Skip to main content

Algae as Source of Pharmaceuticals

  • Chapter
  • First Online:
Prospects and Challenges in Algal Biotechnology

Abstract

Pharmaceuticals or pharmaceutical products are medicinal drugs—of proven safety, effectiveness and high quality, which are prescribed and intended to rational dosage. In general, most of the pharmacologically active compounds were isolated from microorganisms and plants, drug-resistance and identification of new disease entities have imposed to select both new sources and application areas of drug components. There is a broad range of health disorders—including cancer, allergy, diabetes, neurodegenerative diseases and inflammation, against which algae have been widely used. Medicinal application of algae depends on the biochemical diversity which is affected by a number of factors, including location, season, grazing pressure, salinity, water motion, temperature, light climate, biomass density and nutrient availability. Despite algae variability, main groups of compounds—such as polysaccharides, pigments, terpenoids, alkaloids, polyphenols, peptides and polyunsaturated fatty acids—showing pharmaceutical activity are indicated. Algae constitute an abundant source of bioactive compounds which have a great potential to be used as pharmaceuticals. Currently, the growing interest is put on the application of different algal compounds in the civilization diseases treatment and the market for pharmaceuticals based on compounds of natural origin is growing worldwide. The still untapped reservoir of chemically active compounds and potential in the field of pharmaceuticals imply a requirement of increased screening of algae for healthcare chemicals and the isolation methods development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apostolidis E, Lee CM (2011) Brown seaweed‐derived phenolic phytochemicals and their biological activities for functional food ingredients with focus on Ascophyllum nodosum. In: Kim SK (ed) Handbook of marine macroalgae: biotechnology and applied phycology, 1st edn. Wiley-Blackwell, Wiley, Chichester, pp 356–370

    Google Scholar 

  • Asada M, Sugie M, Inoue M et al (1997) Inhibitory effect of alginic acids on hyaluronidase and on histamine release from mast cells. Biosci Biotechnol Biochem 61(6):1030–1032

    Article  CAS  PubMed  Google Scholar 

  • Baker JT (1984) Seaweeds in pharmaceutical studies and applications. Hydrobiologia 116/117(1):29–40

    Google Scholar 

  • Barbosa M, Valentão P, Andrade PB (2014) Bioactive compounds from macroalgae in the new Millennium: implications for neurodegenerative diseases. Mar Drugs 12(9):4934–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BCC Research (2011) Global Markets for Marine-Derived Pharmaceuticals. Report No. PHM101A. http://www.bccresearch.com/market-research/pharmaceuticals/marine-derived-pharma-markets-phm101a.html. Accessed 27 April 2016

  • Bondu S, Bonnet C, Gaubert J et al (2015) Bioassay-guided fractionation approach for determination of protein precursors of proteolytic bioactive metabolites from macroalgae. J Appl Phycol 27:2059–2074

    Article  CAS  Google Scholar 

  • Boo HJ, Hong JY, Kim SC (2013) The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs 11(8):2982–2999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7(1):3–15

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25(3):743–756

    Article  CAS  Google Scholar 

  • Braden KW, Blanton JR, Allen VG et al (2004) Ascophyllum nodosum supplementation: a preharvest intervention for reducing Escherichia coli O157:H7 and Salmonella spp. in feedlot steers. J Food Prot 67:1824–1828

    Article  CAS  PubMed  Google Scholar 

  • Cha SH, Ahn GN, Heo SJ et al (2006) Screening of extracts from marine green and brown algae in Jeju for potential marine angiotensin-I converting enzyme (ACE) inhibitory activity. J Korean Soc Food Sci Nutr 35:307–314

    Article  Google Scholar 

  • Choi BW, Ryu G, Park SH et al (2007) Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for Alzheimer’s disease therapy. Phytother Res 21:423–426

    Article  CAS  PubMed  Google Scholar 

  • Cirne-Santos CC, Souza TML, Teixeira VL et al (2008) The dolabellanediterpene Dolabelladienetriol is a typical noncompetitive inhibitor of HIV-1 reverse transcriptase enzyme. Antivir Res 77(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Crupi P, Toci AT, Mangini S et al (2013) Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high‐performance liquid chromatography coupled with diode‐array detector multistage mass spectrometry coupled with positive electrospray ionization. Rapid Commun Mass Sp 27(9):1027–1035

    Google Scholar 

  • D’Orazio N, Gemello E, Gammone MA et al (2012) Fucoxantin: a treasure from the sea. Mar Drugs 10(3):604–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Souza ET, De Lira DP, De Queiroz AC et al (2009) The antinociceptive and antiinflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloid 25(2):251–256

