Skip to main content

Fluid Management in Neurointensive Care

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

The main treatment for intravascular volume deficit is the appropriate administration of intravenous fluids, taking into account the type, timing, dose and frequency of dosages. According to the revised Starling equation, the inappropriate administration of intravenous fluid may cause pathological interstitial fluid distribution and elimination. This may adversely affect perivascular fluid balance and brain interstitial fluid composition, finally leading to cerebral and/or spinal cord oedema and cellular injury. Fluid composition and tonicity are crucial when considering which intravenous solution to use in the treatment of neurologic conditions, particularly cerebral trauma. This chapter discusses the different choices of fluid treatment in neurointensive care patients. This decision-making process should be guided by the patient’s haemodynamic condition, electrolyte disturbances and type and phase of the central nervous system injury. Generally, hypotonic fluids and synthetic colloids should be avoided. Both cumulative negative and positive fluid balance within the first week are associated with worse outcomes. The use of saline solutions should be guided by serum electrolyte concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roberston CS. Management of cerebral perfusion pressure after traumatic brain injury. Anesthesiology. 2001;95:1513–7.

    Article  Google Scholar 

  2. Güiza F, Depreitere B, Piper I, Citerio G, Chambers I, Jones PA, Lo TY, Enblad P, Nillson P, Feyen B, Jorens P, Maas A, Schuhmann MU, Donald R, Moss L, Van den Berghe G, Meyfroidt G. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med. 2015;41(6):1067–76.

    Article  PubMed  Google Scholar 

  3. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becked DP. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia and vasospasm. J Neurosurg. 1997;87(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  4. Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991;75(5):685–93.

    Article  CAS  PubMed  Google Scholar 

  5. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.

    Article  CAS  PubMed  Google Scholar 

  6. Jungner M, Siemund R, Venturoli D, Reinstrup P, Schalen W, Bentzer P. Blood-brain barrier permeability following traumatic brain injury. Minerva Anesthesiol. 2016;82:525–33.

    Google Scholar 

  7. Woodcock TE, Wooscock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.

    Article  CAS  PubMed  Google Scholar 

  8. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14. https://doi.org/10.1186/2040-2384-2-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gido G, Kristian T, Siesjo BK. Extracellular potassium in a neocortical core area after transient focal ischemia. Stroke. 1997;28:206–10.

    Article  CAS  PubMed  Google Scholar 

  10. Woodcock TE. Plasma volume, tissue oedema and the steady-state Starling Pronciple. Br J Anaesth Educ. 2017;17(2):74–8.

    Google Scholar 

  11. Curry FR, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol. 2013;207:628–49.

    Article  CAS  Google Scholar 

  12. Reddy S, Weinberg L, Young P. Crystalloid fluid therapy. Crit Care. 2016;20:59.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tatara T. Context-sensitive fluid therapy in critical illness. J Intensive Care. 2016;4:20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Van Aken HK, Kampmeier TG, Ertmer C, Westphal M. Fluid resuscitation in patients with traumatic brain injury: what is a SAFE approach? Curr Opin Anaesthesiol. 2012;25(5):563–5.

    Article  PubMed  CAS  Google Scholar 

  15. Maguigan KL, Dennis BM, Hamblin SE, Guillamondegui OD. Method of hypertonic saline administration: effect on osmolality in traumatic brain injury. J Clin Neurosci. 2017;39:147–50.

    Article  CAS  PubMed  Google Scholar 

  16. Ichai C, Payen JF, Orban JC, Quintard H, Roth H, Legrand R, Francony G, Leverve XM. Half-molar sodium lactate infusion to prevent intra-cranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med. 2013;39:1413–22.

    Article  CAS  PubMed  Google Scholar 

  17. Tan SK, Kolmodin L, Sekhon MS, Qiao L, Zou J, Henderson WR, Griesdale DE. The effect of continuous hypertonic saline infusion and hypernatremia on mortality in patients with severe traumatic brain injury: a retrospective cohort study. Can J Anaesth. 2016;63(6):664–73.

