Skip to main content

Nitric Oxide (NO) and Physio-biochemical Adaptation in Plants Against Stress

  • Chapter
  • First Online:
Plant Adaptation Strategies in Changing Environment

Abstract

Nitric oxide synthase (NOS) enzyme is responsible for NO generation by catalyzing the oxidation of l-arginine to l-citrulline. Presence of this enzyme is reported from unicellular prokaryotes to multicellular higher plants and animals. Plants employ diverse enzymes to generate NO that can be grouped into animal-like NOS or alternative enzymes. Alternative enzymes that are structurally unlike animal NOS but that generate NO include NR, PM NiNOR, XOR, and polyamine oxidase. NO is also produced by nonenzymatic reactions in plants. Both in natural and agriculture conditions, plants are frequently exposed to stress. NO has been found to be involved in an array of plant physiological processes including pollen germination, seed germination, root development, stomatal movements, flowering, senescence, and programmed cell death along with abiotic and biotic stress conditions such as temperature, salinity, drought, heavy metal stress, and pathogen attack or herbivory. Some environmental factors such as temperature, cold or heat, can become stressful in just a few minutes; others may take days to weeks (soil water) or even months (mineral nutrients) to become stressful. All these conditions induce the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These species not only initiate several oxidatively destructive processes, but also trigger various signaling pathways that maintain appropriate cellular ROS levels. It has been found that NO generated during various stress conditions interacts with ROS in various ways and serves as an antioxidant molecule that helps plants adapt in adverse environmental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9(18):4368–4380

    Article  CAS  PubMed  Google Scholar 

  • Adak S, Bilwes AM, Panda K, Hosfield D et al (2002) Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans. Proc Natl Acad Sci U S A 99:107–112

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A et al (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Akinyemi AJ, Faboya OL, Olayide I et al (2017) Effect of cadmium stress on non-enzymatic antioxidant and nitric oxide levels in two varieties of maize (Zea mays). Bull Environ Contam Toxicol 98(6):845–849

    Article  CAS  PubMed  Google Scholar 

  • Amooaghaie R, Tabatabaei F, Ahadi AM (2015) Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf 113:259–270

    Article  CAS  PubMed  Google Scholar 

  • An L, Liu Y, Zhang M et al (2005) Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation. J Plant Physiol 162(3):317–326

    Article  CAS  PubMed  Google Scholar 

  • Antoniou C, Chatzimichail G, Xenofontos R et al (2017) Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 62(4). https://doi.org/10.1111/jpi.12401

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J et al (2012) Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Biochem 58:124–134

    Article  CAS  PubMed  Google Scholar 

  • Arc E, Galland M, Godin B et al (2013) Nitric oxide implication in the control of seed dormancy and germination. Front Plant Sci 4:346. https://doi.org/10.3389/fpls.2013.00346

    PubMed  PubMed Central  Google Scholar 

  • Arora D, Jain P, Singh N et al (2016) Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 50(3):291–303

    Article  CAS  PubMed  Google Scholar 

  • Asai S, Mase K, Yoshioka H (2010) Role of nitric oxide and reactive oxygen [corrected] species in disease resistance to necrotrophic pathogens. Plant Signal Behav 5(7):872–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asgher M, Per TS, Masood A et al (2017) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Pollut Res Int 24(3):2273–2285

    Article  CAS  PubMed  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13(11):15193–15208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X-G, Chen J-H, Kong X-x, Todd CD (2012) Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 53:710–720. https://doi.org/10.1016/j.freeradbiomed.2012.05.042

    Article  CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas IJ, Carreras A et al (1999) Localization of nitric oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    Article  CAS  PubMed  Google Scholar 

  • Bavita A, Shashi B, Navtej SB (2012) Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Indian J Exp Biol 50(5):372–378

    CAS  PubMed  Google Scholar 

  • Beard RA, Anderson DJ, Bufford JL et al (2012) Heat reduces nitric oxide production required for auxin-mediated gene expression and fate determination in tree tobacco guard cell protoplasts. Plant Physiol 159(4):1608–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beligni MV, Lamattina L (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4:299

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plant. Planta 210:215–221

    Article  CAS  PubMed  Google Scholar 

  • Bird LE, Ren J, Zhang J et al (2002) Crystal structure of SANOS, a bacterial nitric oxide synthase oxygenase protein from Staphylococcus aureus. Structure 10(12):1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Buet A, Moriconi JI, Santa-María GE et al (2014) An exogenous source of nitric oxide modulates zinc nutritional status in wheat plants. Plant Physiol Biochem 83:337–345

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Liu W, Wang WS et al (2015) Overexpression of rat neurons nitric oxide synthase in rice enhances drought and salt tolerance. PLoS One 10(6):e0131599. https://doi.org/10.1371/journal.pone.0131599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camejo D, Romero-Puertas Mdel C, Rodríguez-Serrano M et al (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteome 79:87–99

    Article  CAS  Google Scholar 

  • Campbell WH (1996) Nitrate reductase, biochemistry comes of age. Plant Physiol 111:355–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J et al (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189(2):415–427. https://doi.org/10.1111/j.1469-8137.2010.03500.x

    Article  CAS  PubMed  Google Scholar 

  • Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor nitric oxide. J Biol Chem 269:29498–29415

    Google Scholar 

  • Chaki M, Carreras A, López-Jaramillo J et al (2013) Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (β-CA) activity under high temperature stress. Nitric Oxide 29:30–33

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Martion GB, Low PS (1996) The pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proc Natl Acad Sci U S A 93:13393–13397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Chakraborty N, Panda K et al (2017) Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. Plant Physiol Biochem 115:298–307

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Feng H, Zhang M et al (2003) Nitric oxide alleviates oxidative damage in the green alga Chlorella pyrenoidosa caused by UV-B radiation. Folia Microbiol (Praha) 48(3):389–393

    Article  CAS  Google Scholar 

  • Chen J, Xiao Q, Wu F et al (2010) Nitric oxide enhances salt secretion and Na(+) sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H(+)-ATPase and Na(+)/H(+) antiporter under high salinity. Tree Physiol 30(12):1570–1585

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xiong DY, Wang WH (2013) Nitric oxide mediates root K+/Na+ balance in a mangrove plant, kandelia obovata, by enhancing the expression of AKT1-Type K+ channel and Na+/H+ antiporter under high salinity. PLoS ONE 8(8):e71543. https://doi.org/10.1371/journal.pone.0071543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Vandelle E, Bellin D et al (2014) Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: where there’s a will there’s a way. Nitric Oxide 43:81–88

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liu X, Wang C et al (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Tian D, Kong X et al (2016) The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta 244(3):651–669

    Article  PubMed  Google Scholar 

  • Choi HW, Lee DH, Hwang BK (2009) The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. Mol Plant-Microbe Interact 22(11):1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Chun HJ, Park HC, Koo SC et al (2012) Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol Cell 34(5):463–471

    Article  CAS  Google Scholar 

  • Chungopast S, Duangkhet M, Tajima S et al (2017) Iron-induced nitric oxide leads to an increase in the expression of ferritin during the senescence of Lotus japonicus nodules. J Plant Physiol 208:40–46

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Desikan R, Hurst RD et al (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24(5):667–677

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Esteban FJ et al (2002) Peroxisome as a source of nitric oxide in plant cells. Free Radic Biol Med 33:S73

    Article  Google Scholar 

  • Corpas FJ, Chaki M, Fernández-Ocaña A et al (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49(11):1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Hayashi M, Mano S et al (2009) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151:2083–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905. https://doi.org/10.1007/s00425-003-1172-7

    Article  CAS  PubMed  Google Scholar 

  • Cueto M, Herandez-Perea O, Martin R et al (1996) Presence of nitric oxide synthase in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  CAS  PubMed  Google Scholar 

  • Dean JV, Harper JE (1986) Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol 82:718–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA et al (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Deng M, Moureaux T, Caboche M (1989) Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene. Plant Physiol 91:304–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng XG, Zhu T, Zou LJ et al (2016) Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J 85(4):478–493

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Hancock JT, Coffey MJ et al (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase like enzyme. FEBS Lett 383:213–217

    Article  Google Scholar 

  • Diao QN, Song YJ, Shi DM et al (2016) Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling. J Zhejiang Univ Sci B 17(12):916–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diao Q, Song Y, Shi D et al (2017) Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings. Front Plant Sci 14(8):203

    Google Scholar 

  • Dinler BS, Antoniou C, Fotopoulos V (2014) Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. J Plant Physiol 171(18):1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Drapier JC (1997) Interplay between NO and [Fe-S] clusters: relevance to biological systems. Comp Methods Enzymol 11(3):319–329

    Article  CAS  Google Scholar 

  • Du X, Zhang C, Guo W et al (2015) Nitric oxide plays a central role in water stress-induced tanshinone production in Salvia miltiorrhiza hairy roots. Molecules 20(5):7574–7585

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DE (1998) Defence gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP ribose. Proc Natl Acad Sci U S A 95:10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shetehy M, Wang C, Shine MB et al (2015) Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants. Plant Signal Behav 10(9):e998544. https://doi.org/10.1080/15592324.2014.998544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esim N, Atici O, Mutlu S (2014) Effects of exogenous nitric oxide in wheat seedlings under chilling stress. Toxicol Ind Health 30(3):268–274

    Article  CAS  PubMed  Google Scholar 

  • Espunya MC, De Michele R, Gómez-Cadenas A et al (2012) S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. J Exp Bot 63(8):3219–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan QJ, Liu JH (2012) Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep 31(1):145–154. https://doi.org/10.1007/s00299-011-1148-1

    Article  CAS  PubMed  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide functions in plant abiotic stress. Plant Cell Environ 40(4):462–472

    Article  CAS  PubMed  Google Scholar 

  • Farag M, Najeeb U, Yang J et al (2017) Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury. Plant Physiol Biochem 111:166–173

    Article  CAS  PubMed  Google Scholar 

  • Feigl G, Lehotai N, Molnár Á et al (2015) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116(4):613–625

    Article  PubMed  Google Scholar 

  • Flores-Perez U, Sauret-Gueto S, Gas E et al (2008) A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids. Plant Cell 20:1303–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C et al (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  CAS  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G et al (2010) Characterization of a nitric oxide synthase from the plant kingdom: no generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependant. Plant Cell 22(11):3816–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fröhlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181(4):401–404. https://doi.org/10.1016/j.plantsci.2011.07.014

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Chu X, Sun Y et al (2015) Nitric oxide mediates 5-aminolevulinic acid-induced antioxidant defense in leaves of Elymus nutans griseb. exposed to chilling stress. PLoS One 10(7):e0130367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gadelha CG, Miranda RS, Alencar NLM et al (2017) Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol 212:69–79

    Article  CAS  PubMed  Google Scholar 

  • Garces H, Durzan D, Pedroso MC (2001) Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Ann Bot 87:567–574

    Article  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Gardner PR, Gardner AM, Martin LA et al (1998) Nitric oxide dioxygenase; an enzymic function for flavohemoglobin. Proc Natl Acad Sci U S A 95:10378–10383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gas E, Flores-Pèrez U, Sauret-Gűeto S et al (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghadakchiasl A, Mozafari AA, Ghaderi N (2017) Mitigation by sodium nitroprusside of the effects of salinity on the morpho-physiological and biochemical characteristics of Rubus idaeus under in vitro conditions. Physiol Mol Biol Plants 23(1):73–83

    Article  CAS  PubMed  Google Scholar 

  • Ghosh DK, Stuehr DJ (1995) Macrophage NO synthase: characterization of isolated oxygenase and reductase domains reveals a head to head subunit interaction. Biochemistry 34:801–807

    Article  CAS  PubMed  Google Scholar 

  • Giardi MT, Masojidek J, Godde D (1997) Effect of abiotic stress on the turnover of the D1 reaction center H protein. Physiol Plant 101:636–642

    Article  Google Scholar 

  • Gil’vanova IR, Enikeev AR, Stepanov SI et al (2012) Involvement of salicylic acid and nitric oxide in protective reactions of wheat under the influence of heavy metals. Prikl Biokhim Mikrobiol 48(1):103–108

    PubMed  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K et al (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Debska K et al (2010) The beneficial effect of small toxic molecules on dormancy alleviation and germination of apple embryos is due to NO formation. Planta 232:999–1005. https://doi.org/10.1007/s00425-010-1214-x

    Article  CAS  PubMed  Google Scholar 

  • Gong YW, Yuan YJ (2006) Nitric oxide mediates inactivation of glutathione S transferase in suspension culture of Taxus cuspidata during shear stress. J Biotechnol 123(2):185–192

    Article  CAS  PubMed  Google Scholar 

  • González A, Cabrera Mde L, Henríquez MJ et al (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158(3):1451–1462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guillas I, Zachowski A, Baudouin E (2011) A matter of fat: interaction between nitric oxide and sphingolipid signaling in plant cold response. Plant Signal Behav 6(1):140–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Tan J, Zhuo C et al (2014) Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnol J 12(5):601–612

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM et al (2011) On the origins of nitric oxide. Trends Plant Sci 16(3):160–168. https://doi.org/10.1016/j.tplants.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Shah JK, Brotman Y et al (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63(4):1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Hall AV, Antoniou H, Wang Y (1994) Structural organization of human neuronal nitric oxide synthase gene (NOS1). J Biochem 269:33082–33090

    CAS  Google Scholar 

  • Han B, Yang Z, Xie Y et al (2014) Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol Plant 7(2):388–403

    Article  CAS  PubMed  Google Scholar 

  • Hao GP, Xing Y, Zhang JH (2008) Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. J Integr Plant Biol 50(4):435–442

    Article  CAS  PubMed  Google Scholar 

  • Harper JE (1981) Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol 68:1488–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan MK, Liu C, Wang F et al (2016) Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere 161:536–545

    Article  CAS  PubMed  Google Scholar 

  • He JM, Bai XL, Wang RB et al (2007) The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro. Physiol Plant 131(2):273–282. https://doi.org/10.1111/j.1399-3054.2007.00955.x

    CAS  PubMed  Google Scholar 

  • He H, Zhan J, He L et al (2012) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249(3):483–492

    Article  CAS  PubMed  Google Scholar 

  • He JM, Ma XG, Zhang Y et al (2013) Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves. Plant Physiol 161(3):1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Ren Y, Chen X et al (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119

    Article  CAS  PubMed  Google Scholar 

  • Herouart D, Baudouin E, Frendo P (2002) Reactive oxygen species, nitric oxide and glutahione: a key role in the establishment of the legume-Rhizobium symbiosis? Plant Physiol Biochem 40:619–624

    Article  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge KM (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Nati Acad Sci USA 88:2811–2814

    Article  CAS  Google Scholar 

  • Hu Y, You J, Liang X (2015) Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley. Plant Cell Rep 34(3):367–379

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide (endothelium-dependent relaxation/vascular smooth muscle/cyclic GMP). Proc Natl Acad Sci U S A 84:9265–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida H, Makino A, Mae T (1999) Fragmentation of the large subunit of ribulose-1-5, biphosphate carboxylase by reactive oxygen species occurs near Gly-329. J Biol Chem 274:5222–5226

    Article  CAS  PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao C, Yang R, Zhou Y (2016) Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts. Food Chem 1(204):373–380. https://doi.org/10.1016/j.foodchem.2016.02.147

    Article  CAS  Google Scholar 

  • Jin CW, Du ST, Shamsi IH et al (2011) NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J Exp Bot 62(11):3875–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaptain S, Dewney WE, Tang L et al (1991) A regulated RNA finding protein also possesses aconitase activity. Proc Natl Acad Sci U S A 88:10109–10113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuki S, Arnold WP, Murad F (1977) Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J Cyclic Nucleotide Res 3:239–247

    CAS  PubMed  Google Scholar 

  • Kaur G, Singh HP, Batish DR et al (2015) Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS One 10(9):e0138713. https://doi.org/10.1371/journal.pone.0138713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keller T, Damude HG, Werner D et al (1998) A plant homolog of the neutrophil NADPH oxidase of 91-phox subunit genes encodes a plasma membrane protein with Ca++ binding motifs 47. Plant Cell 10:255–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keyster M, Klein A, Ludidi N (2012) Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide. Plant Signal Behav 7(3):349–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klausner RD, Rauault TA, Herford JB (1993) Regulating the fate of m-RNA: the control of cellular iron metabolism. Cell 72:190–128

    Article  Google Scholar 

  • Klepper LA (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:537–542

    Article  CAS  Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthase in mammals. Biochemistry 298:249–258

    Article  CAS  Google Scholar 

  • Koen E, Szymańska K, Klinguer A et al (2012) Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency. Plant Signal Behav 7(10):1246–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong W, Huang C, Chen Q et al (2012) Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genet Biol 49(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Kováčik J, Babula P, Klejdus B et al (2014) Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PLoS One 9(3):e91685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs I, Durner J, Lindermayr C (2015) Crosstalk between nitric oxide and glutathione is required for Nonexpressor of Pathogenesis-Related genes 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol 208(3):860–872. https://doi.org/10.1111/nph.13502

    Article  CAS  PubMed  Google Scholar 

  • Krasylenko YA, Yemets AI, Sheremet YA et al (2012) Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiol Plant 145(4):505–515

    Article  CAS  PubMed  Google Scholar 

  • Kuo WN, Kuo TW, Jones DL et al (1995) Nitric oxide synthase immune reactivity in baker’s yeast lobster and wheat germ. Biochem Arch 11:73–78

    CAS  Google Scholar 

  • Lamattina L, Beligni MV, Garcia-mata C et al (2001) Method of enhancing the metabolic function and the growing conditions of plants and seeds. US Patent, US 624384 B1

    Google Scholar 

  • Lamb CJ, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 76:419–422

    Google Scholar 

  • Lea PJ (1999) Nitrate assimilation. In: Lea PJ (ed) Plant biochemistry and molecular biology. Wiley, London, pp 163–192

    Google Scholar 

  • Leonetti P, Melillo MT, Bleve-Zacheo T (2011) Nitric oxide and hydrogen peroxide: two players in the defence response of tomato plants to root-knot nematodes. Commun Agric Appl Biol Sci 76(3):371–381

    CAS  PubMed  Google Scholar 

  • Leshem Y (2001) Nitric oxide in plants. Kluwer Academic Publishers, London

    Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263

    Article  CAS  Google Scholar 

  • Leshem YY, Haramaty E, Iluz D et al (1997) Effect of stress nitric oxide (NO): interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenase activity. Plant Physiol Biochem 35:573–579

    CAS  Google Scholar 

  • Leshem YY, Wills RBS, Veng-Va Ku V (1998) Evidences for the function of the free radical gas-nitric oxide (NO) – as an endogenous maturation and senescence-regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Levine A, Tenhapen R, Dixon RA et al (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Li F-C, Wang J, M-M W (2017) Mitogen-activated protein kinase phosphatases affect UV-B-induced stomatal closure via controlling NO in guard cells. Plant Physiol 175. https://doi.org/10.1104/pp.16.01656

  • Li H, Raman CS, Glaser CB et al (1999) Crystal structures of zinc-free and bound heme domain of human inducible nitric oxide synthase implication for dimer stability and comparison with endothelial nitric oxide synthase. J Biol Chem 274:21276–21284

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu X, Ajmal Khan M et al (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang Y, Shen W (2012) Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Biometals 25(3):617–631

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liang WS, Carr JP (2014) Effects of modifying alternative respiration on nitric oxide-induced virus resistance and PR1 protein accumulation. J Gen Virol 95(Pt 9):2075–2081. https://doi.org/10.1099/vir.0.066662-0

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhu S, Wu W et al (2016a) Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit. J Sci Food Agric. 2016 Nov 18. https://doi.org/10.1002/jsfa.8146

  • Li X, Pan Y, Chang B et al (2016b) NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Front Plant Sci 6:1203

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Gao L, Han R (2016c) A combination of He-Ne laser irradiation and exogenous NO application efficiently protect wheat seedling from oxidative stress caused by elevated UV-B stress. Environ Sci Pollut Res Int 23(23):23675–23682

    Article  CAS  PubMed  Google Scholar 

  • Liao WB, Huang GB, Yu JH et al (2012) Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol Biochem 58:6–15

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Yang L, Paul M et al (2013) Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol Biochem 73:211–218

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jiang H, Zhao Z (2010) An, nitric oxide synthase like activity-dependent nitric oxide production protects against chilling-induced oxidative damage in Chorispora bungeana suspension cultured cells. Plant Physiol Biochem 48:936–944

    Article  CAS  PubMed  Google Scholar 

  • Liu SL, Yang RJ, Pan YZ et al (2015) Exogenous NO depletes Cd-induced toxicity by eliminating oxidative damage, re-establishing ATPase activity, and maintaining stress-related hormone equilibrium in white clover plants. Environ Sci Pollut Res Int 22(21):16843–16856

    Article  CAS  PubMed  Google Scholar 

  • Liu WC, Li YH, Yuan HM et al (2017) WD40-REPEAT 5a functions in drought stress tolerance by regulating nitric oxide accumulation in Arabidopsis. Plant Cell Environ 40(4):543–552

    Article  CAS  PubMed  Google Scholar 

  • Luo BF, Du ST, Lu KX et al (2012) Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J Exp Bot 63(8):3127–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Zhao Y, Walker RK et al (2013) Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+−dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal. Plant Physiol 163(3):1459–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackerness AHS, John CF, Jordan B et al (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489(2–3):237–242

    Article  CAS  Google Scholar 

  • Maier J, Hecker R, Rockel P et al (2001) Role of nitric oxide synthase in the light induced development of sporengiophores in Phycomyces blackesleeanus. Plant Physiol 126:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallick N, Mohn FH, Soeder CJ (2000) Evidence supporting nitrite-dependent NO release by the green microalga Scenedesmus obliquus. J Plant Physiol 157:40–46

    Article  CAS  Google Scholar 

  • Manai J, Gouia H, Corpas FJ (2014) Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J Plant Physiol 171(12):1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Mata-Pérez C, Begara-Morales JC, Luque F et al (2016) Transcriptomic analyses on the role of nitric oxide in plant disease resistance. Curr Issues Mol Biol 19:121–128

    PubMed  Google Scholar 

  • Mehta RA, Fowcett TW, Porath D et al (1992) Oxidation stress causes rapid membrane translocation and in vivo degradation of ribulose-1,5-biphosphate corboxylase\oxygenase. J Biol Chem 267:2810–2816

    CAS  PubMed  Google Scholar 

  • Mendel RR, Stellmeyer (1995) Molybdenum cofactor (nitrate reductase) biosynthesis in plants: first molecular analysis. In: MRC T, Falavigna (eds) Current plant science and biotechnology in agriculture vol 22: current issues in plant molecular and cellular biology. Kluwer, Dordrecht, pp 577–582

    Chapter  Google Scholar 

  • Meng ZB, Chen LQ, Suo D et al (2012) Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus). Ann Bot 109(6):1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengel A, Chaki M, Shekariesfahlan A et al (2013) Effect of nitric oxide on gene transcription-S-nitrosylation of nuclear proteins. Front Plant Sci 4:293. https://doi.org/10.3389/fpls.2013.00293. PMCID: PMC3729996

    Article  PubMed  PubMed Central  Google Scholar 

  • Messner S, Leitner S, Bommassar C (2009) Physarum nitric oxide synthases: genomic structures and enzymology of recombinant proteins. Biochem J 418(3):691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modolo LV, Cunha FQ, Braga MR et al (2002) Nitric oxide synthase mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. Meridionalis elicitor. Plant Physiol 130:1288–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monjil MS, Shibata Y, Takemoto D et al (2013) Bis-aryl methanone compound is a candidate of nitric oxide producing elicitor and induces resistance in Nicotiana benthamiana against Phytophthora infestans. Nitric Oxide 29:34–45

    Article  CAS  PubMed  Google Scholar 

  • Monreal JA, Arias-Baldrich C, Tossi V et al (2013) Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity. Planta 238(5):859–869

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Lee GI, Wang Y et al (2008) AtNOS/A1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J Biol Chem 283:32957–32967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott HR, Carpenter JW, Campbell SL (1997) Structural and functional analysis of a mutant ras protein, that is insensitive to nitric oxide activation. Biochemistry 36:3540–3644

    Article  Google Scholar 

  • Mur LAJ, Simpson C, Kumari A et al (2017) Moving nitrogen to the centre of plant defence against pathogens. Ann Bot 119(5):703–709

    PubMed  Google Scholar 

  • Murgia I, Delledonne M, Soave C (2002) Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J 20:521–528

    Article  Google Scholar 

  • Navarre DA, Wendehenne D, Durner J et al (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol 122:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi S, Santisree P, Kharshiing E et al (2010) Inhibition of the ubiquitin-proteasome pathway alters cellular levels of nitric oxide in tomato seedlings. Mol Plant 3(5):854–869

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A et al (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Barros R, Bright J et al (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59(2):165–176. https://doi.org/10.1093/jxb/erm293

    Article  CAS  PubMed  Google Scholar 

  • Ninnemann H, Maier J (1996) Indication for the occurrence of nitric oxide synthase in fungi and plants and the involvement in photoconidiation of Neurospora crasa. Photochem Photobiol 64:393–398

    Article  CAS  PubMed  Google Scholar 

  • Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissue. Plant Cell Physiol 37:113–116

    Article  CAS  Google Scholar 

  • Notton BA, Hewitt EJ (1971) The role of tungsten in the inhibition of nitrate reductase activity in spinach (Spinacia oleracea L.) leaves. Biochem Biophys Res Commun 44:702–710

    Article  CAS  PubMed  Google Scholar 

  • Oaks A (1994) Primary nitrogen assimilation in higher plants and its regulation. Can J Bot 72:869–885

    Article  Google Scholar 

  • Orozco-Cardenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S et al (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma JM, Corpas FJ, del Rıo LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526. https://doi.org/10.1038/327524a0

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Wang W, Li D et al (2016) Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature. BMC Genomics 17(1):809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan D (2000) A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J Exp Bot 51:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Wang X, Li Z et al (2016) NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes. Protoplasma 253(5):1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Perchepied L, Balagué C, Riou C et al (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant-Microbe Interact 23(7):846–860

    Article  CAS  PubMed  Google Scholar 

  • Pető A, Lehotai N, Lozano-Juste J et al (2011) Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann Bot 108(3):449–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pető A, Lehotai N, Feigl G et al (2013) Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. Plant Cell Rep 32(12):1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Piterková J, Petrivalský M, Luhová L et al (2009) Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Mol Plant Pathol 10(4):501–513

    Article  PubMed  Google Scholar 

  • Planchet E, Gupta JK, Sonoda M et al (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  CAS  PubMed  Google Scholar 

  • Planchet E, Verdu I, Delahaie J et al (2014) Abscisic acid-induced nitric oxide and proline accumulation in independent pathway under water-deficit stress during seedling establishment in Medicago truncatula. J Exp Bot 65(8):2161–2170

    Article  CAS  PubMed  Google Scholar 

  • Poór P, Kovács J, Szopkó D et al (2013) Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250(1):273–284

    Article  PubMed  CAS  Google Scholar 

  • Raman CS, Li H, Martasek P et al (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for protein function involving a novel metal center. Cell 95:939–950

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro EA, Cunha FQ, Tamashiro WMSC et al (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett 44:282–286

    Google Scholar 

  • Rockel P, Strube F, Rockel A et al (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53(366):103–110

    Article  CAS  PubMed  Google Scholar 

  • Romera FJ, García MJ, Alcántara E et al (2011) Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by strategy I plants. Plant Signal Behav 6(1):167–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Kamura SN, Yamasaki H (2002) Nitric oxide production mediated by nitrite reductase in green algae Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organism. Plant Cell Physiol 43(3):290–297

    Article  CAS  PubMed  Google Scholar 

  • Santa-Cruz DM, Pacienza NA, Polizio AH et al (2010) Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. Phytochemistry 71(14–15):1700–1707

    Article  CAS  PubMed  Google Scholar 

  • Santa-Cruz DM, Pacienza NA, Zilli CG et al (2014) Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation. J Photochem Photobiol B 141:202–209

    Article  CAS  PubMed  Google Scholar 

  • Schlicht M, Kombrink E (2013) The role of nitric oxide in the interaction of Arabidopsis thaliana with the biotrophic fungi, Golovinomyces orontii and Erysiphe pisi. Front Plant Sci 4:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehrawat A, Deswal R (2014) S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. J Proteome Res 13(5):2599–2619

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Chema IR (1995) Nitric oxide synthase and calmodulin immunoreactivity in plant embryonic tissue. Biochem Arch 11:221–227

    CAS  Google Scholar 

  • Shanmugam V, Wang YW, Tsednee M et al (2015) Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. Plant J 84(3):464–477

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Wang G, Wang Y et al (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.) Plant Physiol Biochem 74:99–107

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chen Y, Tan DX et al (2015) Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J Pineal Res 59(1):102–108

    Article  CAS  PubMed  Google Scholar 

  • Silveira NM, Hancock JT, Frungillo L et al (2017) Evidence towards the involvement of nitric oxide in drought tolerance of sugarcane. Plant Physiol Biochem 115:354–359

    Article  CAS  PubMed  Google Scholar 

  • Simon-Sarkadi L, Ludidi N, Kocsy G (2014) Modification of cadaverine content by NO in salt-stressed maize. Plant Signal Behav 9(1):e27598. https://doi.org/10.4161/psb.27598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sirova J, Sedlarova M, Piterkova J et al (2011) The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci 181:560–572

    Article  CAS  PubMed  Google Scholar 

  • Skelly MJ, Loake GJ (2013) Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance. Antioxid Redox Signal 19(9):990–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song NK, Jeong CS, Choi HS (2000) Identification of nitric oxide synthase in Flammulina velutipes. Mycologia 92(6):1027–1032

    Article  CAS  Google Scholar 

  • Stohr C, Strube F, Marx G et al (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  CAS  PubMed  Google Scholar 

  • Stuehr DJ (1996) Purification and properties of nitric oxide synthases. Methods Enzymol 268:324–333

    Article  CAS  PubMed  Google Scholar 

  • Stuehr DJ, Cho HJ, Known NS et al (1991) Purification and characterization of the cytokine- induced macrophage nitric oxide synthase: an FAD- and FMN- containing flavoprotein. Proc Natl Acad Sci U S A 88:7773–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers LA (1980) The bipyridinium herbicides. Academic, New York

    Google Scholar 

  • Sun A, Li Z (2013) Regulatory role of nitric oxide in lipopolysaccharides-triggered plant innate immunity. Plant Signal Behav 8(1):e22554. https://doi.org/10.4161/psb.22554

    Article  PubMed  CAS  Google Scholar 

  • Talwar PS, Gupta R, Maurya AK et al (2012) Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase. Plant Physiol Biochem 60:157–164

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Filippou P, Belghazi M et al (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72(4):585–599

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Lamattina L, Cassia R (2009) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol 181(4):871–879. https://doi.org/10.1111/j.1469-8137.2008.02722.x

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Amenta M, Lamattina L et al (2011) Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ 34(6):909–921

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Lombardo C, Cassia R et al (2012) Nitric oxide and flavonoids are systemically induced by UV-B in maize leaves. Plant Sci 193–194:103–109

    Article  PubMed  CAS  Google Scholar 

  • Tossi V, Lamattina L, Jenkins GI et al (2014) Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism. Plant Physiol 164(4):2220–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touraine B, Briat JF, Gaymard F (2012) GSH threshold requirement for NO-mediated expression of the Arabidopsis AtFer1 ferritin gene in response to iron. FEBS Lett 586(6):880–883

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S et al (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T et al (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  CAS  PubMed  Google Scholar 

  • Valentovicova K, Haluskova L, Huttova J (2010) Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips. J Plant Physiol 167:10–14

    Article  CAS  PubMed  Google Scholar 

  • Verma K, Mehta SK, Shekhawat GS (2013) Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals 26(2):255–269

    Article  CAS  PubMed  Google Scholar 

  • Verniquet F, Gaillar J, Neuburger M et al (1991) Rapid inactivation of plant aconitases by hydrogen peroxide. Biochemistry 276:643–648

    Article  CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Li XC, Zhu-Ge Q (2012) Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. 10.1371/journal.pone.0052436

    Google Scholar 

  • Wang Y, Luo Z, Du R et al (2013) Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. J Agric Food Chem 61(37):8880–8887

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yu SX, Zhang M et al (2014) Exogenous NO mediated GSH-PCs synthesis pathway in tomato under copper stress. Ying Yong Sheng Tai Xue Bao 25(9):2629–2636

    CAS  PubMed  Google Scholar 

  • Wang P, Du Y, Hou YJ et al (2015a) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci U S A 2:613–618

    Article  CAS  Google Scholar 

  • Wang YW, Tsednee M, Karunakaran K et al (2015b) Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. Plant J 84(3):464–477

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Dong YX, Wang J et al (2016a) Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress. Environ Sci Pollut Res Int 23(5):4826–4836

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang J, Li Y et al (2016b) Involvement of nitric oxide-mediated alternative pathway in tolerance of wheat to drought stress by optimizing photosynthesis. Plant Cell Rep 35(10):2033–2044

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Sheng X, Shu Z et al (2016c) Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth. Front Plant Sci 7:456

    PubMed  PubMed Central  Google Scholar 

  • Warner RL, Kleinhofs A (1992) Genetics and molecular biology of nitrate metabolism in higher plants. Physiol Plant 85:245–252

    Article  CAS  Google Scholar 

  • Wei HR, Meng YL, Sun Y et al (2010) Effects of exogenous nitric oxide on high bush blueberry PSII photochemical activity and antioxidant system under high temperature stress. Ying Yong Sheng Tai Xue Bao 21(10):2529–2535

    CAS  PubMed  Google Scholar 

  • Wilkinson JQ, Crawford NM (1993) Identification and characterization of a chlorate resistant mutant of Arabidopsis with mutations in both Nia1 and Nia2 nitrate reductase structural genes. Mol Gen Genet 239:289–297

    CAS  PubMed  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide insight into regulatory, cytotoxic and cytoprotective mechanism in nitric oxide. Free Radic Biol Med 25:434–456

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Chen JQ, Liang J et al (2009) Effects of exogenous NO on ascorbate-glutathione cycle in loquat leaves under low temperature stress. Chin J Appl Ecol 20:1395–1400

    CAS  Google Scholar 

  • Wünsche H, Baldwin IT, Wu J (2011) Silencing NOA1 elevates herbivory-induced jasmonic acid accumulation and compromises most of the carbon-based defense metabolites in Nicotiana attenuata (F). J Integr Plant Biol 53(8):619–631

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Ling T, Han Y et al (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant Cell Environ 31(12):1864–1881

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Mao Y, Lai D et al (2013) Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. J Exp Bot 64(10):3045–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin L, Shuqiu Z, Chenghou L (2003) Involvement of nitric oxide in the signal transduction of salicylic acid regulating stomatal movement. Chin Sci Bull 48:449–452

    Google Scholar 

  • Xin L, Wuliang S, Shuqiu Z et al (2005) Nitric oxide involved in signal transduction of jasmonic acid-induced stomatal closure of Vicia faba L. Chin Sci Bull 50:520–525

    Google Scholar 

  • Xiong J, Zhang L, Fu G et al (2012) Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J Plant Res 125(1):155–164

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yin H, Li Y et al (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154(3):1319–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue L, Li S, Sheng H et al (2007) Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in Cyanobacterium. Curr Microbiol 55(4):294–301

    Article  CAS  PubMed  Google Scholar 

  • Yadu S, Dewangan TL, Chandrakar V et al (2017) Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plants 23(1):43–58

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultanious production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  CAS  PubMed  Google Scholar 

  • Yan LJ, Levine RI, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A 54:11168–11172

    Article  Google Scholar 

  • Yang Q, He H, Li H et al (2011) NOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis and rubisco formation in rice. PLoS One 6(5):20015. https://doi.org/10.1371/journal.pone.0020015. PMCID: PMC3100308

    Article  CAS  Google Scholar 

  • Yang L, Ji J, Harris-Shultz KR (2016) The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress. Front Plant Sci 7:190

    PubMed  PubMed Central  Google Scholar 

  • Ye Y, Li Z, Xing D (2012) Sorting out the role of nitric oxide in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Signal Behav 7(11):1493–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell Environ 36(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Ye YQ, Jin CW, Fan SK et al (2015) Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Sci Rep 5:10746

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin S, Gao Z, Wang C et al (2016) Nitric oxide and reactive oxygen species coordinately regulate the germination of Puccinia striiformis f. sp. tritici urediniospores. Front Microbiol 7:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Sun L, Jin H et al (2012) Lead-induced nitric oxide generation plays a critical role in lead uptake by Pogonatherum crinitum root cells. Plant Cell Physiol 53(10):1728–1736

    Article  CAS  PubMed  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ J 39(1):120–135. https://doi.org/10.1111/pce.12597

    Article  CAS  Google Scholar 

  • Yun BW, Skelly MJ, Yin M et al (2016) Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol 211(2):516–526

    Article  CAS  PubMed  Google Scholar 

  • Zhai L, Xiao D, Sun C et al (2016) Nitric oxide signaling is involved in the response to iron deficiency in the woody plant Malus xiaojinensis. Plant Physiol Biochem 109:515–524

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, An L, Feng H et al (2003) The cascade mechanisms of nitric oxide as a second messenger of ultraviolet B in inhibiting mesocotyl elongations. Photochem Photobiol 77(2):219–225

    Article  CAS  PubMed  Google Scholar 

  • Zhang YK, Cui XM, Yang SX et al (2010) Effects of exogenous nitric oxide on active oxygen metabolism and photosynthetic characteristics of tomato seedlings under cadmium stress. Ying Yong Sheng Tai Xue Bao 21(6):1432–1438

    CAS  PubMed  Google Scholar 

  • Zhang M, Dong JF, Jin HH et al (2011) Ultraviolet-B-induced flavonoid accumulation in Betula pendula leaves is dependent upon nitrate reductase-mediated nitric oxide signaling. Tree Physiol 31(8):798–807

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chen Z, Zhu C (2012) Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings. J Environ Sci 24(5):940–948

    Article  CAS  Google Scholar 

  • Zhang B, Shang S, Jabben Z et al (2014) Sodium chloride alleviates cadmium toxicity by reducing nitric oxide accumulation in tobacco. Ecotoxicol Environ Saf 110:56–60

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat-seedling. Aust J Plant Physiol 28:1050–1061

    Google Scholar 

  • Zhao L, Zhang F, Guo J et al (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134(2):849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Hong H, Chen L et al (2014) LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit. J Agric Food Chem 62(6):1390–1396

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Li S, Zeng K (2016) Exogenous nitric oxide-induced postharvest disease resistance in citrus fruit to Colletotrichum gloeosporioides. J Sci Food Agric 96(2):505–512

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW et al (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239–240:302–307

    Article  PubMed  CAS  Google Scholar 

  • Zimmer-Prados LM, Moreira AS, Magalhaes JR et al (2014) Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species. Physiol Mol Biol Plants 20(3):295–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, Zheng LP, Yuan HY et al (2012) The nitric oxide production and NADPH-diaphorase activity in root tips of Vicia faba L. under copper toxicity. Plant Omics J 5(2):115–121

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, A.K., Rani, A. (2017). Nitric Oxide (NO) and Physio-biochemical Adaptation in Plants Against Stress. In: Shukla, V., Kumar, S., Kumar, N. (eds) Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_15

Download citation

Publish with us

Policies and ethics