Skip to main content
Log in

Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Isolation of bioactive compounds and commercialization of marine microalgae sources are interesting targets in future marine biotechnology. Cultured biomass of the marine microalga, Nannochloropsis oculata, was used to purify angiotensin-I converting enzyme (ACE) inhibitory peptides using proteases including pepsin, trypsin, α-chymotrypsin, papain, alcalase, and neutrase. The pepsin hydrolysate exhibited the highest ACE inhibitory activity, compared to the other hydrolysates and then was separated into three fractions (F1, F2, and F3) using Sephadex G-25 gel filtration column chromatography. First fraction (F1) showed the highest ACE inhibitory activity and it was further purified into two fractions (F1-1 and F1-2) using reverse-phase high-performance liquid chromatography. The IC50 value of purified ACE inhibitory peptides were 123 and 173 μM and identified as novel peptides, Gly-Met-Asn-Asn-Leu-Thr-Pro (GMNNLTP; MW, 728 Da) and Leu-Glu-Gln (LEQ; MW, 369 Da), respectively. In addition, nitric oxide production level (%) was significantly increased by the purified peptide (Gly-Met-Asn-Asn-Leu-Thr-Pro) compared to the purified peptide (Leu-Glu-Gln) and other treated pepsin hydrolysate fractions on human umbilical vein endothelial cells (HUVECs). Cell viability assay showed no cytotoxicity on HUVECs with the treated purified peptides and fractions. These results suggest that the isolated peptides from cultured marine microalga, N. oculata protein sources may have potentiality to use commercially as ACE inhibitory agents in functional food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  • Abrams J (1996) Beneficial actions of nitrates in cardiovascular disease. Am J Cardiol 77:31–37

    Article  Google Scholar 

  • AOAC (1990) Official Methods of Analysis of the Association of Official Analytical Chemists, 16th edn. Association of Official Analytical Chemists Inc., Virginia

    Google Scholar 

  • Banskota AH, Stefanova R, Gallant P, McGinn PT (2012) Mono-and digalactosyldiacylglycerols: potent nitric oxide inhibitors from the marine microalga Nannochloropsis granulata. J Appl Phycol. doi:10.1007/s1081101298692

  • Becker EW (2007) Micro algae as a source of protein. Biotechnol Adv 25:207–210

    Article  PubMed  CAS  Google Scholar 

  • Campos MRS, Guerrero LAC, Ancona DAB (2011) Purification of angiotensin I-converting enzyme inhibitory peptides from a cowpea (Vigna unguiculata) enzymatic hydrolystae. Process Biochem 46:864–872

    Article  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technol 100:833–838

    Article  CAS  Google Scholar 

  • Converti A, Casazza AC, Ortiz YE, Perego P, Borghi DM (2009) Effect of temperature and nitrogen concentration in the growth and lipid content of Nannchloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Proess 48:1146–1151

    Article  CAS  Google Scholar 

  • Coppey LJ, Davidson EP, Rinehart TW, Gallett JS, Oltman CL, Lund DD et al (2006) ACE inhibitors or angiotensin II receptors antagonist attenuates diabetic neuropathy in streptoztocin-induced diabetic rats. Diabetes 55:341–348

    Article  PubMed  CAS  Google Scholar 

  • Cushman DW, Cheung HS (1970) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648

    Article  Google Scholar 

  • Fitzgerald C, Gallagher E, Tasdemir D, Hayes M (2011) Heart health peptides from macroalgae and their potential use in functional foods. J Agric Food Chem 59:6829–6836

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald JR, Murray AB (2007) Bioactive peptides and lactic fermentations. Int J Diary Technol 59:118–125

    Article  Google Scholar 

  • Fujita H, Yoshikawa M (1999) LKPNM: a prodrug-type ACE inhibitory peptide derived from fish protein. Immunopharmacology 44:123–127