    Article  PubMed  Google Scholar 

  18. Rockswold GL, Solid CA, Paredes-Andrade E, Rockswold SB, Jancik JT, Quickel RR. Hypertonic saline and its effect on intracranial pressure, cerebral perfusion pressure, and brain tissue oxygen. Neurosurgery. 2009;65(6):1035–42.

    Article  PubMed  Google Scholar 

  19. Ziai WC, Toung TJ, Bhardwaj A. Hypertonic saline: first line therapy for cerebral edema? J Neurol Sci. 2007;261:157–66.

    Article  CAS  PubMed  Google Scholar 

  20. Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28:3301–13.

    Article  CAS  PubMed  Google Scholar 

  21. Akdemir G, Lier MS, Dujovny M. Misra m. Intraventricular atrial natriuretic peptide for acute intracranial hypertension. Neurol Res. 1997;19:515–20.

    Article  CAS  PubMed  Google Scholar 

  22. Skau M, Goetze JP, Rehfeld JF, Jensen R. Natriuretic pro-peptides in idiopathic intracranial hypertension. Regul Pept. 2010;164(2–3):71–7.

    Article  CAS  PubMed  Google Scholar 

  23. Glenn TC, Kelly DF, Boscardin JW, McArthur DL, Vespa P, Oertel M, Hovda DA, Bersneider M, Hillered L, Martin NA. Energy dysfunction as a predictor of outcome after moderate or severe head injury: incidence of oxygen, glucose and lactate metabolism. J Cereb Blood Flow Metab. 2003;23(10):1239–50.

    Article  CAS  PubMed  Google Scholar 

  24. Carteron L, Bouzat P, Oddo M. Cerebral microdialysis monitoring to improve individualized neurointensive care therapy: an update of recent clinical data. Front Neurol. 2017;8:601.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Holloway R, Zhou Z, Harvey HB, Levasseur JE, Rice AC, Sun D, Hamm RJ, Bullock MR. Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat. Acta Neurochir. 2007;149:919–27.

    Article  CAS  PubMed  Google Scholar 

  26. Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L. Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:1780–9.

    Article  CAS  PubMed  Google Scholar 

  27. Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724–38.

    Article  CAS  PubMed  Google Scholar 

  28. Shackford SR. Prehospital fluid resuscitation of known or suspected traumatic brain injury. J Trauma. 2011;70(suppl 5):S32–3.

    Article  PubMed  Google Scholar 

  29. Tan PG, Cincotta M, Clavisi O, Bragge P, Wasiak J, Pattuwage L, Gruen RL. Review article. Prehospital fluid management in traumatic brain injury. Emerg Med Australas. 2011;23(6):665–76.

    Article  PubMed  Google Scholar 

  30. Cooper DJ, Myles PS, McDermott FT, Murray LJ, Laidlaw J, Cooper G, Tremayne AB, Bernard SS, Ponsford J, Study Investigators HTS. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA. 2004;291(11):1350–7.

    Article  CAS  PubMed  Google Scholar 

  31. Vedantam A, Robertson CS, Gopinath SP. Morbidity and mortality associated with hypernatremia in patients with severe traumatic brain injury. Neurosurg Focus. 2017;43(5):E2.

    Article  PubMed  Google Scholar 

  32. Aiyagari V, Deibert E, Diringer MN. Hypernatremia in the neurologic intensive care unit: how high is too high? J Crit Care. 2006;21:163–72.

    Article  PubMed  Google Scholar 

  33. Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.

    PubMed  Google Scholar 

  34. Hays AN, Lazaridis C, Neyens R, Nicholas J, Gay S, Chalela JA. Osmotherapy: use among neurointensivists. Neurocrit Care. 2011;14:222–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lin SY, Tang SC, Tsai LK, Yeh SJ, Shen LJ, Wu FL, Jeng JS. Incidence and risk factors for acute kidney injury following mannitol infusion in patients with acute stroke: a retrospective cohort study. Medicine (Baltimore). 2015;94(47):e2032.

