Skip to main content

Targeting Plant Hormones to Develop Abiotic Stress Resistance in Wheat

  • Chapter
  • First Online:
Wheat Production in Changing Environments

Abstract

Abiotic stresses comprising heat, drought, waterlogging, cold, salinity, and UV radiations are the main causes of many crop losses globally. Recently, avoiding these crop fatalities and production of more food to fulfill the requirement of increasing human need have extended extraordinary significance. Nevertheless, the proportion of agricultural land facing diverse abiotic stresses can be raised under a fluctuating global climate driven by anthropogenic activities. Identification of different mechanisms set up and used by plants to respond against abiotic stresses with their growth maintenance and survival under severe circumstances has great impact. Latest studies have revealed that plant hormones, e.g., auxins, ethylene, gibberellins, and cytokinins, with their innovative members that include brassinosteroids, strigolactones, and jasmonates may act as significant metabolic engineering objectives to induce abiotic stress tolerance in plants. This review condensed and analytically measured the functions of phytohormones in plant growth, development, and abiotic stress tolerance, in addition to the engineering of phytohormones to produce transgenic lines with abiotic stress tolerance. We have also discussed latest achievements for the identification of phytohormones involved under stressed conditions. Here we deduce the limitations and challenges for engineering phytohormones to produce transgenic lines having resistance against abiotic stresses by illustrating the recent research and progress to induce abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S, Latif HH, Elsherbiny EA (2013) Effect of 24-epibrassinolide on the physiological and genetic changes on two varieties of pepper under salt stress conditions. Pak J Bot 45:1273–1284

    Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2012) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad P, Prasad MNV (eds) (2011) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York

    Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33:151–153

    Article  CAS  Google Scholar 

  • Azevedo RA, Gratao PL, Monteiro CC, Carvalho RF (2012) What is new in the research on cadmium-induced stress in plants? Food Energy Secur 1:133–140

    Article  Google Scholar 

  • Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68:175–179

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bandurska H (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Bramel P (2017) Wheat genetic resources: global conservation and use for the future. In: Achieving sustainable cultivation of wheat, vol 1. Burleigh Dodds Science Publishing, Cambridge, pp 59–80

    Google Scholar 

  • Cao W-H, Liu J, He X-J, Mu R-L, Zhou H-L, Chen S-Y, Zhang J-S (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capiati DA, País SM, Téllez-Iñón MT (2006) Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. J Exp Bot 57:2391–2400

    Article  CAS  PubMed  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in. FEBS Lett 582:473–478

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, Skirycz A, Maleux K, Inzé D (2012) DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. Plant Physiol 159:739–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JD, Gray WM (2008) Auxin metabolism and signaling. Plant Horm Signal 24:37–66

    Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Article  CAS  PubMed  Google Scholar 

  • Dar TA, Uddin M, Khan MMA, Hakeem K, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. Plant hormones. Springer, Dordrecht, pp 1–15

    Book  Google Scholar 

  • De Smet I, Voß U, Lau S, Wilson M, Shao N, Timme RE, Swarup R, Kerr I, Hodgman C, Bock R (2011) Unraveling the evolution of auxin signaling. Plant Physiol 155:209–221

    Article  PubMed  CAS  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:365–373

    Article  CAS  Google Scholar 

  • Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47:907–916

    Article  CAS  PubMed  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397. https://doi.org/10.3389/fpls.2013.00397

    Article  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C (2015a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N (2015b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015c) Crop plant hormones and environmental stress. In: Lichtfouse E (eds). Sustain Agric Revi 15:371–400

    Google Scholar 

  • Feller U, Vaseva II (2014) Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Front Environ Sci 2:39. https://doi.org/10.3389/fenvs.2014.00039

    Article  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L (2011) Abiotic and biotic stress response crosstalk in plants. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress response in plants-physiological, biochemical and genetic perspectives. InTech, Rijeka, pp 3–26

    Google Scholar 

  • Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C (2008) Strigolactone inhibition of shoot branching. Nature 455:189. https://doi.org/10.1038/nature07271

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, Jones JD (2009) Hormone (dis) harmony moulds plant health and disease. Science 324:750–752

