Skip to main content

Legume, Microbiome, and Regulatory Functions of miRNAs in Systematic Regulation of Symbiosis

  • Chapter
  • First Online:
Plant Microbiome: Stress Response

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 5))

Abstract

Legumes represent the most-valued food after cereals for humans and animals. They are grown extensively in the dry/semiarid tropics worldwide, mostly under rainfed conditions. Legumes have the potential to establish symbiotic relationships with both rhizobial bacteria and arbuscular mycorrhizal fungi (AMF). This cooperation leads to atmospheric nitrogen fixation in nodules and phosphorus in arbuscules. Recent advances in high-throughput sequencing and other molecular technologies have provided opportunities to study the molecular basis of symbiosis in legumes. Several important components of the gene networks involved in legume symbiosis have been identified, including microRNAs (miRNAs), which have emerged as key players in gene expression, developmental processes, and stress in legumes. To date, a plethora of conserved and legume-specific miRNAs have been reported that are associated with symbiotic interactions by experimental and bioinformatic approaches. In this chapter, we combine data from published literature—especially genomic and deep sequencing data on miRNAs involved in symbiosis, biological nitrogen fixation, and phosphorus availability through nodules and arbuscules—to address the specificity functions of miRNA in establishing symbiosis in legumes. Furthermore, we highlight the interaction of the legume microbiome and miRNA in particular, establishing symbiosis for environmentally sustainable agriculture and increased global crop productivity. However, due to the complex nature of xxx, a concerted effort is required to fully understand the roles of miRNAs in the development of symbiosis in legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abel S, Tocconi CA, Delatorre CA (2002) Phosphate sensing in higher plants. Physiol Plant 115:1–8

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellins-regulated microRNA. Development 13:3357–3365

    Article  CAS  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JA, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Alves L Jr, Niemeier S, Hauenschild A, Rehsmeier M, Merkle T (2009) Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Res 37:4010–4021

    Article  PubMed  CAS  Google Scholar 

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  • Arrese-Igor C, Gonzalez EM, Marino D, Ladrera R, Larrainzer E, Gil-Quintana E (2011) Physiological response of legume nodules to drought. Plant Stress 5(1):24–31

    Google Scholar 

  • Ashraf MY, Ashraf M, Arshad M (2010) Major nutrient supply in legume crops under stress environments. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 155–170

    Chapter  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) PHO2, a phosphate over accumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek D, Kim MC, Chun HJ, Kang S, Park HC, Shin G, Park J, Shen M, Hong H, Kim WY, Kim DH, Lee SY, Bressan RA, Bohnert HJ, Yun DJ (2013) Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol 161:362–373

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, Siram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome-wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics 13:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari R, Pant B, Stitt M, Scheible WR (2006) microRNA399 and PHR1 define a phosphate-signalling pathway in plants. Plant Physiol 141:988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker D, Bianchi S, Blondon F, Dattee Y, Duc G, Essad S, Flament T, Gallusci T, Genier G, Guy P, Muel X, Tourner J, Denarie J, Huguet T (1990) Medicago truncatula: a model plant for studying the molecular genetics of the rhizobium-legume symbiosis. Plant Mol Biol Report 8:40–49

    Article  CAS  Google Scholar 

  • Barrera-Figuero BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescence of rice. MBC Plant Biol 12:132

    Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barros-Carvalho GA, Paschoal AR, Marcelino-Guimaraes FC, Hungria M (2014) Prediction of potential novel microRNAs in soybean when in symbiosis. Genet Mol Res 13:8519–8529

    Article  CAS  PubMed  Google Scholar 

  • Bayuelo-Jimenez JS, Craig R, Lynch JP (2002) Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Sci 42:1584–1594

    Article  Google Scholar 

  • Bazin J, Bustos-Sanmamed P, Hartmann C, Lelandais-Brière C, Crespi M (2012) Complexity of miRNA-dependent regulation in root symbiosis. Philos Trans R Soc B 367:1570–1579

    Article  CAS  Google Scholar 

  • Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Brière C (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74:920–934

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Fruqier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887

    Article  CAS  PubMed  Google Scholar 

  • Branschied A, Sieh D, Pant BD, May P, Devers EA, Elkrog A (2010) Expression pattern suggests role of miR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant-Microbe Interact 23:915–926