    Article  PubMed  CAS  Google Scholar 

  • Gildberg A, Arnesen JA, Saether BS, Rauo J, Stenberg E (2011) Angiotensin I-converting enzyme inhibitory activity in a hydrolysate of proteins from Northern shrimp (Pandalus borealis) and identification of two novel inhibitory tri-peptides. Process Biochem 46:2205–2209

    Article  CAS  Google Scholar 

  • Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96:1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Hong F, Ming L, Yi S, Zhanxia L, Yongquan W, Chi L (2008) The antihypertensive effect of peptides: a novel alternative to drugs? Peptides 29:1062–1071

    Article  PubMed  Google Scholar 

  • Hou YC, Janczuk A, Wang PG (1999) Current trends in the development of nitric oxide donors. Curr Pharm Des 5:417–41

    PubMed  CAS  Google Scholar 

  • Huang X, Huang Z, Wen W, Yan J (2012) Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J Appl Phycol. doi:10.1007/s1081101298469

  • Je JY, Lee KH, Lee MH, Ahn CB (2009) Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res Int 42:1266–1272

    Article  CAS  Google Scholar 

  • Je JY, Park PJ, Byun HG, Jung WK, Kim SK (2005a) Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresource Technol 96:1624–1629

    Article  CAS  Google Scholar 

  • Je YJ, Park JY, Jung WK, Kim SK (2005b) Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. Food Chem 90:809–814

    Article  CAS  Google Scholar 

  • Jimsheena VK, Govada LR (2010) Arachin derived peptides as selective angiotensin I-converting enzyme (ACE) inhibitors: structure–activity relationship. Peptides 31:1165–1176

    Article  PubMed  CAS  Google Scholar 

  • Jung WK, Mendis E, Je JY, Park PJ, Son BW, Kim HC et al (2006) Angiotensin I converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 94:26–32

    Article  CAS  Google Scholar 

  • Kearney PM, Whelton M, Reynolds K, Muntner P, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223

    PubMed  Google Scholar 

  • Kim SK, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2:1–9

    Article  CAS  Google Scholar 

  • Ko SC, Lee JK, Byun HG, Lee SC, Jeon YJ (2012a) Purification and characterization of angiotensin I-converting enzyme inhibitory peptide from enzymatic hydrolysates of Stylea clava flesh tissue. Process Biochem 47:34–40

    Article  CAS  Google Scholar 

  • Ko SK, Nalae K, Kim EA, Kang MC, Lee SH, Kang SM et al (2012b) A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochem. doi:10.1016/j.procbio.2012.07.015

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  • Kuba M, Tanaka K, Sesoko M, Inoue F, Yasuda M (2009) Angiotensin I-converting enzyme inhibitory peptides in red-mold rice made by Monascus purpureus. Process Biochem 44:1139–1143

    Article  CAS  Google Scholar 

  • Lee JK, Jeon JK, Byun HG (2011) Effect of angiotensin I converting enzyme inhibitory peptide purified from skate skin hydrolysate. Food Chem 125:495–499

    Article  CAS  Google Scholar 

  • Lee JW, Hong S, Jeon JK, Kim SK, Byun HG (2009) Purification and characterization of angiotensin I converting enzyme inhibitory peptides from the rotifer, Brachionus rotundiformis. Bioresource Technol 100:5255–5259

    Article  CAS  Google Scholar 

  • Lee TLC, Marino GEG (2010) Microalgae for “Healthy” foods—possibilities and challenges. Compr Rev Food Sci F 9:655–675

    Article  Google Scholar 

  • Matsui T, Matsufuji H, Seki E, Osajima K, Nakashima M, Osajima Y (1993) Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle. Biosci Biotechnol Biochem 57:922–925

    Article  PubMed  CAS  Google Scholar 

  • Miguel M, Alonso MJ, Salaices M, Aleixandre A, López-Fandiño R (2007) Antihypertensive, ACE-inhibitory and vasodilator properties of an egg white hydrolysate: effect of a simulated intestinal digestion. Food Chem 104:163–168