    Article  CAS  PubMed  Google Scholar 

  • Groen SC, Whiteman NK (2014) The evolution of ethylene signaling in plant chemical ecology. J Chem Ecol 40:700–716

    Article  CAS  PubMed  Google Scholar 

  • Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210

    Article  CAS  PubMed  Google Scholar 

  • Hadiarto T, Tran L-SP (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    Article  CAS  PubMed  Google Scholar 

  • Hao C, Wang Y, Chao S, Li T, Liu H, Wang L, Zhang X (2017) The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep 7:41247. https://doi.org/10.1038/srep4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MA (2012) Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions. In: Khan N, Nazar R, Iqbal N, Anjum N (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 49–76

    Chapter  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain Wani S, Brajendra Singh N, Haribhushan A, Iqbal Mir J (2013) Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics 14:157–165

    Article  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A (2006) Seed enhancement with cytokinins: changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul 50:29–39

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Iqbal N, Nazar R, Khan MI, Masood A, Khan NA (2011) Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Jackson MB, Ishizawa K, Ito O (2009) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeczko A, Oklešťková J, Pociecha E, Kościelniak J, Mirek M (2011) Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiol Plant 33:1249–1259

    Article  CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in ‘Mitragyna speciosa’. Aust J Crop Sci 5:296–303

    CAS  Google Scholar 

  • Kang NY, Cho C, Kim NY, Kim J (2012) Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. J Plant Physiol 169:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Kapulnik Y, Koltai H (2014) Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol 166:560–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Ke Q, Wang Z, Ji CY, Jeong JC, Lee H-S, Li H, Xu B, Deng X, Kwak S-S (2015) Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxinoverproduction phenotypes and increased tolerance to abiotic stress. Plant Physiol Biochem 94:19–27

    Article  CAS  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Biol 44:283–307

    Article  CAS  Google Scholar 

  • Keskin BC, Yuksel B, Memon AR, Topal-Sarıkaya A (2010) Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  CAS  PubMed  Google Scholar 

  • Khan NA, Singh S, Nazar R, Lone PM (2007) The source–sink relationship in mustard. Asian Aust J Plant Sci Biotechnol 1:10–18

    Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374. https://doi.org/10.4161/psb.26374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodary S (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Khripach V, Zhabinskii V, de Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK (2009) Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF. B. 3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J 2014(167681). https://doi.org/10.1155/2014/167681

    Article  CAS  Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957

    Article  CAS  PubMed  Google Scholar 

  • Koltai H, Beveridge CA (2013) Strigolactones and the coordinated development of shoot and root. In: Baluška F (ed) Long-distance systemic signaling and communication in plants. Springer, Berlin, pp 189–204

    Chapter  Google Scholar 

  • Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Joo S-H, Kim S-K, Pharis RP, Back TG (2012) Interaction of brassinosteroids with light quality and plant hormones in regulating shoot growth of young sunflower and Arabidopsis seedlings. J Plant Growth Regul 31:156–164

    Article  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Liang Y (2009) Effects of plant growth substances on water-logging resistance of oilseed rape seedling. Xinan Shifan Daxue Xuebao Ziran Kexueban 34:58–62

    CAS  Google Scholar 

  • Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270

    Article  CAS  PubMed  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, de Pascale S (2010) Contrasting effects of GA treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    Article  CAS  Google Scholar 

  • Mahesh K, Balaraju P, Ramakrishna B, Rao SSR (2013) Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. Am J Plant Sci 4:2305

    Article  CAS  Google Scholar 

  • Maksymiec W, Wojcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  CAS  PubMed  Google Scholar 

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact 19:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4. https://doi.org/10.3389/fpls.2014.00004

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The Coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451. https://doi.org/10.3389/fpls.2013.00451

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathak MR, Teixeira da Silva JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5:87–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Chaves M (2010) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  PubMed  CAS  Google Scholar 

  • Pospíšilová J (2003a) Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica 41:49–56

    Article  Google Scholar 

  • Pospíšilová J (2003b) Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol Plant 46:491–506

    Article  Google Scholar 

  • Postel SL (2006) For our thirsty world, efficiency or else. Science 313:1046–1047