    Article  CAS  Google Scholar 

  • Brechenmacher L, Lei ZT, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153:1808–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brechenmacher L, Nguyen THN, Hixson K, Libault M, Aldrich J, Pasa-Tolic L, Stacey G (2012) Identification of soybean proteins from a single cell type: the root hair. Proteomics 12:3365–3373

    Article  CAS  PubMed  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  CAS  PubMed  Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses and systemic mobility. BMC Plant Biol 10:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver L, van Themaat Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bustos-Sanmamed P, Bazin J, Hartmann C, Crespi M, Lelandais-Brière C (2013) Small Bustos-Sanmamed P, Bazin J, Hartmann C, Crespi M, Lelasdais-Brierre C (2013) small RNA pathways and diversity in model legumes: lessons from genomics. Front Plant Sci 4:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Lu Y, Xie W, Zhu T, Lian X (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747

    Article  CAS  PubMed  Google Scholar 

  • Capoen W, Sun J, Wysham D, Otegui MS, Venkateshwaran M, Hirsch S, Miwa H, Downie JA, Morris RJ, Ané JM, Oldroyd GE (2011) Nuclear membranes control symbiotic calcium signaling of legumes. Proc Natl Acad Sci U S A 108:14348–14353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2005) microRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Lohuis D, Goldbach R, Prins M (2004) High frequency induction of RNA-mediated resistance against cucumber mosaic virus using inverted repeat constructs. Mol Breed 14:215–226

    Article  Google Scholar 

  • Chen C, Tao C, Peng H, Ding Y (2007a) Genetic analysis of salt stress responses in Asparagus bean {(Vigna unguiculata L.) ssp. Sesquipedalis Verds.}. J Hered 98:655–665

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Nimmo GA, Jenkins G, Nimmo HG (2007b) BHLH32 modulates several biochemical and morphological process that respond to Pi starvation in Arabidopsis. Biochem J 405:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YF, Wang Y, Wu WH (2008) Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J Integr Plant Biol 50:835–848

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Hu Z, Zhang H (2009) Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol 51:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012a) Identification of aluminium-responsive microRNAs in Medicago truncatula by genome-wide high throughput sequencing. Planta 235:375–386

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang T, Zhao M, Zhang W (2012b) Ethylene-responsive microRNAs in roots of Medicago truncatula identified by high throughput sequencing at whole genome level. Plant Sci 184:14–19

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Hass BJ, Goldberg SMD, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 life sciences technology. BMC Genomics 7:272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiou TJ (2007) The role of microRNA in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNAs in Arabidopsis. Plant Cell 18:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitwood DH, Timmermans MCP (2010) Small RNAs are on the move. Nature 467:415–419

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Candela H, Hake S (2009) Big impact by small RNAs in plant development. Curr Opin Plant Biol 12:81–86

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Zhang B (2012) MicroRNAs: key gene regulators with versatile functions. Plant Mol Biol 80:1

    Article  CAS  PubMed  Google Scholar 

  • Combier JP, Frugier F, De Billy F, Boualem A, El-Yahyaoui F, Moreau S, Verni ET, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook DR (1999) Medicago truncatula-a model in the making. Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a system biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • De Luis A, Markmann K, Cognat V, Holt BD, Charpentier M, Parniske M, Stouggard J, Voinnet O (2012a) Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. Plant Physiol 160:2137–2154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Luis A, Markmann K, Cognat V, Holt DB, Charpentier M, Parniske M, Stougaard J, Voinnet O (2012b) Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. Plant Physiol 160:2137–2154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deschamps S, Campbell MA (2010) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25:553–570

    Article  CAS  Google Scholar 

  • Devaiah B, Karthikeyan AS, Ragothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devers EA, Branschield A, May P, Krajinski F (2011) Stars and symbiosis: microRNA and microRNA*-mediated transcript cleavage involved in Arbuscular mycorrhizal symbiosis. Plant Physiol 156:1990–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devers EA, Teply J, Reinert A, Gaude N, Krajinski F (2013) An endogenous artificial microRNA system for unravelling the function of root endosymbiosis related genes in Medicago truncatela. BMC Plant Biol 13:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Annals Bot 103:29–38

    Article  CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62:3563–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong QH, Han J, Yu HP, Wang C, Zhao MZ, Liu H, Ge AJ, Fang JG (2012) Computational identification of microRNAs in strawberry expressed sequence tags and validation of their precise sequences by miR-RACE. J Hered 103:268–277

