepcevic D, Kaufman C, Wichers CG, Gilglioni EH, Lempp FA, Duijst S et al (2015) Impaired uptake of conjugated bile acids and hepatitis b virus pres1-binding in na(+) -taurocholate cotransporting polypeptide knockout mice. Hepatology 62:207–219CrossRefPubMedPubMedCentralGoogle Scholar
  282. Slijepcevic D, Van De Graaf SF (2017) Bile acid uptake transporters as targets for therapy. Dig Dis 35:251–258CrossRefPubMedPubMedCentralGoogle Scholar
  283. Small DM (2003) Role of ABC transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci U S A 100:4–6CrossRefGoogle Scholar
  284. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K et al (2007) Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 81:76–82CrossRefGoogle Scholar
  285. Smitherman PK, Townsend AJ, Kute TE, Morrow CS (2004) Role of multidrug resistance protein 2 (MRP2, ABCC2) in alkylating agent detoxification: MRP2 potentiates glutathione S-transferase A1–1-mediated resistance to chlorambucil cytotoxicity. J Pharmacol Exp Ther 308:260–267CrossRefGoogle Scholar
  286. Snow KL, Moseley RH (2007) Effect of thiazolidinediones on bile acid transport in rat liver. Life Sci 80:732–740CrossRefGoogle Scholar
  287. Soichiro Matsushima KM, Hayashi H, Debori Y, Schinkel AH, Schuetz JD, Kusuhara H, Sugiyama Y (2008) Involvement of multiple efflux transporters in hepatic disposition of Fexofenadine. Mol Pharmacol 73:10Google Scholar
  288. Soroka C, Lee J, Azzaroli F, Boyer J (2001a) Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 33:9CrossRefGoogle Scholar
  289. Soroka C, Lee J, Azzaroli F, Boyer J (2001b) Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 33:783–791CrossRefGoogle Scholar
  290. Soroka CJ, Ballatori N, Boyer JL (2010) Organic solute transporter, OSTalpha-OSTbeta: its role in bile acid transport and cholestasis. Semin Liver Dis 30:178–185CrossRefPubMedPubMedCentralGoogle Scholar
  291. Starkey Lewis PJ, Dear J, Platt V, Simpson KJ, Craig DG, Antoine DJ et al (2011) Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54:1767–1776CrossRefGoogle Scholar
  292. Staud F, Cerveny L, Ahmadimoghaddam D, Ceckova M (2013) Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int J Biochem Cell Biol 45:2007–2011CrossRefGoogle Scholar
  293. Stein U, Walther W, Wunderlich V (1994) Point mutations in the mdr1 promoter of human osteosarcomas are associated with in vitro responsiveness to multidrug resistance relevant drugs. Eur J Cancer 10:1541–1545CrossRefGoogle Scholar
  294. Stieger B (2010a) Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug metabolism Reviews 42:9CrossRefGoogle Scholar
  295. Stieger B (2010b) Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev 42:437–445CrossRefGoogle Scholar
  296. Stieger B, Beuers U (2011) The canalicular bile salt export pump BSEP (ABCB11) as a potential therapeutic target. Curr Drug Targets 12:661–670CrossRefGoogle Scholar
  297. Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ (2000) Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118:422–430CrossRefGoogle Scholar
  298. Stone B, Warty V, Dindzans V, Van Thiel D (1988) The mechanism of cyclosporine-induced cholestasis in the rat. Transplant Proc 20:841–844PubMedGoogle Scholar
  299. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L et al (2010) Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 9:597–614CrossRefGoogle Scholar
  300. Sun J, Zhang HY, Li LY, Yu LF, Fu LF (2017) MicroRNA-9 limits hepatic fibrosis by suppressing the activation and proliferation of hepatic stellate cells by directly targeting MRP1/ABCC1. Oncology Reports 37:1698–1706CrossRefGoogle Scholar
  301. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7:584–590CrossRefGoogle Scholar
  302. Tamai I (2013) Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos 34:29–44CrossRefGoogle Scholar