    Article  CAS  Google Scholar 

  36. Deng Y, Yuan J, Chi R, Ye H, Zhou D, Wang S, Mai C, Nie Z, Wang L, Zhai Y, Gao L, Zhang D, Hu L, Deng Y, Chen C. The incidence, risk factors and outcomes of postoperative acute kidney injury in neurosurgical critically ill patients. Sci Rep. 2017;7(1):4245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Fang L, You H, Chen B, Xu Z, Gao L, Liu J, Xie Q, Zhou Y, Gu Y, Lin S, Ding F. Mannitol is an independent risk factor of acute kidney injury after cerebral trauma: a case control study. Ren Fail. 2010;32:673–9.

    Article  PubMed  CAS  Google Scholar 

  38. Sji J, Qian J, Li H, Luo H, Luo W, Lin Z. Renal tubular epithelial cells injury induced by mannitol and its potential mechanism. Ren Fail. 2018;40(1):85–91.

    Article  Google Scholar 

  39. Seo W, Oh H. Alterations in serum osmolality, sodium, and potassium levels after repeated mannitol administration. J Neurosci Nurs. 2010;42(4):201–7.

    Article  PubMed  Google Scholar 

  40. Sillesen M, Jin G, Johanson PI, Alam H. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock. Scand J Trauma Resusc Emerg Med. 2014;22:46.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao Z, Wang D, Jia Y, Tian Y, Wang Y, Wei Y, Zhang J, Jiang R. Analysis of the association of fluid balance and short-term outcome in traumatic brain injury. J Neurol Sci. 2016;364:12–8.

    Article  PubMed  Google Scholar 

  42. Clifton GL, Miller ER, Choi SC Levin HS. Fluid thresholds and outcome from severe brain injury. Crit Care Med. 2002;30(4):739–45.

    Article  PubMed  Google Scholar 

  43. Dabrowski W, Woodcock T, Rzecki Z, Malbrain ML. The use of crystalloids in traumatic brain injury. Anesthesiol Intensive Ther. 2018;50(2):150–9.

    Article  Google Scholar 

  44. Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evolution of the evidence. Fluids Barriers CNS. 2014;11(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zander R. Fluid management. Second expanded edition. Melsungen: Bibliomed Medizinische Verlags GmbH; 2009. p. 32–9.

    Google Scholar 

  46. Steward PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444–61.

    Article  Google Scholar 

  47. Morgan TJ, Venkatesh B, Beindorf A, Andrew I, Hall J. Acid-base and bio-energetics during balanced versus unbalanced normovolaemic haemodilution. Anaesth Intensive Care. 2007;35:173–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lobo DN, Award S. Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent ‘pre-renal’ acute kidney injury?: con. Kidney Int. 2014;86(6):1096–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–35.

    Article  Google Scholar 

  50. Roche AM, James MFM, Bennett-Guerrero E, Mythen MG. A head-to-head comparison of the in vitro coagulation effects of saline-based and balanced electrolyte crystalloid and colloid intravenous fluid. Anesth Analg. 2006;102:1274–9.

    Article  PubMed  Google Scholar 

  51. Dekker SE, Sillesen M, Bambakidis T, Jin G, Liu B, Boer C, et al. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs. Surgery. 2014;156(3):556–63.

    Article  PubMed  Google Scholar 

  52. Folkerson LE, Sloan D, Cotton BA, Holcomb JB, Tomasek JS, Wade CE. Predicting progressive hemorrhagic injury from isolated traumatic brain injury and coagulation. Surgery. 2015;158(3):655–61.

    Article  PubMed  Google Scholar 

  53. Talving P, Benfield R, Hadjizacharia P, Inaba K, Chan LS, Demetriades D. Coagulopathy in severe traumatic brain injury: a prospective study. J Trauma. 2009;66(1):55–62.