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Shi L, Wang Y, Chen L, Cai Z, Wang Y, Jin J, Li X (2013) Identification and dynamic regulation of microRNAs involved in salt stress responses in functional soybean nodules by high throughput sequencing. Int J Mol Sci 14:2717–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan CG, Wang CH, Guo HS (2006) Regulation of microRNA on plant development and viral infection. Chin Sci Bull 51:269–278

    Article  CAS  Google Scholar 

  • Eldem V, Celikkol-Akcay U, Ozhuner E, Bakr Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high throughput deep sequencing. PLoS One 7:e50298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Enany AE, Al-Anazi AD, Dief N, Taisan WA (2013) Role of antioxidant enzymes in amelioration of water deficit and water logging stresses on Vigna sinensis plants. J Biol Earth Sci 3:B144–B153

    Google Scholar 

  • Fahlgren L, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferdous J, Hussain SS, Shi BJ (2015) Role of microRNAs in plant drought tolerance. Plant Biotech J 13:293–305

    Article  CAS  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Intgr Plant Biol 52:61–76

    Article  CAS  Google Scholar 

  • Findley S, Joshi T, Qiu L, Sherrier DJ, Ji T, Meyers BC, Xu D, Stacey G (2016) Identification and functional characterization of soybean root hair microRNAs expressed in response to Bradyrhizobium japonicum infection. Plant Biotechnol J 14:1–10

    Article  Google Scholar 

  • Formey D, Sallet E, Lelandais-Brière C, Ben C, Bustos-Sanmamed P, Niebel A, Frugier F, Combier JP, Debellé F, Hartmann C, Poulain J, Gavory F, Wincker P, Roux C, Gentzbittel L, Gouzy J, Crespi M (2014) The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biol 15:457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Formey D, Iñiguez LP, Peláez P, Li YF, Sunkar R, Sánchez F, Reyes JL, Hernández G (2015) Genome-wide identification of the Phaseolus vulgaris sRNAome using small RNA and degradome sequencing. BMC Genomics 16:423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Formey D, Martin-Rodriguez JA, Leija A, Santana O, Quinto C, Cardenas L, Hernandez G (2016) Regulation of small RNAs and corresponding targets in Nod factor-induced Phaseolus vulgaris root hair cells. Int J Mol Sci 17:887

    Article  PubMed Central  CAS  Google Scholar 

  • Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007a) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007b) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Frank S, Tiemeyer B, Gelbrecht J, Freibauer A (2014) High soil solution carbon and nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 years of rewetting. Biogeosciences 11:2309–2324

    Article  CAS  Google Scholar 

  • Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DG, Stewart CN Jr, Tang Y, Wang ZY (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10:443–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuji H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  Google Scholar 

  • Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 30 UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011) DE novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci U S A 105:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbato E (2015) Recent developments in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 26:1–7

    Article  PubMed  Google Scholar 

  • Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, Mysore KS, Dénarié J, Schultze M, Oldroyd GE (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Beatty PH (2011) Fertilizing nature: a tradegy of excess in thecommons. PLoS Biol 9:e1001124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints for greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:109–111

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo WB, Zhang LN, Zhao J, Liao H, Zhuang CX, Yan XL (2008) Identification of temporally and spatially phosphate-starvation responsive genes in Glycine max. Plant Sci 175:574–584

    Article  CAS  Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P (2013a) A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions. DNA Res 20:109–125

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg M, Shi BJ, Gustafson P, Langridge P (2013b) Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol 13:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haensch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259266

    Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonica, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He H, Liang G, Li Y, Wang F, Yu D (2014) Two young microRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. Plant Physiol 164:853–865

    Article  CAS  PubMed  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kupada H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavikishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook RD, May GD, Varshney RK (2011) Large scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, Tseng CY, Lin WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C (2011) LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol 156:1101–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SS, Shi B (2014) Role of miRNAs in abiotic and biotic stresses in plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance, Biological techniques, vol 1. Elsevier, USA, pp 181–207

    Chapter  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011a) Polyamines: natural and engineered abiotic stress tolerance in plants. Biotechnol Adv 29:300–3111

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011b) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Shi B (2015) MiRNA mediated regulatory functions under abiotic stresses in legumes. In: Ahmad P, Azoozor M (eds) Legumes under environmental stress: yield, improvement and adaptation. Wiley, UK, pp 231–245

    Chapter  Google Scholar 

  • Hussain SS, Asif MA, Sornaraj P, Ali M, Shi BJ (2016) Towards integration of system based approach for understanding drought stress in plants. In: Ahmad P, Rasool S (eds) Water stress and crop plants: a sustainable approach. Elsevier, USA, pp 227–247