  303. Tamai I, Ohashi R, Nezu J, et al (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273:5 Google Scholar
  304. Tamai I, Yabuuchi H, Nezu J, et al (1997) Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett 419:5Google Scholar
  305. Tamura A, Wakabayashi K, Onishi Y, Takeda M, Ikegami Y, Sawada S et al (2007) Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci 98:231–239CrossRefGoogle Scholar
  306. Tan DN, Markova S, Liu W, Gow JM, Baldwin RM, Habashian M et al (2012) Functional characterization of ABCC2 promoter polymorphisms and allele specific expression. Pharmacogenomics J 13:396Google Scholar
  307. Taniguchi K, Wada M, Kohno K, Nakamura T, Kawabe T, Kawakami M (1996) A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res 56:6Google Scholar
  308. Taylor R (2004) Causation of type 2 diabetes – the Gordian knot unravels. N Engl J Med 350:639–641CrossRefGoogle Scholar
  309. Tedesco D, Haragsim L (2012) Cyclosporine: a review. J Transplant 2012:230386CrossRefPubMedPubMedCentralGoogle Scholar
  310. Telbisz A, Homolya L (2016) Recent advances in the exploration of the bile salt export pump (BSEP/ABCB11) function. Expert Opin Ther Targets 20:501–514CrossRefGoogle Scholar
  311. Thakkar N, Lockhart AC, Lee W (2015) Role of Organic Anion-Transporting polypeptides (OATPs) in cancer therapy. AAPS J 17:535–545CrossRefPubMedPubMedCentralGoogle Scholar
  312. Theis JGW (1998) Increased systemic toxicity of sarcoma chemotherapy due to combination with the P-glycoprotein inhibitor cyclosporine. Int J Clin Pharmacol Ther 36:4Google Scholar
  313. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K (2008) Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 7:678–693CrossRefGoogle Scholar
  314. Tian Y, Bian Y, Jiang Y, Qian S, Yu A, Zeng S (2015) Interplay of Breast Cancer Resistance Protein (BCRP) and metabolizing enzymes. Curr Drug Metab 16:17CrossRefGoogle Scholar
  315. Tirona RG, Leake BF, Merino G, Kim RB (2001) Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 276:35669–35675CrossRefPubMedPubMedCentralGoogle Scholar
  316. TranV Gorboulev, Ulzheimer JC, Akhoundova A (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:11Google Scholar
  317. Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83:633–671CrossRefPubMedPubMedCentralGoogle Scholar
  318. Trauner M, Fickert P, Wagner M (2007) MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 27:77–98CrossRefPubMedPubMedCentralGoogle Scholar
  319. Trauner M, Fuchs CD, Halilbasic E, Paumgartner G (2017) New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 65:1393–1404CrossRefGoogle Scholar
  320. Treiber A, Schneiter R, Hausler S, Stieger B (2007) Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 35:1400–1407CrossRefGoogle Scholar
  321. Tu M, Sun S, Wang K, Peng X, Wang R, Li L et al (2013) Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity. Toxicology 311:225–230CrossRefGoogle Scholar
  322. Verrier Er CC et al (2016) Solute carrier NTCP regulates innate antiviral immune responses targeting hepatitis C virus infection of hepatocytes. Cell Report 17:12CrossRefGoogle Scholar
  323. Vildhede AWSJ, Norén A, Karlgren M, Artursson P (2015) Comparative proteomic analysis of human liver tissue and isolated hepatocytes with a focus on proteins determining drug exposure. J Proteome Res 14:10CrossRefGoogle Scholar
  324. Vlaming ML, Pala Z, Van Esch A, Wagenaar E, De Waart DR, Van De Wetering K et al (2009a) Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin Cancer Res 15:3084–3093CrossRefGoogle Scholar
  325. Vlaming ML, Van EA, Pala Z, Wagenaar E, Van DWK, Van TO et al (2009b) Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo. Mol Cancer Ther 8:3350–3359CrossRefGoogle Scholar
  326. Vlaming ML, Van Esch A, Pala Z, Wagenaar E, Van De Wetering K, Van Tellingen O et al (2009c) Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo. Mol Cancer Ther 8:3350–3359CrossRefGoogle Scholar
