Skip to main content

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

Plant growth-promoting rhizobacteria (PGPR) is a heterogeneous group of microorganisms found in the rhizosphere. They live in association with roots and stimulate the plant growth and/or reduce the incidence of plant disease. The term PGPR is used to describe soil bacteria that colonize the rhizosphere of plants, growing in, on, or around plant tissues that stimulate plant growth by several mechanisms. The PGPRs are involved in various biotic activities of the soil ecosystem to make it dynamic for nutrient turnover and sustainable crop production by affecting plant growth. Generally, PGPR promotes plant growth directly due to their ability for nutrient supply (nitrogen, phosphorus, potassium, and essential minerals) or modulating plant hormone levels or indirectly by decreasing the inhibitory effect of various pathogens on plant growth and development in the form of biocontrol agents, root colonizers, and environment protectors. PGPRs can protect plants from diseases by a wide variety of mechanisms like antibiosis, induction of systemic resistance, siderophore production, production of 1-aminocyclopropane-1-carboxylate deaminase (ACC), signal interference while quorum sensing (QS) and inhibition of biofilm formation, production of lytic enzymes, production of volatile organic compounds (VOCs), promoting beneficial plant–microbe symbioses by competition for nutrients and niches, interference with pathogen toxin production, etc. A particular PGPR may affect plant diseases by using any one, or more, of these mechanisms. Bacteria of diverse genera have been identified as PGPRs, of which Bacillus and Pseudomonas spp. are predominant and have been implied in biocontrol due to their effective competitive interactions with bacteria, fungi, oomycetes, protozoa, viruses, and nematodes attacking a variety of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarons S, Abbas A, Adams C, Fenton A, O’Gara F (2000) A regulatory RNA (PrrB RNA) modulates expression of the secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol 182:3913–3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abriouel H, Franz CM, Ben-Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: a current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH (2012) Influence of Azotobacter and IAA on the symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361–372

    Google Scholar 

  • Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1999) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246

    Google Scholar 

  • Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberg O, Christensen BB, Molin S, Givskov M (2001) Gfp-based N-acyl homoserine lactone sensor systems for detection of bacterial communities. Appl Environ Microbiol 67:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Arora NK, Khare E, Verma A, Sahu RK (2008) In vivo control of Macrophomina phaseolina by a chitinase and β-1,3 glucanase producing pseudomonad NDN1. Symbiosis 46:129–135

    CAS  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    CAS  Google Scholar 

  • Bangera MG, Thomashow LS (1999) Identification and characterization of a gene cluster for the synthesis of the polyketide antibiotic 2,4-diacetyl phloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181:3155–3163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  CAS  PubMed  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF) In Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–259

    Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Bevivino A, Tabacchioni S, Chiarini L, Carusi MV, Del Gallo M, Visca P (1994) Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiology 140:1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Bevivino A, Sarrocco S, Dalmastri S, Tabacchioni S, Canale C, Chiarini L (1998) Characterization of a free-living maize rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225–237

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere; new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Haas D (2000a) Multicopy suppression of a gacA mutation by the infC operon in Pseudomonas fluorescens CHA0: competition with the global translational regulator RsmA. FEMS Microbiol Lett 187:53–58

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Haas D (2000b) Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Microbiology 146:2417–2424

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96:14073–14078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC et al (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 16:983–993

    Article  CAS  PubMed  Google Scholar 

  • Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetyl phloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 72:418–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore-mediated iron transport. Biometals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63:1670–1680

    Article  CAS  Google Scholar 

  • Cazorla FM, Duckett SB, Bergstrom ET, Noreen S, Odijk R et al (2006) Biocontrol of avocado Dematophora root rot by the antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant Microbe Interact 19:418–428

    Article  CAS  PubMed  Google Scholar 

  • Chancey ST, Wood DW, Pierson LS (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin-A-Woeng TFC (2000) Molecular basis of biocontrol of tomato foot and root rot by Pseudomonas chlororaphis strain PCL1391. PhD thesis. Leiden University, Leiden, The Netherlands

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization is essential for biocontrol of tomato foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 13:1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, Van den Broek D, De Voer G, van der Drift KMGM, Tuinman S et al (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Mechanisms of biological control of phytopathogenic fungi by Pseudomonas spp. Plant-Microbe Interact 6:173–224