    Chapter  Google Scholar 

  • Iantecheva A, Mysore KS, Ratet P (2013) Transformation of leguminous plants to study symbiotic interactions. Int J Dev Biol 57:577–586

    Article  CAS  Google Scholar 

  • Jagadeeswaran G, Zhang Y, Li YF, Shukla LI, Matts J, Hoyt P, Macmil SL, Wiley GB, Roe BA, Zhang W, Sunkar R (2009) Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume specific miRNA families. New Phytol 184:85–98

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Wang WX, REN L, Chen QJ, Mendu V (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71:51–59

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Jogaiah S, Govind SR, Tran LSP (2012) Systems biology-based approaches towards understanding drought tolerance in food crops. Crit Rev Biotech 33:23–39

    Article  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel DP (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Joshi T, Yan Z, Libault M, Jeong DH, Park S, Green PJ, Sherier DJ, Farmer A, May G, Meyers BC, Xu D, Stacey G (2010) Prediction of novel miRNAs and associated target genes in Glycine max. BMC Bioinformatics 1:S14

    Article  CAS  Google Scholar 

  • Jovat H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants:recent development and application for crop improvement. Front Plant Sci 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Kant S, Peng M, Rothstein SJ (2011) Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kehr J (2012a) Roles of miRNAs in nutrient signaling and homeostasis. In: Sunkar R (ed) MicroRNAs in plant development and stress responses, signaling and communication in plants. Springer, Berlin, pp 197–217

    Chapter  Google Scholar 

  • Kehr J (2012b) Long-distance signaling by small RNAs through the phloem. In: Kragler F, Huelskamp M (eds) Short and long distance signaling, Advances in plant biology series. Springer, New York, p 131149

    Google Scholar 

  • Kehr J (2013) Systemic regulation of mineral homeostasis by microRNAs. Front Plant Sci 4:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Kereszt A, Mergaert P, Kondorosi E (2011) Bacterioid development in legume nodules: evolution of mutual benefits or of sacrificial victims? Mol Plant-Microbe Interact 24:1300–1309

    Article  CAS  PubMed  Google Scholar 

  • Khan GA, Declerck M, Sorin C, Hartmann C, Crespi M, Leladais-Briere C (2011) MicroRNAs as regulators root development and architecture. Plant Mol Biol 77:47–58

    Article  CAS  PubMed  Google Scholar 

  • Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H (2014) Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot 65:871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochem Biophys Acta 1819:137–148

    CAS  PubMed  Google Scholar 

  • Kim B, Yu HJ, Park SG, Shin JY, Oh M, Kim N, Mun JH (2012) Identification and profiling of novel microRNAs in the Brassica rapa genome based of small RNA deep sequencing. BMC Plant Biol 12:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65:6123–6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B, Kramer R, Bohra A, Weeks NT, Crow JA, Tuteja R, Shah T, Dutta S, Gupta DK, Singh A, Gaikwad K, Sharma TR, May GD, Singh NK, Varshney RK (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using Sanger and second generation sequencing platforms. Mol Plant 5:1020–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimaraes FC, Abdelnoor RV, Nascimento LC, Carazolle MF, Pereira GAG, Margis R (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo HF, Chiou TJ (2011) The role of microRNAs in phosphorus deficiency signaling. Plant Physiol 156:1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamblin AF, Crow JA, Johnson JE, Silverstein KA, Kunau TM, Kilian A, Benz D, Stromvik M, Endré G, VandenBosch KA, Cook DR, Young ND, Retzel EF (2003) MtDB: a database for personalized data mining of the model legume Medicago truncatula transcriptome. Nucleic Acids Res 31:196–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laporte P, Lepage A, Fournier J, Catrice O, Moreau S, Jardinaud MF, Mun JH, Larrainzar E, Cook DR, Gamas P, Niebel A (2014) The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection. J Exp Bot 65:481–494

    Article  CAS  PubMed  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  • Lauressergues D, Delaux PM, Formey D, Leladaid-Briere C, Fort S, Cottaz S, Becard G, Niebel A, Roux C, Combier JP (2012) The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72:512–522

    Article  CAS  PubMed  Google Scholar 

  • Leladais-Briere C, Moreau J, Hartmann C, Crespi M (2016) Noncoding RNAs, emerging regulators in root endosymbioses. Mole Plant-Microbe Interact 29:170–180

