Skip to main content

Advertisement

Log in

Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

To assess the impact of the duration and intensity of episodes of increased intracranial pressure on 6-month neurological outcome in adult and paediatric traumatic brain injury.

Methods

Analysis of prospectively collected minute-by-minute intracranial pressure and mean arterial blood pressure data of 261 adult and 99 paediatric traumatic brain injury patients from multiple European centres. The relationship of episodes of elevated intracranial pressure (defined as a pressure above a certain threshold during a certain time) with 6-month Glasgow Outcome Scale was visualized in a colour-coded plot.

Results

The colour-coded plot illustrates the intuitive concept that episodes of higher intracranial pressure can only be tolerated for shorter durations: the curve that delineates the duration and intensity of those intracranial pressure episodes associated with worse outcome is an approximately exponential decay curve. In children, the curve resembles that of adults, but the delineation between episodes associated with worse outcome occurs at lower intracranial pressure thresholds. Intracranial pressures above 20 mmHg lasting longer than 37 min in adults, and longer than 8 min in children, are associated with worse outcomes. In a multivariate model, together with known baseline risk factors for outcome in severe traumatic brain injury, the cumulative intracranial pressure–time burden is independently associated with mortality. When cerebrovascular autoregulation, assessed with the low-frequency autoregulation index, is impaired, the ability to tolerate elevated intracranial pressures is reduced. When the cerebral perfusion pressure is below 50 mmHg, all intracranial pressure insults, regardless of duration, are associated with worse outcome.

Conclusions

The intracranial pressure–time burden associated with worse outcome is visualised in a colour-coded plot. In children, secondary injury occurs at lower intracranial pressure thresholds as compared to adults. Impaired cerebrovascular autoregulation reduces the ability to tolerate intracranial pressure insults. Thus, 50 mmHg might be the lower acceptable threshold for cerebral perfusion pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hydera AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341–353

    Google Scholar 

  2. Stein SC, Georgoff P, Meghan S, Mizra K, Sonnad SS (2010) 150 years of treating severe traumatic brain injury: a systematic review of progress in mortality. J Neurotrauma 27:1343–1353

    Article  PubMed  Google Scholar 

  3. Patel HC, Bouamra O, Woodford M, King AT, Yates DW, Lecky FE (2005) Trends in head injury outcome from 1989 to 2003 and the effect of neurosurgical care: an observational study. Lancet 366:1538–1544

    Article  CAS  PubMed  Google Scholar 

  4. Rosenfeld JV, Cooper DJ (2005) Management of severe head injury: can we do better? Lancet 366:1509–1510

    Article  PubMed  Google Scholar 

  5. Guillaume J, Janny P (1951) Continuous intracranial manometry; importance of the method and first results. Rev Neurol (Paris) 84:131–142

    CAS  Google Scholar 

  6. Lundberg N, Troupp H, Lorin H (1965) Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg 22(6):581–590

    Article  CAS  PubMed  Google Scholar 

  7. Brain Trauma Foundation, American Association of Neurological Surgeons (AANS), Congress of Neurological Surgeons (CNS), AANS/CNS Joint Section on Neurotrauma and Critical Care (2007) Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma 24(Suppl 1):S37–S44

  8. Marshall LF, Smith RW, Shapiro HM (1979) The outcome with aggressive treatment in severe head injuries. Part II: acute and chronic barbiturate administration in the management of head injury. J Neurosurg 50(1):26–30

    Article  CAS  PubMed  Google Scholar 

  9. Narayan RK, Kishore PR, Becker DP, Ward JD, Enas GG, Greenberg RP, Domingues Da Silva A, Lipper MH, Choi SC, Mayhall CG, Lutz HA 3rd, Young HF (1982) Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg 56(5):650–659

    Article  CAS  PubMed  Google Scholar 

  10. Saul TG, Ducker TB (1982) Effect of intracranial pressure monitoring and aggressive treatment on mortality in severe head injury. J Neurosurg 56(4):498–503