    CAS  Google Scholar 

  • Cho JY, Chung-Soon J (1998) Effect of rhizobacteria on the growth of cucumber and tomato plug seedlings. J Korean Soc Hortic Sci 39(1):18–23

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C et al (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copping LG (2004) The manual of biocontrol agents, 3rd edn. British Crop Production Council, Alton, p 702

    Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizospheric. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer; Dordrecht, pp 169–198

    Google Scholar 

  • Davidson L (1988) Plant beneficial bacteria. Biotechnology 6:282–286

    Google Scholar 

  • De Bruijn I, De Kock MJD, Yang M, De Waard P, Van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    Article  PubMed  CAS  Google Scholar 

  • De Laat AMM, Van Loon LC (1982) Regulation of ethylene biosynthesis in virus-infected tobacco leaves: II. Time course of levels of intermediates and in vivo conversion rates. Plant Physiol 69:240–245

    Article  PubMed  PubMed Central  Google Scholar 

  • De Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetyl phloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • De Weert S, Kuiper I, Lagendijk EL, Lamers GEM, Lugtenberg BJJ (2003) Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f.sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 16:1185–1191

    Google Scholar 

  • Dekkers LC, Mulders CHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium f.sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild types Pseudomonas spp. bacteria. Mol Plant Microbe Interact 13:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J Bacteriol 183:318–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delany I, Sheehan MM, Fenton A, Bardin S, Aarons S, O’Gara F (2000) Regulation of production of the antifungal metabolite 2,4-diacetyl phloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146:537–546

    Article  CAS  PubMed  Google Scholar 

  • Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dinesh R, Anandaraj M, Kumar A, Subila KP, Bini YK, Aravind A (2014) Native multitrait rhizobacteria promote growth and suppress Phytophthora capsici in black pepper. J Spices Aromatic Crops 23:156–163

    Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doornbos RF, Van Loon LC, Peter AHM, Bakker A (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Rev Sustain Dev 32:227–243

    Article  Google Scholar 

  • Downing KJ, Thomson JA (2000) Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can J Microbiol 46:363–369

    Article  CAS  PubMed  Google Scholar 

  • Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1AC7 and Serratia macescens chiA genes in sugarcane associated bacteria. Appl Environ Microbiol 66:2804–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy B, Defago G (2000) Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 66:3142–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  CAS  PubMed  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, Veen JAV (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne C, Moenne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved control of Pythium-mediated damping-off of sugar beet. Plant Pathol 47:299–307

    Article  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent Pseudomonads, biosynthesis, and regulation. Curr Sci 85:1693–1703

    CAS  Google Scholar 

  • Egamberdiyeva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown in salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    Google Scholar 

  • Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Protect 113:247–251

    Article  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrand SK (1990) Agrobacterium radiobacter strain K84: a model control system. In: Liss AR (ed) New directions in biological control: alternatives for suppressing agricultural pests and diseases. Alan R. Liss, New York, pp 679–691

    Google Scholar 

  • Fenton AM, Stephens PM, Crowley J, O’Callaghan M, O’Gara F (1992) Exploitation of gene(s) involved in 2,4-diacetyl phloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58: 3873-3878

    Google Scholar 

  • Filippi MCC, Da Silva GB, Silva-Lobo VL, Cortes MVCB, Moraes AJG, Prabhu AS (2011) Leafblast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biol Control 58:160–166

    Article  Google Scholar 

  • Fray RG, Troup JP, Daykin M, Wallace A, Williams P, Stewart GSAB, Grierson D (1999) Plants genetically modified to produce N-acyl homoserine lactones communicate with bacteria. Nat Biotechnol 17:1017–1020

    Article  CAS  PubMed  Google Scholar 

  • Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact 14:1114–1124

    Article  CAS  PubMed  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajera HP, Vakharia DN (2012) Production of Lytic Enzymes by Trichoderma Isolates during in vitro Antagonism with Aspergillus Niger, The Causal Agent of Collar ROT of Peanut. Braz J Microbiol 43:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert GS, Handelsman J, Parke JL (1994) Root camouflage by disease control. Phytopathology 84:222–225