    Article  CAS  Google Scholar 

  • Lelandais-Briere C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21:2780–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelandais-Briere C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (2010) Small RBA diversity in plants and its impact in development. Curr Genomics 11:14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Deng Y, Wu T, Subramaniun S, Yu O (2010) Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol 153:1759–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Dong Y, Wang Y, Yang J, Liu X (2011) Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol 11:170–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L, Lu Y, Shi J (2012) Deep sequencing and microarray hybridization identify conserved and species specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS One 7:e43451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Duan H, Li H, Deng XW, Yin W, Xia X (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539

    Article  CAS  PubMed  Google Scholar 

  • Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057

    CAS  PubMed  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7:e48951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang L, Li Y, He H, Wang F, Yu D (2013) Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya. Planta 238:739–752

    Article  CAS  PubMed  Google Scholar 

  • Libault M, Brechenmacher L, Cheng J, Xu D, Stacey G (2010a) Root hair systems biology. Trends Plant Sci 15:641–650

    Article  CAS  PubMed  Google Scholar 

  • Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G (2010b) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analysis in plants. Plant J 63:86–99

    CAS  PubMed  Google Scholar 

  • Lima JC, Arenhart RA, Margis-Pinheiro M (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Lai ZX (2013) Comparative analysis reveals dynamic changes in miRNA and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour.) PLoS One 8:e60337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SI, Santi C, Jobet E, Lacut E, Kholti NE, Karlowski WM, Verdeil JL, Breitler JC, Perin C, Ko SS, Guiderdoni E, Chiou TJ, Echeverria M (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119–2131

    Article  CAS  PubMed  Google Scholar 

  • Lin WY, Huang TK, Chiou TJ (2013) NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25:4061–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JQ, Allan DL, Vance CP (2010) Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399. Mol Plant 3:428–437

    Article  CAS  PubMed  Google Scholar 

  • Liu TY, Huang TK, Tseng CY, Lai YS, Lin SI, Lin WY, Chen JW, Chiou TJ (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24:2168–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Lin W, Huang T, Chiou T (2014) MicroRNA-mediated surveillance of phosphate transporters on the move. Trends Plant Sci 19:647–655

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Arredondo DL, Leyva-Gonzalez MA, Gonzalez-Morales SI, Lopez-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Yang X (2010) Computational identification of novel microRNAs and their targets in Vigna unguiculate. Comp Func Genomics Article # 128297

    Google Scholar 

  • Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117

    Article  PubMed  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundmark M, Korner CJ, Nielsen TH (2010) Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays. Physiol Plant 140:57–68

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:31–36

    Article  CAS  Google Scholar 

  • Mantri N, Basker N, Ford R, Pang E, Pardeshi V (2013) The role of micro-ribonucleic acids in legumes with a focus on abiotic stress response. Plant Genome 6:1–14

    Article  CAS  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res 2013:248078

    Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, Wu P, Chen M (2009) Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant. Planta 230:883–898

    Article  CAS  PubMed  Google Scholar 

  • Meng YJ, Ma XX, Chen DJ, Wu P, Chen M (2010) Micro RNA mediated signaling involved in plant root development. Biochem Biophys Res Commun 393:345–349

    Article  CAS  PubMed  Google Scholar 

  • Mica E, Piccolo V, Delledonnne M, Ferrarini A, Pezzotti M, Casati C, Del Fabbro C, Valle G, Policriti A, Morgante M, Pesole G, Pe ME, Horner DS (2009) High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics 10:558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Udasel B, Czechowski T, Urvardi MK, Stitt M, Scheible WR (2007) Genome-wide, reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    Article  CAS  PubMed  Google Scholar 

  • Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    Article  CAS  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29

    Article  CAS  Google Scholar 

  • Nageshbabu R, Jyothi MN (2013) Profile of small interfering RNAs from French bean Phyaeolus vulgaris under abiotic stress conditions. Int J Pharm Bio Sci 4B:176–185

    Google Scholar 

  • Nageshbabu R, Jyothi MN, Sharadamma N, Sarika S, Rai DV, Devaraj VR (2013) Expression of miRNAs regulates growth and development of French bean (Physeolus vulgaris) under salt and drought stress conditions. Int Res J Boil Sci 2:52–56

    Google Scholar 

  • Nath M, Tuteja N (2016) NPKS, sensing, and signalling and miRNAs in plant nutrient stress. Protoplasma 253:767–786