    Article  CAS  PubMed  Google Scholar 

  11. Eisenberg HM, Frankowski RF, Contant CF, Marshall LF, Walker MD (1988) High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg 69(1):15–23

    Article  CAS  PubMed  Google Scholar 

  12. Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, Foulkes MA, Marshall LF, Jane JA (1991) Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg 75:S59–S66

    Google Scholar 

  13. Badri S, Chen J, Barber J, Temkin NR, Dikmen SS, Chesnut RM, Deem S, Yanez ND, Treggiari MM (2012) Mortality and long-term functional outcome associated with intracranial pressure after traumatic brain injury. Intensive Care Med 38(11):1800–1809

    Article  PubMed  Google Scholar 

  14. Sigurtà A, Zanaboni C, Canavesi K, Citerio G, Beretta L, Stocchetti N (2013) Intensive care for pediatric traumatic brain injury. Intensive Care Med 39(1):129–136

    Article  PubMed  Google Scholar 

  15. Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, Manley GT (2008) Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg 109:678–684

    Article  PubMed  Google Scholar 

  16. Kahraman S, Dutton R, Hu P, Xiao Y, Aarabi B, Stein DM, Scalea TM (2010) Automated measurement of “pressure times time dose” of intracranial hypertension best predicts outcome after severe traumatic brain injury. J Trauma 69:110–118

    Article  PubMed  Google Scholar 

  17. Chambers IR, Jones PA, Lo TY, Forsyth RJ, Fulton B, Andrews PJ, Mendelow AD, Minns RA (2006) Critical thresholds of intracranial pressure and cerebral perfusion pressure related to age in paediatric head injury. J Neurol Neurosurg Psychiatry 77(2):234–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Adelson PD, Bratton SL, Carney NA, Chesnut RM, du Coudray HE, Goldstein B, Kochanek PM, Miller HC, Partington MP, Selden NR, Warden CR, Wright DW (2003) Guidelines for the acute medical management of severe traumatic brain injury in infants, children and adolescents. Pediatr Crit Care Med 4(3):S72–S75

    PubMed  Google Scholar 

  19. Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, Leenen LP, Kalkman CJ (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33(10):2207–2213

    Article  PubMed  Google Scholar 

  20. Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, Kossmann T, Ponsford J, Seppelt I, Reilly P, Wolfe R, DECRA Trial Investigators, Australian and New Zealand Intensive Care Society Clinical Trials Group (2011) Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 364:1493–1502

    Article  CAS  PubMed  Google Scholar 

  21. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367:2471–2481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Le Roux P (2014) Intracranial pressure after the BEST TRIP trial: a call for more monitoring. Curr Opin Crit Care 20:141–147

    Article  PubMed  Google Scholar 

  23. Stocchetti N, Maas AI (2014) Traumatic intracranial hypertension. N Eng J Med 370:2121–2130

    Article  Google Scholar 

  24. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O’Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F (2014) Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med 40(9):1189–1209

    Article  PubMed  Google Scholar 

  25. Güiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G (2014) New look at the 20 mmHg ICP threshold. Crit Care 18(Suppl 1):P458

    Article  PubMed Central  Google Scholar 

  26. Güiza F, Depreitere B, Lo TY, Jones PA, Chambers IR, Van den Berghe G, Meyfroidt G (2014) Visualizing secondary insults of elevated ICP in pediatric TBI. Intensive Care Med 40(Suppl 1):S18;0037

  27. Piper I, Citerio G, Chambers I, Contant C, Enblad P, Fiddes H, Howells T, Kiening K, Nilsson P, Yau YH (2003) The Brain-IT group: concept and core dataset definition. Acta Neurochir (Wien) 145:615–628