    Article  PubMed  Google Scholar 

  54. MacLeod JB, Winkler AM, McCoy CC, Hillyer CD, Shaz BH. Early trauma induced coagulopathy (ETIC): prevalence across the injury spectrum. Injury. 2014;45(5):910–5.

    Article  PubMed  Google Scholar 

  55. Greuters S, van den Berg A, Franschman G, Viersen VA, Beishuizen A, Peerdeman SM, Boer C, ALARM-BLEEDING Investigators. Acute and delayed mild coagulopathy are related to outcome in patients with isolated traumatic brain injury. Crit Care. 2011;15:R2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Exo JL, Shellington DK, Bayir H, Vagni VA, Janesco-Feldman K, Ma L, et al. Resuscitation of traumatic brain injury and hemorrhagic shock with polynitroxylated albumin, hextend, hypertonic saline, and lactated Ringer’s: effects on acute hemodynamics, survival, and neuronal death in mice. J Neurotrauma. 2009;26(12):2403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cooper DJ, Myburgh J, Heritier S, Finfer S, Bellomo R, Billot L, et al. Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? J Neurotrauma. 2013;30(7):512–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Huraux C, Ankri AA, Eyraud D, Sevin O, Ménégaux F, Coriat P, et al. Hemostatic changes in patients receiving hydroxyethyl starch: the influence of ABO blood group. Anesth Analg. 2001;92(6):1396–401.

    Article  CAS  PubMed  Google Scholar 

  59. Kozek-Langenecker SA. Fluids and coagulation. Curr Opin Crit Care. 2015;21:285–91.

    Article  PubMed  Google Scholar 

  60. Martin G, Bennett-Guerrero E, Wakeling H, Mythen MG, el-Moalem H, Robertson K. A prospective, randomized comparison of tromboelastographic coagulation profile in patients receiving lactated Ringer’s solution, 6% hetastarch in a balanced-saline vehicle or 6% hetastarch in saline during major surgery. J Cardiothoracic Vasc Anesth. 2002;16:441–6.

    Article  CAS  Google Scholar 

  61. Li N, Zhao WG, Zhang WF. Acute kidney injury in patients with severe traumatic brain injury: implementation of the acute kidney injury network stage system. Neurocrit Care. 2011;14:377–81.

    Article  PubMed  Google Scholar 

  62. Chowdhury T, Cappellani RB, Schaller B, Daya J. Role of colloids in traumatic brain injury: use or not to be used? J Anaesthesiol Clin Pharmacol. 2013;29:299–301.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moeller C, Fleischmann C, Thomas-Rueddel D, Vlasakov V, Rochwerg B, Theurer P, et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care. 2016;35:75–83.

    Article  CAS  PubMed  Google Scholar 

  64. Shah G, Scadding G, Nguyen-Lu N, Wigmore T, Chenzbraun A, Wechalekar K, et al. Peri-operative cardiac arrest with ST elevation secondary to gelofusin anaphylaxis–Kounis syndrome in the anaesthetic room. Int J Cardiol. 2013;164(3):e22–6.

    Article  CAS  PubMed  Google Scholar 

  65. Silvani A, Calandra-Bounaura G, Dampney RAL, Cortelli P. Brain-heart interactions: physiology and clinical implications. Phil Trans R Soc A. 2016;374:20150181.

    Article  PubMed  CAS  Google Scholar 

  66. Dabrowski W, Schlegel TT, Wosko J, Rola R, Rzecki Z, Malbrain MLNG, Jaroszynski A. Changes in spatial QRS-T angle and QTc interval in patients with traumatic brain injury with or without intra-abdominal hypertension. J Electrocardiol. 2018;51(3):499–507.