    Article  CAS  PubMed  Google Scholar 

  • Naya L, Paul S, Valdez-Lopez O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Reyes JL, Hernandez G (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS ONE 9:e84416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen GN, Rothstein SJ, Spangenberg G, Surya K (2015) Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Front Plant Sci 6:629

    PubMed  PubMed Central  Google Scholar 

  • Nilsson L, Mueller R, Nielson TH (2007) Increased expression of the MYB-related transcription factor PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    Article  CAS  PubMed  Google Scholar 

  • Nogueira FT, Sarkar AK, Chitwood DH, Timmermanns MC (2006) Organ polarity in plants is specified through the opposing activity of two distinct small regulatory RNAs. Cold Spring Harbor Sym Quan Biol 71:157–164

    Article  CAS  Google Scholar 

  • Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC (2009) Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 5:e1000320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohkama-Ohtsu N, Wasaki J (2010) Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology, and soil microorganisms. Plant Cell Physiol 51:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15:354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GE (2005) Sequencing the model legume Medicago truncatula. Grain Legumes 41:23

    Google Scholar 

  • Oldroyd GE (2013) Speak, friend and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, Boke H, Unver T (2013) Boron stress responsive microRNAs and their targets in barley. PLoS One 8:e59543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S (2014) A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS ONE 9:e95800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:31–38

    Article  CAS  Google Scholar 

  • Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci 102:3691–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BS, Seo JS, Chua NH (2014) NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. Plant Cell 26:454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tiss Organ Cult 105:233–242

    Article  CAS  Google Scholar 

  • Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206

    Article  CAS  Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, Yang ZM (2007) Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene 395:49–61

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh V, Admane N, Hussain SM (2013) Small RNAs landscape (sRNAome) of soybean (Glycine max L.): biogenesis, vital functions and potential applications. Plant Knowledge J 2:24–37

    Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes JL, Chau NH (2007) ABA induction of miR 159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Rich MK, Schorderet M, Bapaume L, Falquet L, Morel P, Vandenbussche M, Reinhardt D (2015) The petunia GRAS transcription factor ATA/RAM1 regulates symbiotic gene expression and fungal morphogenesis in Arbuscular mycorrhiza. Plant Physiol 168:788–797

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    Article  CAS  PubMed  Google Scholar 

  • Schaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217

    Article  CAS  Google Scholar 

  • Scheible WR, Pant B, Musialak-Lange M, Nuc P (2011) Nutrient-responsive plant microRNAs. In: Erdmann VA, Barciszewski J (eds) Non coding RNAs in plants. Springer, Berlin, pp 313–337

    Chapter  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schreiber AW, Shi BJ, Huang CY, Langridge P, Baumann U (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 12:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Sha A, Chen Y, Ba H, Shan Z, Zhang X, Wu X, Qiu D, Chen S, Zhou X (2012) Identification of Glycine max microRNAs in response to phosphorus deficiency. J Plant Biol 55:268–280

    Article  CAS  Google Scholar 

  • Shikata M, Yamaguchi H, Sasaki K, Ohtsubo N (2012) Overexpression of Arabidopsis miR157b induces bushy architecture and delayed phase transition in Torenia fournieri. Planta 236:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Shrama HC, Srivastava CP, Durairaj C, Gowda CLL (2010) Pest management in grain legumes and climate change. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 115–140

    Chapter  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought responsive and novel Populus trichocarpa microRNAs by high throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress responses. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  • Simon SA, Meyers BC, Sherrier DJ (2009) MicroRNAs in rhizobia legume symbiosis. Plant Physiol 151:1002–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha S, Srinivasan R, Mandal PK (2015) MicroRNA-based approach to improve nitrogen use efficiency in crop plants. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 221–235

    Chapter  Google Scholar 

  • Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS (2011) Identification of microRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 11:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyano T, Kouchi H, Hirota A, Hayashi M (2013) Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 9:e1003352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanudakis E, Jackson S (2014) The role of microRNAs in the control of flowering time. J Exp Bot 65:365–380

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2008) Novel and nodulation regulated microRNAs in soybean roots. MBC Genomics 9:160

    Article  CAS  Google Scholar 

  • Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004a) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2004b) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Suzaki T, Ito M, Kawaguchi M (2013) Genetic basis of cytokinin and auxin functions during root nodule development. Front Plant Sci 4:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Szittya G, Moxon S, Santos DS, Jing R, Fevereiro MPS, Moulton V, Dalmay T (2008) High throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M (2013) CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate Arbuscular mycorrhiza development. Plant Cell Physiol 54:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Thompson R, Ratet P, Kuster H (2005) Identification of gene functions by applying TILLING and insertional mutagenesis strategies on microarray based expression data. Grain Legumes 41:20–22

    Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Aronsson AC (2017) Perspectives and challenges of microbe application for crop improvement. Front Plant Sci 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Trevisan S, Nonis A, Begheldo M, Manoli A, Palme K, Caporale G, Ruperti B, Quaggiotti S (2012) Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Plant Cell Environ 35:1137–1155

    Article  CAS  PubMed  Google Scholar 

  • Trindale I, Capitao C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Plant 231:705–716

    Article  CAS  Google Scholar 

  • Turner M, Yu O, Subramanian S (2012) Genome organization and characteristics of soybean microRNAs. BMC Genom 13:169

    Article  CAS  Google Scholar 

  • Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam S, Yu O, Subramaniun S (2013) Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol 162:2042–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urvardi MK, Scheible WR (2005) GRAS genes and the symbiotic green revolution. Science 308:1749–1750

    Article  CAS  Google Scholar 

  • Valdes-Lopez O, Hernandez G (2008) Transcriptional regulation and signaling in phosphorus starvation: what about legumes? J Integr Plant Biol 10:1213–1222

    Article  CAS  Google Scholar 

  • Valdes-Lopez O, Arena-Huertero C, Ramirez M, Girard L, Sanchez F, Vance CP, Reyes JL, Hernandez G (2008) Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signaling in common bean roots. Plant Cell Environ 31:1834–1843

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Lopez O, Yang S, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernandez G (2010) MicroRNA expression profiles in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818

    Article  CAS  PubMed  Google Scholar 

  • Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: from physiology to genomic and beyond. Annual Plant Rev 42:207–248

    CAS  Google Scholar 

  • Vance CP, Udhe-Stone C, Allen DI (2003) Phosphorus acquisition and use: critical adaptation by plants for securing a non-renewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM (2010) Characterization of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. BMC Plant Biol 10:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata Tuteja AR, Penmetsa AV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Garcia NC, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nusrulhaq BA (2016) Role of plant growth-promoting rhizobacteria in agricultural sustainability: a review. Molecules:21–573

    Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA (2010) Nitrate-responsive miR393/ABF3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:4477–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal EA, Moyano TC, Riveras E, Contreras-López O, Gutiérrez RA (2013) Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots. Proc Natl Acad Sci U S A 110:12840–12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal EA, Moyano TC, Canales J, Gutiérrez RA (2014) Nitrogen control of developmental phase transitions in Arabidopsis thaliana. J Exp Bot 65:5611–5618

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Torres M, Ganapathy A, Thelen J, Dague BB, Mooney B, Xu D, Stacey G (2005) Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Mol Plant-Microbe Interact 18:458–467

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Long L (2010) Identification and isolation of the cold-resistance related miRNAs in Pisum sativum Linn. Liaoning 2:231–236

    Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li P, Cao X, Wang X, Zhang A, Li X (2009) Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun 378:799–803

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Chen L, Zhao M, Tian Q, Zhang WH (2011a) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high throughput sequencing. BMC Genomics 12:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli Y, Vaucheret H, Ding SW (2011b) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Han J, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J (2012) Identification of microRNAs from Amur grapes (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 13:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang C, Hao Q, Sha A, Zhou R, Zhou X, Yuan L (2013) Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes. PLoS One 8:e67423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmann MR, Poethig RS (2005) Time to grow up: the temporal role of small RNAs in plants. Curr Opin Plant Biol 8:548–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CE, Zhao YT, Wang XJ, Croft L, Wang ZH, Haerizadeh F, Mattick JS, Singh MB, Carroll BJ, Bhalla PL (2011) MicroRNAs in the shoot apical meristem of soybean. J Exp Bot 62:2495–2506

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Wu Y, Liu CC, Liu LW, Ma FF, Wu XY, Wu M, Hang YY, Chen JQ, Shao ZQ, Wang B (2016) Identification of arbuscular mycorrhiza (AM)-responsive microRNAs in tomato. Front Plant Sci 7:429

    PubMed  PubMed Central  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Xhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNA and targets in Brassica napus. FEBS Lett 58:1464–1474

    Article  CAS  Google Scholar 

  • Xie F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232:417–434

    Article  CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.) BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing S, Salinas M, Höhmann S, Berndtgen R, Huijser P (2010) MiR156-targeted and non targeted SBP-Box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22:3935–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 6:e28009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Liu Q, Chen L, Kuang J, Walk T, Wang J, Hong L (2013) Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genom 14:66