    Google Scholar 

  • Glick BR (2001) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(3):83393

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) Article ID:963401

    Article  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gundlach H, Mueller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo-Jian H, Qi-Hong Y, Li-Shi M (2002) Biocontrol efficiency of three PGPR strains admixture to pepper bacterial wilt. Bacterial Wilt Newsletter 17:32–47

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H et al (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76

    Article  CAS  PubMed  Google Scholar 

  • Hanafi A, Fellah K (2006) Does the PGPR Bacillus subtilis induce plant resistance to whiteflies and Pythium spp. in greenhouse tomato? Bulletin OILB/SROP 29.4:105

    Google Scholar 

  • Harman GE, Howel CH, Viterbo A, Chet I, Lorito M (2004) Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He H, Silo-Suh LA, Handelsman J, Clardy J (1994) Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett 35:2499–2502

    Article  CAS  Google Scholar 

  • Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, Walsh U, O’Gara F, Haas D (2000) Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 13:232–237

    Article  CAS  PubMed  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60:78–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiltner L (1904) U¨ ber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie under bessonderer Ber ¨ ucksichtigung der Gr¨undung und Brache. Arb Dtsch Landwirtsch Ges Berl 98:59–78

    Google Scholar 

  • Hofte M (1993) In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms, Academic, San Diego, pp 3–26

    Google Scholar 

  • Hong H, Xueging C, Yongcong H, Xiong G, Fangping H (2002) Selection of endophytic antifungal bacteria from capsicum. Chin J Biol Contr 18(4):171–175

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1988) Construction of a Tra – deletion mutant pf pAgK84 to safeguard the biological control of crown gall. Mol General Genet 212:207–214

    Article  CAS  Google Scholar 

  • Joshi M, Shrivastava R, Sharma AK, Prakash A (2012) Screening of resistant verities and antagonistic Fusarium oxysporum for biocontrol of Fusarium Wilt of Chilli. Plant Pathol Microbiol 3:134

    Google Scholar 

  • Jourdan E et al (2007) PGPR-induced systemic resistance: the activity of amphiphilic elicitors and structural analogs on different plant species. Bulletin-OILB/SROP 30(6-1):123–126

    Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Leveau JHJ, Lugtenberg B (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol 9:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as the subsequent formation of new spores. Environ Microbiol 10:2455–2461

    Article  PubMed  Google Scholar 

  • Kandan A, Ramiah M, Vasanthi VJ, Radjacommare R, Nandakumar R, Ramanathan A, Samiyappan R (2005) Use of Pseudomonas fluorescens-based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontr Sci Technol 15(6):553–569

    Article  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  CAS  PubMed  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore-mediated plant growth promotion at low temperature by a mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconic acid, an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67:595–604

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Akram M (2000) Effects of certain antagonistic fungi and rhizobacteria on wilt disease complex of tomato caused by Meloidogyne incognita and Fusarium oxysporum f. sp. lycopersici. Nematol Medd 28:139–144

    Google Scholar 

  • Kim JS, Dungan RS, Kwon SW, Weon HY (2006) The community composition of root-associated bacteria of the tomato plant. W J Microbiol Biotechnol 22:1267–1273

    Article  CAS  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the IVth international conference on plant pathogenic bacteria, vol. 2. Station de Pathologie Vegetale et Phyto-Bacteriology, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2005) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100

    Article  Google Scholar 

  • Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804

    Article  CAS  PubMed  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar NR, Arasu VT, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Curr Sci 82:1465–1466

    Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  PubMed  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973

    Article  CAS  PubMed  Google Scholar 

  • Laslo E, Gyorgy E, Mara G, Tamas E, Ábraham B, Lanyi S (2012) Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Prot 40:43–48

    Article  CAS  Google Scholar 

  • Laue BE, Jiang Y, Ram Chhabra S, Jacob S, Stewart GSAB, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via Hdts, a putative novel N-acyl-homoserine lactone synthase. Microbiology 146:2469–2480

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Cooksey DA (2000) Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl Environ Microbiol 66:2764–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Article  Google Scholar 

  • Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR et al (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860

    Article  PubMed  Google Scholar 

  • Lin HF et al (2010) Evaluation of Bacillus subtilis as a bio-control agent against pepper blight under greenhouse and field conditions. J Agric Assoc Taiwan 11(3):210–222