    Article  CAS  Google Scholar 

  28. Enblad P, Nilsson P, Chambers I, Citerio G, Fiddes H, Howells T, Kiening K, Ragauskas A, Sahuquillo J, Yau YH (2004) R3-survey of traumatic brain injury management in European Brain IT centres year 2001. Intensive Care Med 30(6):1058–1065

    Article  CAS  PubMed  Google Scholar 

  29. Feyen BFE, Sener S, Jorens PG, Menovsky T, Maas AI (2012) Neuromonitoring in traumatic brain injury. Minerva Anestesiol 78:949–958

    CAS  PubMed  Google Scholar 

  30. Nilsson P, Enblad P, Chambers I (2005) Survey of traumatic brain injury management in European Brain-IT centres year 2001. Acta Neurochir (Suppl) 95:51–53

    CAS  Google Scholar 

  31. Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, Meyfroidt G (2014) Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in severe traumatic brain injury patients based on minute-by-minute monitoring data. J Neurosurg 120:1451–1457

    Article  PubMed  Google Scholar 

  32. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, Murray GD, Marmarou A, Roberts I, Habbema JD, Maas AI (2008) Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 5(8):e165

    Article  PubMed Central  PubMed  Google Scholar 

  33. IMPACT: International Mission for Prognosis and Analysis of Clinical Trials in TBI (2015) http://www.tbi-impact.org/. Accessed 11 March 2015

  34. Sviri GE, Aaslid R, Douville CM, Moore A, Newell DW (2009) Time course for autoregulation recovery following severe traumatic brain injury. J Neurosurg 111:695–700

    Article  PubMed  Google Scholar 

  35. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–19

    Article  CAS  PubMed  Google Scholar 

  36. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J (2006) Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 34(6):1783–1788

    Article  PubMed  Google Scholar 

  37. Lazaridis C, DeSantis SM, Smielewski P, Menon DK, Hutchinson P, Pickard JD, Czosnyka M (2014) Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J Neurosurg 120:893–900

    Article  PubMed  Google Scholar 

  38. CENTER-TBI (2015) https://www.center-tbi.eu/. Accessed 6 March 2015

  39. Chesnut RM (2015) What the BEST TRIP study means to me as the principle investigator. https://www.braintrauma.org/dr-chesnut-commentary/. Accessed 24 March 2015

Download references

Acknowledgments

We wish to acknowledge the non-co-author members of the BrainIT steering group: Barbara Gregson, Tim Howells, Karl Kiening, Julia Mattern, Arminas Ragauskas and Juan Sahuquillo, for collecting data and granting permission through the steering group to use them for this project. Similarly, we would also like to acknowledge the contributors to the original study resulting in the paediatric database used here: R.J. Forsyth, B. Fulton, P.J.D. Andrews, A.D. Mendelow and R.A. Minns. The present study was supported by the Foundation for Scientific Research Flanders (FWO) (Research project G. 0904.11). Geert Meyfroidt receives funding from FWO as senior clinical investigator (1846113N). Greet Van den Berghe receives long-term structural research financing via the Methusalem program funded by the Flemish Government (METH/08/07). BrainIT was funded by the European Framework Programme (FP5-QLRI-2000-00454, QLGT-2002-00160 AND FP7-IST-2007-217049). The NEMO project in the University Hospital Edegem (Antwerp), Belgium was funded by the Flemish Government Agency for Innovation by Science and Technology (IWT)—Applied Biomedical Research (TBM) program.

Conflicts of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Meyfroidt.

Additional information

F. Güiza and B. Depreitere contributed equally.

Take-home message: In adult and paediatric patients suffering from severe traumatic brain injury, an approximately exponential curve describes the relationship between intensity and duration of episodes of increased intracranial pressure (ICP) and worse clinical outcomes. In children, compared to adults, this occurs at lower ICP thresholds of shorter duration.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güiza, F., Depreitere, B., Piper, I. et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med 41, 1067–1076 (2015). https://doi.org/10.1007/s00134-015-3806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-015-3806-1

Keywords

Navigation