    Article  CAS  Google Scholar 

  • Xue L, Cui H, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi A, Abe M (2012) Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J Plant Res 125:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Hossain MS, Wang J, Valdés-López O, Liang Y, Libault M, Qiu L, Stacey G (2013) miR172 regulates soybean nodulation. Mol Plant-Microbe Interact 26:1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wang H, Hamera S, Chen X, Fang R (2014) MiR444a has multiple functions in the rice nitrate-signaling pathway. Plant J 78:44–55

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Hossain MS, Arikit S, Valdés-López O, Zhai J, Wang J, Libault M, Ji T, Qiu L, Meyers BC, Stacey G (2015) Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. New Phytol 207:748–759

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Hossain MS, Valdés-López O, Hoang NT, Zhai J, Wang J, Libault M, Brechenmacher L, Findley S, Joshi T, Qiu L, Sherrier DJ, Ji T, Meyers BC, Xu D, Stacey G (2016) Identification and functional characterization of soybean root hair microRNAs expressed in response to Bradyrhizobium japonicum infection. Plant Biotechnol J 14:332–341

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Xue L (2007) Functional diversity of miRNAs in plants. Plant Sci 172:423–432

    Article  CAS  Google Scholar 

  • Yanik H, Turktas M, Dundar E, Hernendez P, Dorado G, Unver T (2013) Genome wide identification of alternative bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.) BMC Plant Biol 13:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A 105:20540–20545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.) Genome Biol 8:R96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Debelle F, GED O, Geurts R, Cannon SB, Udvardi M, Benedito VA, KFX M, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannag M, Cheung F, Mita SD, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Berges H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, Gonzalez AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jocker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Florent Prion F, Qin B, Qu C, Retzell EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Scarpelli SC, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DJ, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Denarie J, Dixon RA, May GD, Schwartz DC, Rogers J, Quetier F, Town CD, Roe BA (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Song C, Jia Q, Wang C, Li F, Nicholas KK, Zhang X, Fang J (2011) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Plant Physiol 141:56–70

    Article  CAS  Google Scholar 

  • Yuan H, Liu D (2008) Signaling components involved in plant responses to phosphate starvation. J Integr Plant Biol 50:849–859

    Article  CAS  PubMed  Google Scholar 

  • Zeng HQ, Zhu YY, Huang SQ, Yang ZM (2010) Analysis of phosphorus deficient responsive microRNAs and cis-elements from soybean (Glycine max L.) J Plant Physiol 167:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Wang G, Hu X, Wang H, Du L, Zhu Y (2014) Role of microRNAs in plant responses to nutrient stress. Plant Soil 374:1005–1021

    Article  CAS  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and associated target genes. Planta 229:161–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L (2012) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657

    Article  CAS  PubMed  Google Scholar 

  • Zhang LW, Song JB, Shu XX, Zhang Y, Yang ZM (2013) miR395 is involved in detoxification of cadmium in Brassica napus. J Hazard Mater 250-251:204–211

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, KimYJ DT, Chen X (2007) MiR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristem. Plant J 51:840–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Seep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.) BMC Plant Biol 10:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao M, Ding H, Zhu JK, Zhang F, Li XW (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li WX (2012) Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One 7:e29669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Xu Z, Mo Q, Zou C, Li W, Xu Y, Xie C (2013) Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Ann Bot 112:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu J, Zhang W (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. BBA-Gene Regul Mech 1779:780–788

    CAS  Google Scholar 

  • Zhou LG, Liu YH, Liu ZC, Kong DY, Duan M, Luo LJ (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012a) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012b) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their different regulation by heavy metal. Plant Cell Environ 35:86–99

    Article  PubMed  Google Scholar 

  • Zhu H, Choi H, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YY, Zeng HQ, Dong CX, Yin XM, Shen QR, Yang ZM (2010) microRNA expression profiles associated with phosphorus deficiency in white lupin (Lupinus albus L.) Plant Sci 178:23–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Sarfraz Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S.S., Hussain, M., Irfan, M., Siddique, K.H.M. (2018). Legume, Microbiome, and Regulatory Functions of miRNAs in Systematic Regulation of Symbiosis. In: Egamberdieva, D., Ahmad, P. (eds) Plant Microbiome: Stress Response. Microorganisms for Sustainability, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-5514-0_12

Download citation

Publish with us

Policies and ethics