    Google Scholar 

  • Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97

    Article  CAS  PubMed  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    Article  CAS  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • Lopez MM, Gorris MT, Temprano FJ, Orive RJ (1987) Results of seven years of biological control of Agrobacterium tumefaciens in Spain. Bull OEPP/EPPO Bull 17:273–280

    Article  Google Scholar 

  • Lopez MM, Gorris MT, Salcedo CI, Montojo AM, Miro M (1989) Evidence of biological control of Agrobacterium tumefaciens strain sensitive and resistant to agrocin 84 by different Agrobacterium radiobacter strain on stone fruit trees. Appl Environ Microbiol 55:741–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Baena FJ, Monreal JA, Perez-Montano F, Guash-Vidal B, Bellogin RA, Vinardell JM et al (2009) The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in William soybean. Mol Plant Microbe Interact 22:1445–1454

    Article  CAS  PubMed  Google Scholar 

  • Lu SF (1994) Isolation of putative pAgK84 transconjugants from commercial cherry and raspberry plants treated with Agrobacterium radiobacter strain K84. MS thesis. Oregon State University, Corvallis, OR, USA

    Google Scholar 

  • Lubeck PS, Hansen M, Sorensen J (2000) Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain Dr54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. FEMS Microbiol Ecol 33:11–19

    Article  CAS  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Leveau JHJ (2007) Biocontrol of plant pathogens: principles, promises, and pitfalls. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface (2nd edn). CRC Press/Taylor & Francis Group. Boca Raton, pp 267–296

    Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Chin-A-Woeng TFC, Bloomberg GV (2002) Microbe-plant interactions: Principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres AM (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S et al (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28:3015–3024

    Article  CAS  PubMed  Google Scholar 

  • Maksimov IV, Abizgildina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as an alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Marschner H, Rohmeld V (1994) Strategies of plants for the acquisition of iron. Plant Soil 165(2):261–274

    Article  CAS  Google Scholar 

  • Martins SJ, Vasconcelos de Medeiros FH, Magela de Souza R, Vilela de Resende ML, Martins Ribeiro Junior P (2013) Biological control of bacterial wilt of common bean by plant growth-promoting Rhizobacteria. Biol Control 66:65–71

    Article  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fert Soils 30:433–439

    Article  CAS  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1994) Ethylene: Symptom, not signal for the induction of chitinase and-1,3-glucanase in pea pods by pathogens and elicitors. Plant Physiol 76:607–611

    Article  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mavrodi OV, Walter N, Elateek S, Taylor CG, Okubara PA (2012) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biol Control 62:93–102

    Article  Google Scholar 

  • Mehnaz S (2013) Secondary metabolites of Pseudomonas aurantiaca and their role in plant growth promotion. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 373–394

    Chapter  Google Scholar 

  • Melo J, Caroline M, Carvalho L, Correia P, Tenreiro R, Chaves S, Meleiro AI, de Souza SB, Dias T, Cruz C, Ramos AC (2016) Crop management as a driving force of plant growth promoting rhizobacteria physiology. SpringerPlus 5:1574

    Article  PubMed  PubMed Central  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than the development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500–513

    Article  CAS  PubMed  Google Scholar 

  • Moore LW, Canfield M (1996) Biology of Agrobacterium and management of crown gall disease. In: Hall R (ed) Principles and practice of managing soil-borne plant pathogens. APS Press, St. Paul, pp 151–191

    Google Scholar 

  • Murphy JF et al (2000) Plant growth-promoting rhizobacteria-mediated protection in tomato against tomato mottle virus. Plant Dis 84(7):779–784

    Article  PubMed  Google Scholar 

  • Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 51–103

    Chapter  Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2012) Analysis of volatile organic compounds emitted by plant growth-promoting fungus phoma sp. GS8-3 for growth promotion effects on tobacco. Microbe Environ 28:42–49

    Article  Google Scholar 

  • Neeraj KS (2011) Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol 47:288–295

    Article  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nery-Silva FA, Machado JC, Vilela de Resende ML, Lima LCO (2007) Inoculation methodology s of papaya fruits with fungi causing stem-end-rot. Cienc Agrotec Lavras 31:1374–1379