    Article  CAS  Google Scholar 

  • Drozd NN, Tolstenkov AS, Makarov VA et al (2006) Pharmacodynamic parameters of anticoagulants based on sulfated polysaccharides from marine algae. B Exp Biol Med + 142(5):591593

    Google Scholar 

  • Eom SH, Kang MS, Kim YM (2008) Antibacterial activity of the Phaeophyta Ecklonia stolonifera on Methicillin-resistant Staphylococcus aureus. J Fish Sci Technol 11:1–6

    Google Scholar 

  • Fan X, Bai L, Zhu L et al (2014) Marine algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 62:9211–9222

    Article  CAS  PubMed  Google Scholar 

  • Gammone MA, Riccioni G, D’Orazio N (2015) Marine carotenoids against oxidative stress: effects on human health. Mar Drugs 13(10):6226–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorham PR, Carmichael WW (1979) Phycotoxins from blue-green algae. Pure Appl Chem 52(1):165–174

    Google Scholar 

  • Gueck T, Seidel A, Baumann D et al (2004) Alterations of mast cell mediator production and release by gamma-linolenic and docosahexaenoic acid. Vet Dermatol 15:309–314

    Article  PubMed  Google Scholar 

  • Gueck T, Seidel A, Fuhrmann H (2003) Effects of essential fatty acids on mediators of mast cells in culture. Prostaglandins Leukot Essent Fatty Acids 68:317–322

    Article  CAS  PubMed  Google Scholar 

  • Haslam E, Cai Y (1994) Plant polyphenols (vegetable tannins): gallic acid metabolism. Nat Prod Rep 11:41–66

    Article  CAS  PubMed  Google Scholar 

  • Heo SJ, Jeon YJ (2008) Radical scavenging capacity and cytoprotective effect of enzymatic digests of Ishige okamurae. J Appl Phycol 20:1087–1095

    Article  Google Scholar 

  • Heo SJ, Ko SC, Cha SH et al (2009) Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol In Vitro 23:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Hodges JR (2006) Alzheimer’s centennial legacy: origins, landmarks and the current status of knowledge concerning cognitive aspects. Brain 129:2811–2822

    Article  PubMed  Google Scholar 

  • Hoffman R, Paper DH, Donaldson J et al (1996) Inhibition of angiogenesis and murine tumour growth by laminarin sulphate. Brit J Cancer 73(10):1183–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppe HA (1979) Marine algae and their products and constituents in pharmacy. In: Hoppe HA, Levring T, Tanaka Y (eds) Marine algae in pharmaceutical science, vol 1. Walter de Gruyter, Berlin, New York, pp 25–119

    Google Scholar 

  • Horie S, Tsutsumi S, Takada Y et al (2008) Antibacterial quinone metabolites from the brown alga. Sargassum sagamianum. B Chem Soc Jpn 81(9):1125–1130

    Article  CAS  Google Scholar 

  • Ishihara K, Murata M, Kaneniwa M et al (1998) Inhibition of icosanoid production in MC/9 mousemast cells by n-3 polyunsaturated fatty acids isolated from edible marine algae. Biosci Biotechnol Biochem 62:1412–1415

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Oyamada C, Matsushima R et al (2005) Inhibitory effect of porphyran, prepared from dried “Nori”, on contact hypersensitivity in mice. Biosci Biotechnol Biochem 69(10):1824–1830

    Article  CAS  PubMed  Google Scholar 

  • Iwashima M, Mori J, Ting X et al (2005) Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. Biol Pharm Bull 28:374–377

    Article  CAS  PubMed  Google Scholar 

  • Jeong HJ, Lee SA, Moon PD et al (2006) Alginic acid has anti-anaphylactic effects and inhibits inflammatory cytokine expression via suppression of nuclear factor-kappaB activation. Clin Exp Allergy 36(6):785–794

    Article  CAS  PubMed  Google Scholar 

  • Ji NY, Li XM, Xie H et al (2008) Highly oxygenated triterpenoids from the marine red alga Laurencia mariannensis (Rhodomelaceae). Helv Chim Acta 91:1940–1946

    Article  CAS  Google Scholar 

  • Jung HA, Islam MN, Lee CM et al (2012) Promising antidiabetic potential of fucoxanthin isolated from the edible brown algae Eisenia bicyclis and Undaria pinnatifida. Fisheries Sci 78(6):1321–1329

    Article  CAS  Google Scholar 

  • Kadam SU, Tiwari BK, O’Donnell CP (2013) Application of novel extraction technologies for bioactives from marine algae. J Agr Food Chem 61(20):4667–4675

