Skip to main content
Log in

Multidrug Resistance-Associated Protein 2 (MRP2/ABCC2) Haplotypes Significantly Affect the Pharmacokinetics of Tacrolimus in Kidney Transplant Recipients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Tacrolimus is an immunosuppressive drug used for the prevention of the allograft rejection in kidney transplant recipients. It exhibits a narrow therapeutic index and large pharmacokinetic variability. Tacrolimus is mainly metabolized by cytochrome P450 (CYP) 3A4 and 3A5 and effluxed via ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), encoded by ABCB1 gene. The influence of CYP3A5*3 on the pharmacokinetics of tacrolimus has been well characterized. On the other hand, the contribution of polymorphisms in other genes is controversial. In addition, the involvement of other efflux transporters than P-gp in tacrolimus disposition is uncertain. The present study was designed to investigate the effects of genetic polymorphisms of CYP3As and efflux transporters on the pharmacokinetics of tacrolimus.

Subjects and Methods

A total of 500 blood concentrations of tacrolimus from 102 adult stable kidney transplant recipients were included in the analyses. Genetic polymorphisms in CYP3A4 and CYP3A5 genes were determined. In addition, the genes of efflux transporters including P-gp (ABCB1), multidrug resistance-associated protein (MRP2/ABCC2) and breast cancer resistance protein (BCRP/ABCG2) were genotyped. For ABCC2 gene, haplotypes were determined as follows: H1 (wild type), H2 (1249G>A), H9 (3972C>T) and H12 (−24C>T and 3972C>T). Population pharmacokinetic analysis was performed using nonlinear mixed effects modeling.

Results

Analyses revealed that the CYP3A5 expressers (CYP3A5*1 carriers) and MRP2 high-activity group (ABCC2 H2/H2 and H1/H2) showed a decreased dose-normalized trough concentration of tacrolimus by 2.3-fold (p < 0.001) and 1.5-fold (p = 0.007), respectively. The pharmacokinetics of tacrolimus were best described using a two-compartment model with first order absorption and an absorption lag time. In the population pharmacokinetic analysis, CYP3A5 expressers and MRP2 high-activity groups were identified as the significant covariates for tacrolimus apparent clearance expressed as 20.7 × (age/50)−0.78 × 2.03 (CYP3A5 expressers) × 1.40 (MRP2 high-activity group). No other CYP3A4, ABCB1 or ABCG2 polymorphisms were associated with the apparent clearance of tacrolimus.

Conclusions

This is the first report showing that MRP2/ABCC2 has a crucial impact on the pharmacokinetics of tacrolimus in a haplotype-specific manner. Determination of the ABCC2 as well as CYP3A5 genotype may be useful for more accurate tacrolimus dosage adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351(26):2715–29.

    Article  PubMed  CAS  Google Scholar 

  2. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–53.

    Article  PubMed  CAS  Google Scholar 

  3. Scott LJ, McKeage K, Keam SJ, et al. Tacrolimus: a further update of its use in the management of organ transplantation. Drugs. 2003;63(12):1247–97.

    Article  PubMed  CAS  Google Scholar 

  4. Sattler M, Guengerich FP, Yun CH, et al. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos. 1992;20(5):753–61.

    PubMed  CAS  Google Scholar 

  5. Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos. 1995;23(12):1315–24.

    PubMed  CAS  Google Scholar 

  6. Saeki T, Ueda K, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268(9):6077–80.

    PubMed  CAS  Google Scholar 

  7. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet. 2010;49(3):141–75.

    Article  PubMed  CAS  Google Scholar 

  8. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91.

    Article  PubMed  CAS  Google Scholar 

  9. Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11(9):773–9.

    Article  PubMed  CAS  Google Scholar 

  10. Fukudo M, Yano I, Masuda S, et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther. 2006;80(4):331–45.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao W, Elie V, Roussey G, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;86(6):609–18.

    Article  PubMed  CAS  Google Scholar 

  12. Christians U, Jacobsen W, Benet LZ, et al. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet. 2002;41(11):813–51.

    Article  PubMed  CAS  Google Scholar 

  13. Lampen A, Christians U, Gonschior AK, et al. Metabolism of the macrolide immunosuppressant, tacrolimus, by the pig gut mucosa in the Ussing chamber. Br J Pharmacol. 1996;117(8):1730–4.

    Article  PubMed  CAS  Google Scholar 

  14. Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther. 2006;109(1–2):137–61.

    Article  PubMed  CAS  Google Scholar 

  15. Chitnis SD, Ogasawara K, Schniedewind B, et al. Concentration of tacrolimus and major metabolites in kidney transplant recipients as a function of diabetes mellitus and cytochrome P450 3A gene polymorphism. Xenobiotica (Epub 2013 Jan 2).

  16. He P, Court MH, Greenblatt DJ, et al. Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther. 2005;77(5):373–87.

    Article  PubMed  CAS  Google Scholar 

  17. Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.