  327. Vos T, Hooiveld GJE, Konong H, Childs S, Meijer DKF, Moshage H et al (2006) Up-regulation of the multidrug resistance genes, mrp1 and mdr1b, and down regulation of the organic anion transporter, mrp2, and the bile salt transporter, spgp, in endotoxemic rat liver. Hepatology 43:S9–S11CrossRefGoogle Scholar
  328. Vos TA, Ros JE, Havinga R, Moshage H, Kuipers F, Jansen PLM et al (1999) Regulation of hepatic transport systems involved in bile secretion during liver regeneration in rats. Hepatology 29:1833–1839CrossRefGoogle Scholar
  329. Sun W, Wu RR, van Poelje PD, Erion MD (2001) Isolation of a family of organic anion transporters from human liver and kidney. Biochem Biophys Res Commun 283:417–422CrossRefGoogle Scholar
  330. Wacher VJ, Wu CY, Benet LZ (1995) Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: Implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 13:129CrossRefGoogle Scholar
  331. Wagner M, Zollner G, Trauner M (2009) New molecular insights into the mechanisms of cholestasis. J Hepatol 51:565–580CrossRefGoogle Scholar
  332. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W (2005) Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 15:693–704CrossRefGoogle Scholar
  333. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z et al (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106:4402–4407CrossRefPubMedPubMedCentralGoogle Scholar
  334. Wang L, Ma L, Lin Y, Liu X, Xiao L, Zhang Y et al (2018) Leflunomide increases hepatic exposure to methotrexate and its metabolite by differentially regulating multidrug resistance-associated protein Mrp2/3/4 transporters via peroxisome proliferator-activated receptor alpha activation. Mol Pharmacol 93:563–574CrossRefGoogle Scholar
  335. Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CE et al (2015) Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos 43:367–374CrossRefGoogle Scholar
  336. Watanabe S, Yokoyama Y, Oda K, Kokuryo T, Shoda J, Okada K (2009a) Choleretic effect of inchinkoto, a herbal medicine, on livers of patients with biliary obstruction due to bile duct carcinoma. Hepatol Res 39:9CrossRefGoogle Scholar
  337. Watanabe T, Kusuhara H, Maeda K, Shitara Y, Sugiyama Y (2009b) Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 328:652–662CrossRefGoogle Scholar
  338. Weerachayaphorn J, Cai SY, Soroka CJ, Boyer JL (2009) Nuclear factor erythroid 2-related factor 2 is a positive regulator of human bile salt export pump expression. Hepatology 50:1588–1596CrossRefPubMedPubMedCentralGoogle Scholar
  339. Weinman SA (1997) Electrogenicity of Na(+)-coupled bile acid transporters. Yale J Biol Med 70:331–340PubMedPubMedCentralGoogle Scholar
  340. Whitfield LR, Porcari AR, Alvey C, Abel R, Bullen W, Hartman D (2011) Effect of Gemfibrozil and Fenofibrate on the pharmacokinetics of Atorvastatin. J Clin Pharmacol 51:378–388CrossRefGoogle Scholar
  341. Wieland T (1983) The toxic peptides from Amanita mushrooms. Int J Pept Protein Res 22:257–276CrossRefGoogle Scholar
  342. Wolenski FS, Zhu AZ, Johnson M, Yu S, Moriya Y, Ebihara T et al (2017) Fasiglifam (TAK-875) alters bile acid homeostasis in rats and dogs: a potential cause of drug induced liver injury. Toxicol SciGoogle Scholar
  343. Wolf KK, Vora S, Webster LO, Generaux GT, Polli JW, Brouwer KL (2010) Use of cassette dosing in sandwich-cultured rat and human hepatocytes to identify drugs that inhibit bile acid transport. Toxicol In Vitro 24:297–309CrossRefGoogle Scholar
  344. Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT (2015) Impact of genetic polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on drug disposition and potential clinical implications: Update of the literature. Clin Pharmacokinet 54:709–735CrossRefGoogle Scholar