    Article  Google Scholar 

  • Nguyen MT, Ranamukhaarachchi SL (2010) Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J Plant Pathol 92(2):395–406

    CAS  Google Scholar 

  • Nielsen TH, Christopheresen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin — a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  CAS  PubMed  Google Scholar 

  • Normander B, Prosser JI (2000) Bacterial origin and community composition in the barley phytosphere as a conditions function of habitat and presowing. Appl Environ Microbiol 66:4372–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Thonart P (2006) In: da Silva JA Teixeira (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, Global Science Books, London, pp 447–463

    Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Osorio F, Leib und Gut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reis e Sousa C (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38(12):3274–3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulitz TC, Loper JE (1991) Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81:930–935

    Article  Google Scholar 

  • Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol Biochem 33:1927–1935

    Article  CAS  Google Scholar 

  • Penalver R, Lopez MM (1999) Co-colonisation of the rhizosphere by pathogenic strains K84 and K1026, used for crown gall biocontrol. Appl Environ Microbiol 65:1936–1940

    Google Scholar 

  • Pereira P, Ibanez SG, Agostini E, Miriam Etcheverry M (2011) Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities. Appl Soil Ecol 51:52–59

    Article  Google Scholar 

  • Perez-Montano F, Jimenez-Guerrero I, Contreras Sanchez-Matamoros R, Lopez-Baena FJ, Ollero FJ, Rodriguez-Carvajal MA et al (2013) Rice, and bean AHL-mimicquorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res Microbiol 164:749–760

    Article  CAS  PubMed  Google Scholar 

  • Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  CAS  PubMed  Google Scholar 

  • Perneel M, D’Hondt L, De Maeyer K, Adiobo A, Rabaey K, Hofte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788

    Article  PubMed  Google Scholar 

  • Pessi G, Haas D (2000) Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J Bacteriol 182:6940–6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Ton J, Van Loon LC (2001) Cross-talk between plant defense signaling pathways: Boost or burden? Ag Biotech Net 3:ABN068

    Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544

    Article  CAS  Google Scholar 

  • Pinton R, Veranini Z, Nannipieri P (2007) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Taylor & Francis Group, New York

    Google Scholar 

  • Pliego C, DeWeert S, Lamers G, De Vicente A, Bloemberg G et al (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia neatrix hyphae. Environ Microbiol 10:3295–3304

    Article  PubMed  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Quinones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693

    Article  CAS  PubMed  Google Scholar 

  • Quyet-Tien P, Park YM, Seul KJ, Ryu CM, Park SH, Kim JC et al (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20:1605–1613

    Google Scholar 

  • Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Raghavan D, Muthuswamy A, Aundy K, Yogiyar KB, Kizhakke PS, Ravindran A (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43

    Article  Google Scholar 

  • Rahman MM, Khan AAA (2002) Antagonist against bacterial wilt pathogen Ralstonia solanacearum. Bangladesh J Plant Pathol 18(1/2):27–31

    Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  CAS  PubMed  Google Scholar 

  • Ramesh R et al (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L). World J Microbiol Biotechnol 25(1):47–55

    Article  Google Scholar 

  • Ramos C, Molbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos SB, Barriuso MJ, Pereyra de la IMT, Domenech J, Gutierrez MFJ (2008) Systemic disease protection elicited by plant growth-promoting rhizobacteria strains: the relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98:451–457

    Article  CAS  Google Scholar 

  • Rangajaran S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251:73–82

    Article  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Rawat S, Mushtaq A (2015) Plant growth promoting rhizobacteria, a formula for sustainable agriculture: A review. Asian J Plant Sci Res 5(4):43–46

    Google Scholar 

  • Reed SC, Yang X, Thornton PE (2015) Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytol 208:324–329

    Article  CAS  PubMed  Google Scholar 

  • Rhouma A, Boubaker A, Ferchichi A (2004) Efficacy of the nonpathogenic Agrobacterium strains K84 and K1026 against crown gall in Tunisia. Phytopathologia Mediterranea 43:167–176

    Google Scholar 

  • Rhouma A, Bouri M, Boubaker A, Nesme X (2008) Potential effect of rhizobacteria in the management of crown gall disease caused by Agrobacterium tumefaciens biovar 1. J Plant Pathol 90(3):517–526