    Article  PubMed  CAS  Google Scholar 

  18. Laechelt S, Turrini E, Ruehmkorf A, et al. Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function. Pharmacogenomics J. 2011;11(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  19. Mendonza AE, Zahir H, Gohh RY, et al. Tacrolimus in diabetic kidney transplant recipients: pharmacokinetics and application of a limited sampling strategy. Ther Drug Monit. 2007;29(4):391–8.

    Article  PubMed  CAS  Google Scholar 

  20. Horowitz M, Fraser R. Disordered gastric motor function in diabetes mellitus. Diabetologia. 1994;37(6):543–51.

    Article  PubMed  CAS  Google Scholar 

  21. Renders L, Frisman M, Ufer M, et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther. 2007;81(2):228–34.

    Article  PubMed  CAS  Google Scholar 

  22. Hariharan S, Gunda S, Mishra GP, et al. Enhanced corneal absorption of erythromycin by modulating P-glycoprotein and MRP mediated efflux with corticosteroids. Pharm Res. 2009;26(5):1270–82.

    Article  PubMed  CAS  Google Scholar 

  23. Franke RM, Lancaster CS, Peer CJ, et al. Effect of ABCC2 (MRP2) transport function on erythromycin metabolism. Clin Pharmacol Ther. 2011;89(5):693–701.

    Article  PubMed  CAS  Google Scholar 

  24. Hesselink DA, van Schaik RH, van Agteren M, et al. CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet Genomics. 2008;18(4):339–48.

    Article  PubMed  CAS  Google Scholar 

  25. Elens L, Bouamar R, Hesselink DA, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem. 2011;57(11):1574–83.

    Article  PubMed  CAS  Google Scholar 

  26. Musuamba FT, Mourad M, Haufroid V, et al. Time of drug administration, CYP3A5 and ABCB1 genotypes, and analytical method influence tacrolimus pharmacokinetics: a population pharmacokinetic study. Ther Drug Monit. 2009;31(6):734–42.

    PubMed  CAS  Google Scholar 

  27. Benkali K, Prémaud A, Picard N, et al. Tacrolimus population pharmacokinetic-pharmacogenetic analysis and Bayesian estimation in renal transplant recipients. Clin Pharmacokinet. 2009;48(12):805–16.

    Article  PubMed  CAS  Google Scholar 

  28. Woillard JB, de Winter BC, Kamar N, et al. Population pharmacokinetic model and Bayesian estimator for two tacrolimus formulations—twice daily Prograf and once daily Advagraf. Br J Clin Pharmacol. 2011;71(3):391–402.

    Article  PubMed  CAS  Google Scholar 

  29. Musuamba FT, Mourad M, Haufroid V, et al. A simultaneous D-optimal designed study for population pharmacokinetic analyses of mycophenolic acid and tacrolimus early after renal transplantation. J Clin Pharmacol. 2012;52(12):1833–43.

    Article  PubMed  CAS  Google Scholar 

  30. Jacobson PA, Oetting WS, Brearley AM, et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation. 2011;91(3):300–8.

    Article  PubMed  CAS  Google Scholar 

  31. Jacobson PA, Schladt D, Oetting WS, et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am J Transplant. 2012;12(12):3326–36.

    Article  PubMed  CAS  Google Scholar 

  32. Stratta P, Quaglia M, Cena T, et al. The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation. Eur J Clin Pharmacol. 2012;68(5):671–80.

    Article  PubMed  CAS  Google Scholar 

  33. Akhlaghi F, Ashley J, Keogh A, et al. Cyclosporine plasma unbound fraction in heart and lung transplantation recipients. Ther Drug Monit. 1999;21(1):8–16.

    Article  PubMed  CAS  Google Scholar 

  34. Zahir H, McLachlan AJ, Nelson A, et al. Population pharmacokinetic estimation of tacrolimus apparent clearance in adult liver transplant recipients. Ther Drug Monit. 2005;27(4):422–30.

    Article  PubMed  CAS  Google Scholar 

  35. Staatz CE, Willis C, Taylor PJ, et al. Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther. 2002;72(6):660–9.

    Article  PubMed  CAS  Google Scholar 

  36. Xue L, Zhang H, Ma S, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in healthy Chinese volunteers. Pharmacology. 2011;88(5–6):288–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded in part by R15 GM101599 from the National Institutes of Health. Some of the work was conducted at the Rhode Island Genomics and Sequencing Center, which is supported in part by the National Science Foundation (MRI grant DBI-0215393 and EPSCoR Awards 0554548 & 1004057), the US Department of Agriculture (grants 2002-34438-12688, 2003-34438-13111 & 2008-34438-19246), and the University of Rhode Island. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Akhlaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogasawara, K., Chitnis, S.D., Gohh, R.Y. et al. Multidrug Resistance-Associated Protein 2 (MRP2/ABCC2) Haplotypes Significantly Affect the Pharmacokinetics of Tacrolimus in Kidney Transplant Recipients. Clin Pharmacokinet 52, 751–762 (2013). https://doi.org/10.1007/s40262-013-0069-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0069-2

Keywords

Navigation