    Article  CAS  Google Scholar 

  • Misurcova L, Kracmar S, Klejdus B, Vacek J (2010) Nitrogen content, dietary fiber, and digestibility in algal food products. Czech J Food Sci 28:27–35

    CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Google Scholar 

  • Quirós A, del Mar CM, Amigo L, Recio I (2009) Stability to gastrointestinal enzymes and structure–activity relationship of β-casein-peptides with antihypertensive properties. Peptides 30:1848–1853

    Article  PubMed  Google Scholar 

  • Raso S, Genugten BV, Vermue M, Wijffels RH (2012) Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. J Appl Phycol 24:863–871

    Article  PubMed  CAS  Google Scholar 

  • Rho SJ, Lee JS, Chung YI, Kim YW, Lee HG (2009) Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem 44:490–493

    Article  CAS  Google Scholar 

  • Riordan JF (2003) Angiotensin-I-converting enzyme and its relatives. Genome Biol 4:225–229

    Article  PubMed  Google Scholar 

  • Saiga A, Okumura T, Makihara T, Katsuda SI, Morimatsu F, Nishimura T (2006) Action mechanism of an angiotensin I-converting enzyme inhibitory peptide derived from chicken breast muscle. J Agric Food Chem 54:942–945

    Article  PubMed  CAS  Google Scholar 

  • Samarakoon K, Jeon YJ (2012) Bio-functionalities of proteins derive from marine algae—a review. Food Res Int 48:948–960

    Article  CAS  Google Scholar 

  • Sheih IC, Fang TJ, Wu TK (2009) Isolation and characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem 115:279–284

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial application of microalgae. J Bio Sci Bioeng 2:87–96

    Article  Google Scholar 

  • Suetsuna K, Chen JR (2001) Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar Biotechnol 3:305–309

    Article  PubMed  CAS  Google Scholar 

  • Suetsuna K, Nakano T (2000) Identification of antihypertensive peptides from peptidic digest of wakame (Undaria pinnatifida). J Nutr Biochem 11:450–454

    Article  PubMed  CAS  Google Scholar 

  • Suetsuna K (1998) Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis. J Mar Biotechnol 6:163–167

    PubMed  CAS  Google Scholar 

  • Veenhuyzen GD, Simpson CS, Abdollah H (2004) Atrial fibrillation. Can Med Assoc J 60:171–755

    Google Scholar 

  • Verdecchia P, Angeli F, Mazzotta G, Gentile G, Reboldi G (2008) The rennin angiotensin system in the development of cardiovascular disease: role of aliskiren in risk reduction. Vasc Health Risk Manag 4:971–981

    PubMed  CAS  Google Scholar 

  • Walne PR (1966) Large scale culture of larvae of Ostrea edulis. L. Fish Invest (London) Series 2:1–51

    Google Scholar 

  • Wang J, Hu J, Chi J, Bai X, Du Y, Miyaguchi Y, Lin B (2008) Purification and identification of a AC inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem 111:302–308

    Article  CAS  Google Scholar 

  • Weber MA (1999) Interrupting the renin–angiotensin system: the role of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists in the treatment of hypertension. Am J Hypertens 12:189–194

    Article  Google Scholar 

  • Wijesekara I, Qian ZJ, Ryu BM, Ngo DH, Kim SK (2011) Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate. Food Res Int 44:703–707

    Article  CAS  Google Scholar 

  • Zhao Y, Li B, Liu Z, Dong S, Zhao X, Zeng M (2007) Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. Process Biochem 42:1586–1591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (T32607) from the Korea Basic Science Institute (KBSI).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Jin Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samarakoon, K.W., O-Nam, K., Ko, JY. et al. Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. J Appl Phycol 25, 1595–1606 (2013). https://doi.org/10.1007/s10811-013-9994-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-9994-6

Keywords

Navigation