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Riley M (1993) Molecular mechanisms of colicin evolution. Mol Biol Evol 10:1380–1395

    CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: Evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rondon MR, Raffel SJ, Goodman RM, Handelsman J (1999) Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc Natl Acad Sci USA 96:6451–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rovira AD (1956) A study of the development of the root surface microflora during the initial stages of plant growth. J Appl Bacteriol 19:72–79

    Article  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruy CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1808–1819

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX et al (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacherer P, Defago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

    Article  CAS  PubMed  Google Scholar 

  • Sadfi ZN, Essghaier B, Hajlaoui MR, Achbani H, Boudabous A (2007) Ability of the antagonistic bacteria Bacillus subtilis and B. licheniformis to control Botrytis cinerea on fresh market tomatoes. Bulletin-OILB/SROP 306(1):63

    Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: Marine and terrestrial siderophores. Chem Rev 109:4580–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial microorganisms and the effect on cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Defago G, Haas D, Keel C (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schripsema J, de Rudder KE, van Vliet TB, Lankhorst PP, de Vroom E, Kijne JW, van Brussel AA (1996) Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-Lhomoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J Bacteriol 178:366–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilkumar M, Swarnalakshmi K, Govindasamy V, Young KL, Annapurna K (2009) Bio-control potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr Microbiol 58:288–293

    Article  CAS  PubMed  Google Scholar 

  • Shalaby MEM, Sedik MZ (2008) Biocontrol activity of some bacterial isolates against Meloidogyne incognita. Egypt J Biol Pest Control 18(1):119–125

    Google Scholar 

  • Shephard RW, Lindow S (2008) Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 74:6663–6671

    Article  CAS  Google Scholar 

  • Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 147–150

    Chapter  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  CAS  PubMed  Google Scholar 

  • Shuhegge R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G et al (2006) Induction of systemic resistance in tomato by N-acyl-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS, Ehteshamul-Haque S (2001) Use of plant growth promoting rhizobacteria (PGPR) and soil organic amendments for the management of root diseases complex of uridbean. Acta Agrobotanica 54:65–70

    Article  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon H, Smith KP, Dodsworth JE, Guenthner B, Handelsman J, Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl Environ Microbiol 67:514–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria potential microbes for sustainable agriculture. Resonance 3:275–281

    Article  CAS  Google Scholar 

  • Singh S, Kapoor KK (1999) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28(2):139–144

    Article  CAS  Google Scholar 

  • Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66:375–384

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar T et al (2008) Bioefficacy of antagonists against for the management of Fusarium oxysporum f. sp. lycopersici and Meloidogyne incognita disease complex of tomato under field condition. Plant Archives 8(1):373–377

    Google Scholar 

  • Sivasakhti S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR) – Pseudomonas fluorescence and Bacillus subtilis: A review. Afr J Agricult Res 9:1265–1277

    Google Scholar 

  • Smith LM, Tola E, de Boer P, O’Gara F (1999) Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens F113. Environ Microbiol 1:495–502

    Article  CAS  PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling, a love parade beneath our feet. Crit Rev Microbiol 30:205–235

    Article  CAS  PubMed  Google Scholar 

  • Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K (2000) Biological control of cyclamen soil borne diseases by Serratia marcescens strain B2. Plant Dis 84:334–340

    Article  CAS  PubMed  Google Scholar 

  • Someya N, Nakajima M, Hirayae K, Hibi T, Akutsu K (2001) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium Serratia marcescens Strain B2 against gray mold pathogen Botrytis cinerea. J Gen Plant Pathol 67:312–317

    Article  CAS  Google Scholar 

  • Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY (2014) Screening of plant growth-promoting rhizobacteria as an elicitor of systemic resistance against gray leaf spot disease in pepper. Appl Soil Ecol 73:1–8

    Article  Google Scholar 

  • Spiers A, Field D, Bailey M, Rainey PB (2001) Notes on designing a partial genomic database: the PfSBW25 encyclopedia, a sequence database for Pseudomonas fluorescens SBW25. Microbiology 147:247–253

    Article  CAS  PubMed  Google Scholar 

  • Stephens PM, Crowley JJ, O’Connell C (1993) Selection of pseudomonad strains inhibiting Pythium ultimum on sugar-beet seeds in soil. Soil Biol Biochem 25:1283–1288