    Article  PubMed  Google Scholar 

  67. Al-Mufti F, Amuluru K, Changa A, Lander M, Patel N, Wajswol E, et al. Traumatic brain injury and intracranial hemorrhage-induced cerebral vasospasm: a systematic review. Neurosurg Focus. 2017;43(5):E14.

    Article  PubMed  Google Scholar 

  68. Ziegler D, Cravens G, Poche G, Gandhi R, Tellez M. Use of transcranial Doppler in patients with severe traumatic brain injuries. J Neurotrauma. 2017;34(1):121–7.

    Article  PubMed  Google Scholar 

  69. Kramer DR, Winer JL, Matthew Pease BA, Amar AP, Mack WJ. Cerebral vasospasm in traumatic brain injury. Neurol Res. 2013;2013:415813. https://doi.org/10.1155/2013/415813.

    Article  Google Scholar 

  70. Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the stroke council, American heart association. Stroke. 2009;40(3):994–1025.

    Article  PubMed  Google Scholar 

  71. Lee KH, Lukovits T, Friedman JA. Triple-H therapy for cerebral vasospasm following subarachnoid hemorrhage. Neurocrit Care. 2006;4(1):68–76.

    Article  PubMed  Google Scholar 

  72. Langham J, Goldfrad C, Teasdale G, Shaw D, Rowan K. Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev. 2000;2:CD000565.

    Google Scholar 

  73. Velat GJ, Kimball MM, Mocco JD, Hoh BL. Vasospasm after aneurysmal subarachnoid hemorrhage: review of randomized controlled trials and meta-analyses in the literature. World Neurosurg. 2011;76(5):446–54.

    Article  PubMed  Google Scholar 

  74. Malinova V, Schatlo B, Voit M, Suntheim P, Rohde V, Mielke D. The impact of temporary clipping during aneurysm surgery on the incidence of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;15:1–7.

    Google Scholar 

  75. Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J. Hyponatremia in patients with traumatic brain injury: incidence, mechanism and response to sodium supplementation. Surg Neurol. 2007;68:387–93.

    Article  PubMed  Google Scholar 

  76. Santi M, Lava SA, Camozzi P, Giannini O, Milani GP, Simonetti GD, et al. The great fluid debate: saline or so-called “balanced” salt solutions? Ital J Pediatr. 2015;41:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lehmann L, Bendel S, Uehlinger DE, Takala J, Schafer M, Reinert M, Jakob SM. Randomized, double-blind trial of the effect of fluid composition on electrolyte, acid-base, and fluid homeostasis in patients early after subarachnoid hemorrhage. Neurocrit Care. 2013;18(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  78. Dankbaar JW, Slooter AJ, Rinkel GJ, Schaaf IC. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14(1):R23.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Manzanares W, Aramendi I, Langlois PL, Biestro A. Hyponatremia in the neurocritical care patient: an approach based on current evidence. Med Intensiva. 2015;39(4):234–43.

    Article  CAS  PubMed  Google Scholar 

  80. Bederson JB, Connolly ES Jr, Batjer HH, American Heart Association, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the stroke council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  81. Togashi K, Joffe AM, Sekhar L, Kim L, Lam A, Yanez D, et al. Randomized pilot trial of intensive management of blood pressure or volume expansion in subarachnoid hemorrhage (IMPROVES). Neurosurgery. 2015;76(2):125–34.

    Article  PubMed  Google Scholar 

  82. Egge A, Waterloo K, Sjøholm H, Solberg T, Ingebrigtsen T, Romner B. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49(3):593–605.

    CAS  PubMed  Google Scholar 

  83. Heros RC, Zervas NT, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: and update. Ann Neurol. 1983;14:599–608.

    Article  CAS  PubMed  Google Scholar 

  84. Diringer M, Bleck T, Claude Hemphill J, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.

    Article  PubMed  Google Scholar 

  85. Yoneda H, Nakamura T, Shirao S, Tanaka N, Ishihara H, Suehiro E, et al. Multicenter prospective cohort study on volume management after subarachnoid hemorrhage: hemodynamic changes according to severity of subarachnoid hemorrhage and cerebral vasospasm. Stroke. 2013;44(8):2155–61.