    Article  CAS  Google Scholar 

  • Kang KH, Qian ZJ, Ryu B et al (2012) Antioxidant peptides from protein hydrolysate of microalgae Navicula incerta and their protective effects in HepG2/CYP2E1 cells induced by ethanol. Phytother Res 26(10):1555–1563

    CAS  PubMed  Google Scholar 

  • Kang KH, Qian ZJ, Ryu B et al (2011) Characterization of growth and protein contents from microalgae Navicula incerta with the investigation of antioxidant activity of enzymatic hydrolysates. Food Sci Biotechnol 20(1):183–191

    Article  CAS  Google Scholar 

  • Kannan RRR, Aderogba MA, Ndhlala AR et al (2013) Acetylcholinesterase inhibitory activity of phlorotannins isolated from the brown alga, Ecklonia maxima (Osbeck) Papenfuss. Food Res Int 54:1250–1254

    Article  CAS  Google Scholar 

  • Kawasaki M, Toyoda M, Teshima R et al (1994) Effect of alphalinolenic acid on the metabolism of omega-3 and omega-6 polyunsaturated fatty acids and histamine release in RBL-2H3 cells. Biol Pharm Bull 17:1321–1325

    Article  CAS  PubMed  Google Scholar 

  • Kay RA (1991) Microalgae as food and supplement. Crit Rev Food Sci Nutr 30:555–573

    Article  CAS  PubMed  Google Scholar 

  • Kellam SJ, Walker JM (1989) Antibacterial activity from marine microalgae. Br Phycol J 24(2):191–194

    Article  Google Scholar 

  • Khotimchenko SV (1993) Fatty acids of green macrophytic algae from the sea of Japan. Phytochem 32:1203–1207

    Article  CAS  Google Scholar 

  • Kim KH, Kim YW, Kim HB et al (2006a) Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnol Lett 28(6):439–446

    Article  CAS  PubMed  Google Scholar 

  • Kim KN, Ahn G, Heo SJ et al (2013) Inhibition of tumor growth in vitro and in vivo by fucoxanthin against melanoma B16F10 cells. Environ Toxicol Phar 35(1):39–46

    Article  CAS  Google Scholar 

  • Kim MM, Ta QV, Mendis E et al (2006b) Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci 79:1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Seo JH, Kim H (2011) β-Carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J Nutr Sci Vitaminol 57(3):216–223

    Article  CAS  PubMed  Google Scholar 

  • Ko SC, Kim D, Jeon YJ (2012) Protective effect of a novelm antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem Toxicol 50(7):2294–2302

    Article  CAS  PubMed  Google Scholar 

  • Kusumi T, Ishitsuka M, Nomura Y et al (1979a) New farnesylacetone derivatives from Sargassum micracanthum. Chem Lett 1:1181–1184

    Article  Google Scholar 

  • Kusumi T, Shibata Y, Ishitsuka M et al (1979b) Structures of new plastoquinones from the brown alga Sargassum serratifolium. Chem Lett 3:277–278

    Article  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Jeon YJ (2013) Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 86:129–136

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Qian ZJ, Ryu BM et al (2009) Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg Med Chem 17:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Liu DQ, Mao SC, Zhang HY et al (2013) Racemosins A and B, two novel bisindole alkaloids from the green alga Caulerparacemosa. Fitoterapia 91:15–20

    Article  CAS  PubMed  Google Scholar 

  • Lowe M (1994) Pancreatic triglyceride lipase and colipase: insights into dietary fat digestion. Gastroenterology 107:1524–1536

    Article  CAS  PubMed  Google Scholar 

  • Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016

    Article  CAS  PubMed  Google Scholar 

  • Mao SC, Guo YW, Shen X (2006) Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpataxifolia. Bioorg Med Chem Lett 16(11):2947–2950

    Article  CAS  PubMed  Google Scholar 

  • Maruyama H, Tamauchi H, Hashimoto M et al (2005) Suppression of Th2 immune responses by mekabu fucoidan from Undaria pinnatifida sporophylls. Int Arch Allergy Immunol 137(4):289–294

    Article  CAS  PubMed  Google Scholar 

  • Matsuhiro B, Conte AF, Damonte EB et al (2005) Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohyd Res 340(15):2392–2402

    Article  CAS  Google Scholar 

  • Matsumoto M, Hosokawa M, Matsukawa N (2010) Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. Eur J Nutr 49(4):243–249