    Article  Google Scholar 

  • Stockwell VO, Kawalek MD, Moore LW, Lopper JE (1996) Transfer of pAgK84 from the biocontrol agent Agrobacterium radiobacter K84 to under field conditions. Phytopathology 86:31–37

    Article  CAS  Google Scholar 

  • Stohl EA, Milner JL, Handelsman J (1999) Zwittermicin A biosynthetic cluster. Gene 237:403–411

    Article  CAS  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  CAS  PubMed  Google Scholar 

  • Stuurman N, Bras CP, Schlaman HR, Wijfjes AH, Bloemberg GV, Spaink HP (2000) Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobacteria interacting with plants. Mol Plant Microbe Interact 13:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Suryanto D et al (2010) Control of Fusarium wilt of chili with chitinolytic bacteria. Hayati J Biosci 17(1):5–8

    Article  Google Scholar 

  • Suzuki MS, Zambolim L, Liberato JR (2007) Progress of fungal diseases and correlation with climatic variables in papaya. Summa Phytopathol 33:167–177

    Article  Google Scholar 

  • Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Shivay YS, Singh R, Saxena AK (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol 55:107–116

    Article  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Tewari S, Arora NK (2013) Transactions among Microorganisms and Plant in the Composite Rhizosphere. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 1–50

    Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Indust Biotechnol 2(3)

    Article  Google Scholar 

  • Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interaction, vol 1. Chapman & Hall, New York, pp 187–235

    Google Scholar 

  • Thrane C, Harder NT, Neiendam NM, Sørensen J, Olson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146

    Article  CAS  PubMed  Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic-acid biosynthetic pathway enhances the efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Maurya SK, Singh DP (2012) Salinity tolerance in free-living plant growth-promoting Rhizobacteria. Ind J Sci Res 3:73–78

    CAS  Google Scholar 

  • Validov S (2007) Biocontrol of tomato foot and root rot by Pseudomonas bacteria in stonewool. PhD thesis. Leiden University. http://hdl.handle.net/1887/12480

  • Validov SZ, Kamilova F, Lugtenberg BJJ (2009) Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol Control 48:6–11

    Article  Google Scholar 

  • Van den Broek D, Bloemberg GV, Lugtenberg BJJ (2005) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 7:1686–1697

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 521–574

    Chapter  Google Scholar 

  • Van Loon LC (2006) Effects of beneficial microorganisms on plants. Bulletin-OILB/SROP 29(2):183–192

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth promoting bacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM (2006) Root-associated bacteria inducing systemic resistance. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 269–316

    Chapter  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth promoting Pseudomonas sp. strain WCS417r induce resistance incarnation to fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 91:728–734

    Article  Google Scholar 

  • Van Rij ET, Wesselink M, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17:557–566

    Article  PubMed  Google Scholar 

  • Van Rij ET, Girard G, Lugtenberg BJJ, Bloemberg GV (2005) Influence of fusaric acid on the phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805–2814

    Article  PubMed  CAS  Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Vant Westend YAM, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate — and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Verhagen BWM, Van Loon LC, Pieterse CMJ (2006) Induced disease resistance signaling in plants. In: Silva JAT (ed.) Floriculture, ornamental and plant biotechnology, volume III. Global Science Books; Gainesville, pp 334–343

    Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: From siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Knill E, Glick B, Defago G (2000) Effect of transferring the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whistler CA, Stockwell VO, Loper JE (2000) Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 66:2718–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhang R, Wang D, Qiu M, Feng H, Zhang N et al (2014) Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Appl Environ Microbiol 80:2941–2950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan SZ, Zhou MG (2006) Screening and root colonization of biocontrol agents against Phytophthora capsica. J Yangzhou Univ Agricult Life Sci 27(4):93–97

    Google Scholar 

  • Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q et al (2013) Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-Enriched bioorganic fertilizer suppressed fusarium wilt and promoted the growth of banana plants. J Agric Food Chem 61:3774–3780

    Article  CAS  PubMed  Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera, Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Article  Google Scholar 

  • Zhang YL, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charpe, A.M. (2019). Free-Living PGPRs in Biotic Stress Management. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_11

Download citation

Publish with us

Policies and ethics