Advertisement

Microbial Remediation of Organometals and Oil Hydrocarbons in the Marine Environment

  • Andreia CruzEmail author
  • Ana Julia Cavaleiro
  • Ana M. S. Paulo
  • António Louvado
  • M. Madalena Alves
  • Adelaide Almeida
  • Ângela Cunha
Chapter

Abstract

Marine environments are exposed to pollution that mostly results from human activities. Organometals and oil hydrocarbons are among the most hazardous pollutants. In surface waters and along the water column, these compounds are more easily degraded than in sediments, especially under anoxic conditions, where they are highly persistent. Due to their negative impact in living organisms, decontamination of polluted marine sites with minimum collateral impacts is imperative. Bioremediation strategies, benefiting from the ability of aerobic and anaerobic microorganisms to degrade organometals or oil hydrocarbons to simpler and less toxic derivatives, represent an alternative to traditional physicochemical decontamination methods. Different bioremediation strategies have been applied in marine environments, including monitored natural recovery, biostimulation, bioaugmentation and phytoremediation. Individual microbial agents or mixed microbial consortia able to remediate these pollutants in marine environments have been identified, and the most relevant mechanisms of biodegradation of pollutants are characterised.

This chapter provides an overview on microbial bioremediation of organometals and oil hydrocarbons in marine environments, focusing on the bioremediation concept, microbial aerobic/anaerobic agents, metabolic pathways and genetic determinants involved in the degradation/transformation processes while highlighting the importance of microbial consortia and their applications. A critical analysis of the advantages and limitations of microbial remediation and a perspective on future developments are also provided.

Keywords

Bioremediation Organometals Oil hydrocarbons Biodegradation Bacteria Fungi Microbial consortia 

Notes

Acknowledgments

The authors thank the financial support from the European Regional Development Fund (ERDF), through the Operational Programme Thematic Factors of Competitiveness (COMPETE), and the Portuguese Foundation for Science and Technology (FCT) in the frame of project FCOMP-010124-FEDER-027917 (FCT: PTDC/AAG-TEC/3428/2012). The authors also thank the FCT strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), and Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). Research of AC was funded by the postdoctoral grant (BPD/UI88/2886/2013), from the project “Sustainable Use of Marine Resources” – MARES (CENTRO-07-ST24-FEDER-002033), funded by QREN, Mais Centro- Programa Operacional Regional do Centro e União Europeia/Fundo Europeu de Desenvolvimento Regional. AL was funded by a PhD grant SFRH/BD/86447/2012 funded by FCT. Research of AJC was supported by ERC grant (project 323009).