    Article  CAS  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34

    Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, Van Der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496

    Article  CAS  PubMed  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Seo HS, Song JT, Cheong J-J, Lee Y-H, Lee Y-W, Hwang I, Lee JS, Do Choi Y (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci 98:4788–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Abrams S, Waterer D (2005) Uptake, movement, activity, and persistence of an abscisic acid analog (8′ acetylene ABA methyl ester) in marigold and tomato. J Plant Growth Regul 24:28–35

    Article  CAS  Google Scholar 

  • Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Jwa N-S (2013) Understanding the responses of rice to environmental stress using proteomics. J Proteome Res 12:4652–4669

    Article  CAS  PubMed  Google Scholar 

  • Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo S-D (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  • Sponsel VM, Hedden P (2010) Gibberellin biosynthesis and inactivation. In: Davies PJ (ed) Plant hormones. Springer, Dordrecht, pp 63–94

    Chapter  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    Article  CAS  PubMed  Google Scholar 

  • Stamm P, Kumar PP (2013) Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Rep 32:759–769

    Article  CAS  PubMed  Google Scholar 

  • Tani T, Sobajima H, Okada K, Chujo T, S-i A, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227:517

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212

    Article  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with pv. DC3000. Mol Plant-Microbe Interact 20:955–965

    Article  CAS  PubMed  Google Scholar 

  • Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:67. https://doi.org/10.3389/fenvs.2014.00067

    Article  Google Scholar 

  • Vardhini BV, Anuradha S, Rao S (2006) Brassinosteroids-New class of plant hormone with potential to improve crop productivity. Indian J Plant Physiol 11:1–12

    CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Voß U, Bishopp A, Farcot E, Bennett MJ (2014) Modelling hormonal response and development. Trends Plant Sci 19:311–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vurro M, Yoneyama K (2012) Strigolactones—intriguing biologically active compounds: perspectives for deciphering their biological role and for proposing practical application. Pest Manag Sci 68:664–668

    Article  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143. https://doi.org/10.1007/s10142-005-0013-0

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shu C, Li H, Hu X, Wang Y (2014) Effects of 0.01% brassinolide solution application on yield of rice and its resistance to autumn low-temperature damage. Acta Agric Jiangxi 26:36–38

    CAS  Google Scholar 

  • Wani S, Sah S (2014) Biotechnology and abiotic stress tolerance in rice. J Rice Res 2:e105. https://doi.org/10.4172/jrr.1000e105

    Article  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Winfield MO, Allen AM, Wilkinson PA, Burridge AJ, Barker GL, Coghill J, Waterfall C, Wingen LU, Griffiths S, Edwards KJ (2018) High-density genotyping of the AE Watkins Collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnol J 16:165–175

    Article  CAS  PubMed  Google Scholar 

  • Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Cao S, Zheng Y, Jiang Y (2012) Combined salicyclic acid and ultrasound treatments for reducing the chilling injury on peach fruit. J Agric Food Chem 60:1209–1212

    Article  CAS  PubMed  Google Scholar 

  • Yin C-C, Ma B, Collinge DP, Pogson BJ, He S-J, Xiong Q, Duan K-X, Chen H, Yang C, Lu X (2015) Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. Plant Cell 27:1061–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneyama K, Kisugi T, Xie X, Yoneyama K (2013) Chemistry of strigolactones: why and how do plants produce so many strigolactones? In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1. Wiley, Hoboken, pp 373–379

    Chapter  Google Scholar 

  • Yoon JY, Hamayun M, Lee S-K, Lee I-J (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Article  Google Scholar 

  • Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P (2013) Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 31:97–117

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie X, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815

    Article  CAS  Google Scholar 

  • Zhu S-Y, Yu X-C, Wang X-J, Zhao R, Li Y, Fan R-C, Shang Y, Du S-Y, Wang X-F, Wu F-Q (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, A., Mehmood, S.S., Tabassum, J., Batool, R. (2019). Targeting Plant Hormones to Develop Abiotic Stress Resistance in Wheat. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_22

Download citation

Publish with us

Policies and ethics