    Article  PubMed  Google Scholar 

  86. Sumas ME, Legos JJ, Nathan D, Lamperti AA, Tuma RF, Young WF. Tonicity of resuscitative fluids influences outcome after spinal cord injury. Neurosurgery. 2001;48(1):167–72.

    CAS  PubMed  Google Scholar 

  87. Nout YS, Mihai G, Tovar CA, Schmalbrock P, Bresnahan JC, Beattie MS. Hypertonic saline attenuates cord swelling and edema in experimental spinal cord injury: a study utilizing magnetic resonance imaging. Crit Care Med. 2009;37(7):2160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verkman AS, Smith AJ, Phuan PW, Tradtrantip L, Anderson MO. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets. 2017;21(12):1161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luo C, Yao X, Li J, He B, Liu Q, Ren H. Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death Dis. 2016;7:e2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salvarani C, Brown RJ, Hunder GG. Adult primary central nervous system vasculitis. Lancet. 2012;380:767–77.

    Article  PubMed  Google Scholar 

  91. Hostenbach S, Cambron M, D’haeseleer M, Kooijman R, De Keyser J. Astrocyte loss and astrogliosis in neuroinflammatory disorders. Neurosci Lett. 2014;565:39–41.

    Article  CAS  PubMed  Google Scholar 

  92. Shasby DM, Ries DR, Shasby SS, Winter MC. Histamine stimulates phosphorylation of adherens junction proteins and alters their link to vimentin. Am J Physiol Lung Cell Mol Physiol. 2002;283:L1330–8.

    Article  Google Scholar 

  93. Liu LB, Liu XB, Ma J, Liu YH, Li ZQ, Ma T, et al. Bradykinin increased the permeability of BTB via NOS/NO/ZONAB-mediating down-regulation of claudin-5 and occludin. Biochem Biophys Res Commun. 2015;464(1):118–25.

    Article  CAS  PubMed  Google Scholar 

  94. Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation. 2016;13(1):264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 2015;78:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zeng WX, Han YL, Zhu GF, Huang LQ, Deng YY, Wang QS, et al. Hypertonic saline attenuates expression of Notch signaling and proinflammatory mediators in activated microglia in experimentally induced cerebral ischemia and hypoxic BV-2 microglia. BMC Neurosci. 2017;18(1):32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Huang LQ, Zhu GF, Deng YY, Jiang WQ, Fang M, Chen CB, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Haas M, Forbush BR. The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol. 2000;62:515–34.

    Article  CAS  PubMed  Google Scholar 

  99. Jayakumar AR, Norenberg MD. The Na-K-Cl co-transporter in astrocyte swelling. Metab Brain Dis. 2010;25(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  100. Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci. 2016;17(1):64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Gautier S, Ouk T, Tagzirt M, Lefebvre C, Laprais M, Pétrault O, et al. Impact of the neutrophil response to granulocyte colony-stimulating factor on the risk of hemorrhage when used in combination with tissue plasminogen activator during the acute phase of experimental stroke. J Neuroinflammation. 2014;11:96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Cuadrado E, Ortega L, Hernández-Guillamon M, Penalba A, Fernández-Cadenas I, Rosell A, Montaner J. Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol. 2008;84:207–14.

    Article  CAS  PubMed  Google Scholar 

  103. Peng Y, Du J, Zhao X, Shi X, Wang Y. Effects of colloid pre-loading on thromboelastography during elective intracranial tumor surgery in pediatric patients: hydroxyethyl starch 130/0.4 versus 5% human albumin. BCM Anesthesiol. 2017;17:62.

    Article  CAS  Google Scholar 

  104. Furlan JC, Fehlings MG. Hyponatremia in the acute stage after traumatic cervical spinal cord injury: clinical and neuroanatomic evidence for autonomic dysfunction. Spine. 2009;34:501–11.