References

  1. Adelman D, Hinga KR, Pilson MEQ (1990) Biogeochemistry of butyltins in an enclosed marine ecosystem. Environ Sci Technol 24(7):1027–1032CrossRefGoogle Scholar
  2. Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156(1):5–14CrossRefGoogle Scholar
  3. Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170(5):361–369CrossRefGoogle Scholar
  4. Aitken C, Jones D, Maguire M, Gray N, Sherry A, Bowler B, Ditchfield A, Larter S, Head I (2013) Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochim Cosmochim Acta 109:162–174CrossRefGoogle Scholar
  5. Al-Mailem DM, Sorkhoh NA, Salamah S, Eliyas M, Radwan SS (2010) Oil-bioremediation potential of Arabian Gulf mud flats rich in diazotrophic hydrocarbon-utilizing bacteria. Int Biodeter Biodegr 64(3):218–225CrossRefGoogle Scholar
  6. Al-Mailem DM, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17(3):463–470CrossRefGoogle Scholar
  7. Alzieu C (1998) Tributyltin: case study of a chronic contaminant in the coastal environment. Ocean Coast Manag 40(1):23–36CrossRefGoogle Scholar
  8. Alzieu C (2000) Impact of tributyltin on marine invertebrates. Ecotoxicology 9(1–2):71–76CrossRefGoogle Scholar
  9. Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34(2):292–308CrossRefGoogle Scholar
  10. Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31(4):178–182CrossRefGoogle Scholar
  11. Ayanda OS, Fatoki OS, Adekola FA, Ximba BJ (2012) Fate and remediation of organotin compounds in seawaters and soils. Chem Sci Trans 1(3):470–481CrossRefGoogle Scholar
  12. Barron MG (2012) Ecological impacts of the deepwater horizon oil spill: implications for immunotoxicity. Toxicol Pathol 40(2):315–320CrossRefGoogle Scholar
  13. Barroso CM, Moreira MH (2002) Spatial and temporal changes of TBT pollution along the Portuguese coast: inefficacy of the EEC directive 89/677. Mar Pollut Bull 44(6):480–486CrossRefGoogle Scholar
  14. Barroso C, Moreira M, Bebianno M (2002) Imposex, female sterility and organotin contamination of the prosobranch Nassarius reticulatus from the Portuguese coast. Mar Ecol Prog Ser 230:127–135CrossRefGoogle Scholar
  15. Barug D (1981) Microbial degradation of bis(tributyltin) oxide. Chemosphere 10(10):1145–1154CrossRefGoogle Scholar
  16. Batel R, Bihari N, Rinkevich B, Dapper J, Schacke H, Schroder HC, Muller WEG (1993) Modulation of organotin-induced apoptosis by the water pollutant methyl mercury in a human lymphoblastoid tumor cell line and a marine sponge. Mar Ecol Prog Ser Oldendorf 93(3):245–251CrossRefGoogle Scholar
  17. Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60(4):1227–1231Google Scholar
  18. Bejarano AC, Michel J (2010) Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill. Environ Pollut 158(5):1561–1569CrossRefGoogle Scholar
  19. Bellas J, Saco-Álvarez L, Nieto Ó, Bayona JM, Albaigés J, Beiras R (2013) Evaluation of artificially-weathered standard fuel oil toxicity by marine invertebrate embryogenesis bioassays. Chemosphere 90(3):1103–1108CrossRefGoogle Scholar
  20. Ben Said O, Goñi-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R (2008) Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 104(4):987–997CrossRefGoogle Scholar
  21. Bernat P, Dlugonski J (2006) Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamella elegans. Chemosphere 62(1):3–8CrossRefGoogle Scholar
  22. Bianchi V, Masciandaro G, Ceccanti B, Doni S, Iannelli R (2010) Phytoremediation and bio-physical conditioning of dredged marine sediments for their re-use in the environment. Water Air Soil Pollut 210(1–4):187–195CrossRefGoogle Scholar
  23. Bik HM, Halanych KM, Sharma J, Thomas WK (2012) Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill. PLoS One 7(6):e38550CrossRefGoogle Scholar
  24. Boonchan S, Britz M, Stanley G (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019CrossRefGoogle Scholar
  25. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67CrossRefGoogle Scholar
  26. Boopathy R (2003) Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions. Bioresour Technol 86(2):171–175CrossRefGoogle Scholar
  27. Bouchez M, Blanchet D, Bardin V, Haeseler F, Vandecasteele J-P (1999) Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation 10(6):429–435CrossRefGoogle Scholar
  28. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418CrossRefGoogle Scholar