  345. Wu TY, Khor TO, Lee JH, Cheung KL, Shu L, Chen C et al (2013) Pharmacogenetics, pharmacogenomics and epigenetics of Nrf2-regulated xenobiotic-metabolizing enzymes and transporters by dietary phytochemical and cancer chemoprevention. Curr Drug Metab 14:688–694CrossRefGoogle Scholar
  346. Wu X, Prasad PD, Leibach FH, Ganapathy V (1998) cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun 246:7CrossRefGoogle Scholar
  347. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES et al (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 98:3375–3380CrossRefPubMedPubMedCentralGoogle Scholar
  348. Xu FQ, Xu FC, Hou B, Fan WW, Zi CT, Li Y et al (2014) Cytotoxic bibenzyl dimers from the stems of Dendrobium fimbriatum Hook. Bioorg Med Chem Lett 24:5268–5273CrossRefGoogle Scholar
  349. Yabuuchi H, Tanaka K, Maeda M, Takemura M, Oka M, Ohashi R et al (2008) Cloning of the dog bile salt export pump (BSEP; ABCB11) and functional comparison with the human and rat proteins. Biopharm Drug Dispos 29:441–448CrossRefGoogle Scholar
  350. Yamazaki M, Suzuki H, Sugiyama Y (1996) Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm Res 13:497–513CrossRefGoogle Scholar
  351. Yan H, Zhong GC, Xu GW, He WH, Jing ZY, Gao ZC et al (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1Google Scholar
  352. Yasui Y, Kudo A, Kurosaki M, Matsuda S, Muraoka M, Tamaki N et al (2014) Reduced organic anion transporter expression is a risk factor for hepatocellular carcinoma in chronic hepatitis C patients: a propensity score matching study. Oncology 86:53–62CrossRefGoogle Scholar
  353. Yasumiba S, Tazuma S, Ochi H, Chayama K, Kajiyama G (2001) Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats. Biochem J 354:591–596CrossRefPubMedPubMedCentralGoogle Scholar
  354. Yokoi T, Nakajima M (2013) microRNAs as mediators of drug toxicity. Annu Rev Pharmacol Toxicol 53:377–400CrossRefGoogle Scholar
  355. Yonezawa A, Ken-Ichi I (2011) Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol 164:9CrossRefGoogle Scholar
  356. Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K, Schuetz JD et al (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 13:19–28CrossRefGoogle Scholar
  357. Zamek-Gliszczynski MJ, Hoffmaster KA, Tweedie DJ, Giacomini KM, Hillgren KM (2012) Highlights from the international transporter consortium second workshop. Clin Pharmacol Ther 92:553–556CrossRefGoogle Scholar
  358. Zelcer NST, Reid G et al (2001) Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem 276:8CrossRefGoogle Scholar
  359. Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A et al (2006a) Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res 66:8847–8857CrossRefPubMedPubMedCentralGoogle Scholar
  360. Zhang W, Yu BN, He YJ, Fan L, Li Q, Liu ZQ et al (2006b) Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta 373:99–103CrossRefGoogle Scholar
  361. Zhang XY, Yang J, Yin XF, Liu XD, Wang GJ (2009) Hepatobiliary transport of glutathione and its role in cholestasis. Yao Xue Xue Bao 44:327–332PubMedGoogle Scholar
  362. Zhang Y, Benet LZ (2001) The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 40:159CrossRefGoogle Scholar
  363. Zhang YK, Wang YJ, Gupta P, Chen ZS (2015) Multidrug Resistance Proteins (MRPs) and cancer therapy. AAPS J 17:802–812CrossRefPubMedPubMedCentralGoogle Scholar
  364. Zhou L, Song Y, Zhao J, Qin H, Zhang G, Zhou Y et al (2016) Monoammonium glycyrrhizinate protects rifampicin- and isoniazid-induced hepatotoxicity via regulating the expression of transporter Mrp2, Ntcp, and Oatp1a4 in liver. Pharm Biol 54:931–937CrossRefGoogle Scholar
  365. Zollner G, Wagner M, Fickert P, Silbert D, Fuchsbichler A, Zatloukal K et al (2005) Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int 25:367–379CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Materia MedicaChinese Academy of ScienceShanghaiChina

Personalised recommendations