    Article  PubMed  Google Scholar 

  105. Brouwer MC, van dr Beek D, Heckenberg SG, Spanjaard L, de Gans J. Hyponatremia in adults with community-acquired bacterial meningitis. QJM. 2007;100:37–40.

    Article  CAS  PubMed  Google Scholar 

  106. Kirkman MA. Managing hyponatremia in neurosurgical patients. Minerva Endocrinol. 2014;39:13–26.

    CAS  PubMed  Google Scholar 

  107. Stelfox HT, Ahmed SB, Khandwala F, Zygun D, Shahpori R, Laupland K. The epidemiology of intensive care unit-acquired hyponatraemia and hypernatraemia in medical-surgical intensive care units. Crit Care. 2008;12:R162.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Leonard J, Garrett RE, Salottolo K, Slone DS, Mains CW, Carrick MM, Bar-Or D. Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med. 2015;23:98.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kirkman MA, Albert AF, Ibrahim A, Doberenz D. Hyponatremia and brain injury: historical and contemporary perspectives. Neurocrit Care. 2013;18:406–16.

    Article  PubMed  Google Scholar 

  110. Huda MS, Boyd A, Skagen K, Wile D, van Heyningen C, Watson I, et al. Investigation and management of severe hyponatraemia in hospital setting. Postgrad Med J. 2006;82:216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rahman M, Friedman WA. Hyponatremia in neurosurgical patients: Clinical guidelines development. Neurosurgery. 2009;65:925–35.

    Article  PubMed  Google Scholar 

  112. Diringer MN, Zazulia AR. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist. 2006;12(3):117–26.

    Article  PubMed  Google Scholar 

  113. Liamis G, Filippatos TD, Elisaf MS. Correction of hypovolemia with crystalloid fluids: individualizing infusion therapy. Postgrad Med. 2015;127(4):405–12.

    Article  PubMed  Google Scholar 

  114. Bradshaw K, Smith M. Disorders of sodium balance after brain injury. Cont Educ Anaesth Crit Care Pain. 2008;8(4):129–33.

    Article  Google Scholar 

  115. Sterns RH, Hix JK, Silver S. Treating profound hyponatremia: a strategy for controlled correction. Am J Kidney Dis. 2010;56:774–9.

    Article  CAS  PubMed  Google Scholar 

  116. Froelich M, Ni Q, Wess C, Ougorets I, Härtl R. Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med. 2009;37:1433–41.

    Article  CAS  PubMed  Google Scholar 

  117. Li M, Hu YH, Chen G. Hypernatremia severity and the risk of death after traumatic brain injury. Injury. 2013;44(9):1213–8.

    Article  CAS  PubMed  Google Scholar 

  118. Hadjizacharia P, Beale EO, Inaba K, Chan LS, Demetriades D. Acute diabetes insipidus in severe head injury: a prospective study. J Am Coll Surg. 2008;207:477–84.

    Article  PubMed  Google Scholar 

  119. Muhsin SA, Mount DB. Diagnosis and treatment of hypernatremia. Best Pract Res Clin Endocrinol Metab. 2016;30(2):189–203.

    Article  CAS  PubMed  Google Scholar 

  120. Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342:1493e9.

    Google Scholar 

  121. Severs D, Hoorn EJ, Rookmaaker MB. A critical appraisal of intravenous fluids: from the physiological basis to clinical evidence. Nephrol Dial Transplant. 2015;30:178–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Interests

Wojciech Dabrowski, Robert Wise, Tom Woodcock, Ziemowit Rzecki and Manu Malbrain declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dabrowski, W., Wise, R., Rzecki, Z., Malbrain, M.L.N.G. (2019). Fluid Management in Neurointensive Care. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3390-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3390-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3389-7

  • Online ISBN: 978-981-13-3390-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics