Skip to main content
Log in

The beneficial effect of small toxic molecules on dormancy alleviation and germination of apple embryos is due to NO formation

  • Rapid Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Deep dormancy of apple (Malus domestica Borkh.) seeds is terminated by a 3-month-long cold stratification. It is expressed by rapid germination of seeds and undisturbed growth of seedlings. However, stimulation of germination of isolated apple embryos is also observed after applying inhibitors of cytochrome c oxidase: nitric oxide (NO) or hydrogen cyanide (HCN) during the first 3–6 h of imbibition of dormant embryos. The aim of this work was to compare the effect of yet another toxic gaseous molecule carbon monoxide (CO) with the effects of HCN and NO on germination of apple embryos and growth and development of young seedlings. We demonstrated that stimulation of germination after short-term pre-treatment with HCN, NO or CO was accompanied by enhanced NO emission from the embryo axes during their elongation. Moreover, similarly high NO production from non-dormant embryos, after cold stratification, was detected. Therefore, we propose that NO may act as signaling molecule in apple embryo dormancy break.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ABA:

Abscisic acid

CO:

Carbon monoxide

cPTIO:

2-(4-Carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide

HCN:

Hydrogen cyanide

NO:

Nitric oxide

SNP:

Sodium nitroprusside

References

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Liburel IGL, Reinohl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  CAS  PubMed  Google Scholar 

  • Boczkowski J, Poderoso JJ, Motterlini R (2006) CO–metal integration: vital signaling from lethal gas. Trends Biochem Sci 31:614–621

    Article  CAS  PubMed  Google Scholar 

  • Bogatek R, Gniazdowska A (2006) Nitric oxide and HCN reduce deep dormancy of apple seeds. Acta Physiol Plant 28:281–287

    Article  Google Scholar 

  • Bogatek R, Dziewanowska K, Lewak St (1991) Hydrogen cyanide and embryonal dormancy in apple seeds. Physiol Plant 83:417–421

    Article  CAS  Google Scholar 

  • Bogatek R, Cóme D, Corbineau F, Picard M-A, Żarska-Maciejewska B, St Lewak (1999) Sugar metabolism as related to the cyanide-mediated elimination of dormancy in apple embryos. Plant Physiol Biochem 37:577–585

    CAS  Google Scholar 

  • Dekker J, Hargrove M (2002) Weedy adaptation in Setaria spp. V. Effects of gaseous environment on giant foxtail (Setaria farberii) (Poaceae) seed germination. Am J Bot 89:410–416

    Article  CAS  Google Scholar 

  • Eshasi Y, Komatsu H, Ushizawa R, Sakai Y (1982) Breaking of secondary dormancy in cocklebur seeds by cyanide and azide in combination with C2H4 and O2 and their effects on cytochrome and alternative respiratory pathways. Aust J Plant Physiol 9:97–111

    Article  Google Scholar 

  • Giba Z, Grubisic D, Konjevic R (2003) Nitrogen oxides as environmental sensors for seeds. Seed Sci Res 13:187–196

    Article  Google Scholar 

  • Gniazdowska A, Dobrzyńska U, Babańczyk T, Bogatek R (2007) Breaking of apple embryo dormancy by nitric oxide involves stimulation of ethylene production. Planta 225:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Czajkowska K, Bogatek R (2010) Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regul 61:75–84

    Article  CAS  Google Scholar 

  • Guo K, Xia K, Yang Z-M (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 59:3443–3452

    Article  CAS  PubMed  Google Scholar 

  • Hartsfield CL (2002) Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 4:301–307

    Article  CAS  PubMed  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulate seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N, Shen W (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172:544–555

    Article  CAS  Google Scholar 

  • Lombardo MC, Graziano M, Polacco JC, Lamattina L (2006) Nitric oxide functions as positive regulator of root hair development. Plant Signal Behav 1:18–33

    Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138:372–383

    Article  CAS  PubMed  Google Scholar 

  • Muramoto T, Tsurui N, Terry MJ, Yokota A, Kohchi T (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiol 130:1958–1966

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desican R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki H, Chen F, Bradford KJ (2007) Mechanisms and genes involved in germination sensu stricto. In: Bradford KJ, Nonogaki H (eds) Seed development dormancy and germination. Blackwell, Oxford, pp 264–304

    Chapter  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C (2008) Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling pathway. J Exp Bot 59:2241–2251

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 32:1241–1248

    Article  Google Scholar 

  • Roberts EH (1964) The distribution of oxidation-reduction enzymes and the effects of respiratory inhibitors and oxidizing agents on dormancy in rice seed. Physiol Plant 17:14–29

    Article  CAS  Google Scholar 

  • Salomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol 41:225–253

    Article  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398

    Article  CAS  PubMed  Google Scholar 

  • Siegel SM, Renwick G, Rosen LA (1962) Formation of carbon monoxide during seed germination and seedling growth. Science 137:683–684

    Article  CAS  PubMed  Google Scholar 

  • Siegień I, Bogatek R (2006) Cyanide action in plants—from toxic to regulatory. Acta Physiol Plant 28:483–497

    Article  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    Article  CAS  Google Scholar 

  • Song XG, She XP, Zhang B (2008) Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. Physiol Plant 132:514–525

    Article  CAS  PubMed  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Sa ZS, Cao ZY, Xuan W, Huang BK, Ling TF, Hu Q-Y, Shen W-B (2006) Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity. J Int Plant Biol 48:1168–1176

    Article  CAS  Google Scholar 

  • Xuan W, Huang LQ, Li M, Huang BK, Xu S, Liu H, Gao Y, Shen WB (2007) Induction of root elongation in wheat root segments by heme molecules: a regulatory role of carbon monoxide in plants? Plant Growth Regul 52:41–51

    Article  CAS  Google Scholar 

  • Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148:881–893

    Article  CAS  PubMed  Google Scholar 

  • Yip WK, Yang SF (1988) Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol 88:473–476

    Article  CAS  PubMed  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen V, Jorgensen B, Naumann CM, Moller BL (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65:293–306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by Ministry of Science and Higher Education of Poland, Grant No. N N303 0905 34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Gniazdowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gniazdowska, A., Krasuska, U., Dębska, K. et al. The beneficial effect of small toxic molecules on dormancy alleviation and germination of apple embryos is due to NO formation. Planta 232, 999–1005 (2010). https://doi.org/10.1007/s00425-010-1214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1214-x

Keywords

Navigation