    Article  CAS  PubMed  Google Scholar 

  • Matsuno T (2001) Aquatic animal carotenoids. Fisheries Sci 67(5):771–783

    CAS  Google Scholar 

  • Mayer AM, Paul VJ, Fenical W et al (1993) Phospholipase A2 inhibitors from marine algae. Fourteenth international seaweed symposium. Springer, Netherlands, pp 521–529

    Chapter  Google Scholar 

  • Mazumder S, Ghosal PK, Pujol CA et al (2002) Isolation, chemical investigation and antiviral activityof polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int J Biol Macromol 31:87–95

    Article  CAS  PubMed  Google Scholar 

  • Moore RE (1977) Toxins from blue-green algae. Bioscience 27(2):797–802

    Article  Google Scholar 

  • Moore RE, Patterson ML, Carmichael WW (1988) New pharmaceuticals from cultured blue-green algae. In: Fautin DG (ed) Biomedical importance of marine organisms. California Academy of Sciences, San Francisco, pp 143–150

    Google Scholar 

  • Murthy KN, Rajesha J, Swamy MM et al (2005) Comparative evaluation of hepatoprotective activity of carotenoids of microalgae. J Med Food 8(4):523–528

    Article  CAS  PubMed  Google Scholar 

  • Nagayama K, Iwamura Y, Shibata T et al (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Antimicrob Agents Chemother 50:889–893

    Article  CAS  Google Scholar 

  • Nagayama K, Shibata T, Fujimoto K et al (2008) Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 218:601–611

    Article  CAS  Google Scholar 

  • Nemoto-Kawamura C, Hirahashi T, Nagai T et al (2004) Phycocyanin enhances secretary IgA antibody response and suppresses allergic IgE antibody response in mice immunized with antigen-entrapped biodegradable microparticles. J Nutr Sci Vitaminol 50(2):129–136

    Article  PubMed  Google Scholar 

  • Park HK, Kim IH, Kim J et al (2013) Induction of apoptosis and the regulation of ErbB signaling by laminarin in HT-29 human colon cancer cells. Int J Mol Med 32(2):291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquet V, Morisset P, Ihammouine S et al (2011) Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar Drugs 9(5):819–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson GML, Baldwin CL, Bolis CM et al (1991) Antineoplastic activity of cultured blue-green algae (Cyanophyta). J Phycol 27(4):530–536

    Article  Google Scholar 

  • Pereira MG, Benevides NM, Melo MR et al (2005) Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohyd Res 340(12):2015–2023

    Google Scholar 

  • Raposo MDJ, De Morais AM, De Morais RM (2015) Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 13(5):2967–3028

    Article  CAS  Google Scholar 

  • Remirez D, Ledón N, González R (2002) Role of histamine in the inhibitory effects of phycocyaninin experimental models of allergic inflammatory response. Mediat Inflamm 11(2):81–85

    Article  CAS  Google Scholar 

  • Rodríguez MC, Merino ER, Pujol CA et al (2005) Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales). Carbohyd Res 340(18):2742–2751

    Article  CAS  Google Scholar 

  • Ryu G, Park SH, Kim ES et al (2003) Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown alga Sargassum sagamianum. ArchPharm Res 26:796–799

    CAS  Google Scholar 

  • Sachindra NM, Sato E, Maeda H et al (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55(21):8516–8522

    Article  CAS  PubMed  Google Scholar 

  • Samarakoon KW, Kwon ON, Ko JY et al (2013) Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. J Appl Phycol 25(5):1595–1606

    Article  CAS  Google Scholar 

  • Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernandez J et al (2002) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444

    Article  CAS  Google Scholar 

  • Schwartz RE, Hirsch CF, Sesin DF et al (1990) Pharmaceuticals from cultured algae. J Ind Microbiol 5(2):113–124

    Article  CAS  Google Scholar 

  • Sheih IC, Fang TJ, Wu TK et al (2010) Anticancer and antioxidant activities of the peptide fraction from algae protein in waste. J Agric Food Chem 58:1202–1207

    Article  CAS  PubMed  Google Scholar 

  • Sheih IC, Wu TK, Fang TJ (2009) Antioxidant properties of a new antioxidative peptide from algae protein hydrolysate in different oxidation systems. Biores Technol 100:3419–3425

    Article  CAS  Google Scholar 

  • Shen B, Makley DM, Johnston JN (2010) Umpolung reactivity in amide and peptide synthesis. Nature 465(7301):1027–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata T, Ishimaru K, Kawaguchi S et al (2008) Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J Appl Phycol 20:705–711

    Article  CAS  Google Scholar 

  • Shih MF, Chen LC, Cherng JY (2013) Chlorella 11-peptide inhibits the production of macrophage-induced adhesion molecules and reduces endothelin-1 expression and endothelial permeability. Mar Drugs 11(10):3861–3874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu Y (1978) Dinoflagellate toxins. In Scheuer PJ (ed) Marine natural products, chemical and biological perspectives, vol. 1, p 1–42

    Google Scholar 

  • Singh IP, Bharate SB (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558–591

    Article  CAS  Google Scholar 

  • Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16(4):245–262

    Article  CAS  Google Scholar 

  • Soontornchaiboon W, Joo S, Kim SM (2012) Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol Pharm Bull 35(7):1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Souto ML, Manrıquez CP, Norte M et al (2003) The inhibitory effects of squalene-derived triterpenes on protein phosphatase PP2A. Bioorg Med Chem Lett 13:1261–1264

    Article  CAS  PubMed  Google Scholar 

  • Stengel DB, Connan S, Popper Z (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29(5):483–501

    Article  CAS  PubMed  Google Scholar 

  • Suffness M, Newman DJ, Snader K (1989) Discovery and development of antineoplastic agents from natural sources. In: Scheuer PJ (ed) Bioorganic marine chemistry, 1st edn. Springer Verlag, Berlin, pp 131–168

    Chapter  Google Scholar 

  • Talarico LB, Duarte ME, Zibetti RG et al (2007) An algal-derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Med 73(14):1464–1468

    Article  CAS  PubMed  Google Scholar 

  • Vo TS, Kim SK (2013) Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima. Eur J Pharm Sci 50(2):198–207

    Article  CAS  PubMed  Google Scholar 

  • Vo TS, Ngo DH, Kim SK (2012) Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Proc Biochem 47(3):386–394

    Article  CAS  Google Scholar 

  • Walsh DJ, Bernard H, Murray BA et al (2004) In vitro generation and stability of the lactokinin β-lactoglobulin fragment (142—148). J Dairy Sci 87(11):3845–3857

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang X (2013) Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnol Prog 29(3):681–687

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Wang Y, Liu Y et al (2009) Ultraviolet-B exposure induces photo-oxidative damage and subsequent repair strategies in a desert cyanobacterium Microcoleus vaginatus Gom. Eur J Soil Biol 45:377–382

    Article  CAS  Google Scholar 

  • Yamasaki Y, Yamasaki M, Tachibana H et al (2012) Important role of β1-integrin in fucoidan-induced apoptosis via caspase-8 activation. Biosci Biotech Bioch 76(6):1163–1168

    Article  CAS  Google Scholar 

  • Yang C, Chung D, Shin I et al (2008) Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int J Biol Macromol 43(5):433–437

    Article  CAS  PubMed  Google Scholar 

  • Yoon NY (2008) Cholinestarase and lens aldose reductase inhibitory activities of phlorotannins from Ecklonia stolonifera and their protective effects on tacrineinduced hepatotoxicity and hyperlipidemic rat models. Pukyong National University, Disertation

    Google Scholar 

  • Yoon NY, Chung HY, Kim HR et al (2008) Acetyl- and butyryl-cholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fisheries Sci 74:200–207

    Article  CAS  Google Scholar 

  • Yoon NY, Lee SH, Kim SK (2009) Phlorotannins from Ishige okamurae and their acetyl-and butyrylcholinesterase inhibitory effects. J Funct Foods 1:331–335

    Article  CAS  Google Scholar 

  • Yuan JP, Peng J, Yin K et al (2011) Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55(1):150–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhang X (2013) Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol Prog 29:1230–1238

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Teruya K, Yoshida T et al (2013) Fucoidan extract enhances the anti-cancer activity of chemotherapeutic agents in MDA-MB-231 and MCF-7 breast cancer cells. Mar Drugs 11(1):81–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou MC, Cui FL, Sheng YQ et al (2010) Effects of laminarin sulphate on the expressions of PTEN and P271kip1 in prostate cancer PC-3 cells. Zhonghua Nan Ke Xue/National Journal of Andrology 16(6):498–503 [in Chinese]

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is financed in the framework of a grant entitled Innovative technology of seaweed extracts—components of fertilizers, feed and cosmetics (PBS/1/A1/2/2012) attributed by The National Centre for Research and Development in Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Tuhy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dmytryk, A., Tuhy, Ł., Chojnacka, K. (2017). Algae as Source of Pharmaceuticals. In: Tripathi, B., Kumar, D. (eds) Prospects and Challenges in Algal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1950-0_11

Download citation

Publish with us

Policies and ethics