  29. Brandsch R, Nowak KE, Binder N, Jastorff B (2001) Investigations concerning the sustainability of remediation by land deposition of tributyltin contaminated harbour sediments. J Soils Sediment 1(4):234–236CrossRefGoogle Scholar
  30. Brundrett M, Horita J, Anderson T, Pardue J, Reible D, Jackson WA (2015) The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments. Environ Sci Pollut 22:15377–15385Google Scholar
  31. Carson RT, Mitchell RC, Hanemann WM, Kopp RJ, Presser S, Ruud PA (1992) A contingent valuation study of lost passive use values resulting from the Exxon Valdez oil spill. University Library of Munich, GermanyGoogle Scholar
  32. Chakrabarty A (1992) Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof 1980. Biotechnology 24:535–545Google Scholar
  33. Chronopoulou P-M, Fahy A, Coulon F, Païssé S, Goñi-Urriza M, Peperzak L, Acuña Alvarez L, McKew BA, Lawson T, Timmis KN, Duran R, Underwood GJC, McGenity TJ (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms. Environ Microbiol 15(1):242–252CrossRefGoogle Scholar
  34. Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63(9):3589–3593Google Scholar
  35. Coelho FJRC, Cleary DFR, Rocha RJM, Calado R, Castanheira JM, Rocha SM, Silva A, Simões MMQ, Oliveira V, Lillebo AI (2015) Unraveling the interactive effects of climate change and oil contamination on laboratory-simulated estuarine benthic communities. Global Chang Biol 21(5):1871–1886CrossRefGoogle Scholar
  36. Cooney JJ (1995) Organotin compounds and aquatic bacteria: a review. Helgol Mar Res 49(1):663–677Google Scholar
  37. Cooney JJ, Wuertz S (1989) Toxic effects of tin-compounds on microorganisms. J Ind Microbiol 4(5):375–402CrossRefGoogle Scholar
  38. Craig P (2003) Organometallic compounds in the environment, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  39. Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Réa A (2004) Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane-and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54(1):77–83CrossRefGoogle Scholar
  40. Cruz A, Caetano T, Suzuki S, Mendo S (2007) Aeromonas veronii, a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal. Mar Environ Res 64:639–650CrossRefGoogle Scholar
  41. Cruz A, Oliveira V, Baptista I, Almeida A, Cunha A, Suzuki S, Mendo S (2012) Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria. Environ Toxicol 27(1):11–17CrossRefGoogle Scholar
  42. Cruz A, Henriques I, Sousa ACA, Baptista I, Almeida A, Takahashi S, Tanabe S, Correia A, Suzuki S, Anselmo AM (2014) A microcosm approach to evaluate the degradation of tributyltin (TBT) by Aeromonas molluscorum Av27 in estuarine sediments. Environ Res 132:430–437CrossRefGoogle Scholar
  43. Cruz A, Anselmo AM, Suzuki S, Mendo S (2015) Tributyltin (TBT): a review on microbial resistance and degradation. Crit Rev Environ Sci Technol 45(9):970–1006CrossRefGoogle Scholar
  44. Cruz-Uribe O, Rorrer GL (2006) Uptake and biotransformation of 2, 4, 6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii. Biotechnol Bioeng 93(3):401–412CrossRefGoogle Scholar
  45. Cui Z, Xu G, Gao W, Li Q, Yang B, Yang G, Zheng L (2014) Isolation and characterization of Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and fluoranthene by their syntrophic association with Marinobacter strains. Int Biodeter Biodegr 91:45–51CrossRefGoogle Scholar
  46. Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28(1–2):103–110CrossRefGoogle Scholar
  47. Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465CrossRefGoogle Scholar
  48. Dai S, Huang G, Chen C (1998) Fate of 14C-labeled tributyltin in an estuarine microcosm. Appl Organomet Chem 12:585–590CrossRefGoogle Scholar
  49. Dashti N, Ali N, Eliyas M, Khanafer M, Sorkhoh NA, Radwan SS (2015) Most hydrocarbonoclastic bacteria in the total environment are diazotrophic, which highlights their value in the bioremediation of hydrocarbon contaminants. Microbes Environ 30(1):70–75CrossRefGoogle Scholar
  50. de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19(6):579–589CrossRefGoogle Scholar
  51. Dell’Anno A, Beolchini F, Rocchetti L, Luna GM, Danovaro R (2012) High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments. Environ Pollut 167:85–92CrossRefGoogle Scholar
  52. Dolfing J, Larter S, Head I (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452CrossRefGoogle Scholar
  53. Du J, Chadalavada S, Chen Z, Naidu R (2014) Environmental remediation techniques of tributyltin contamination in soil and water: a review. Chem Eng J 235:141–150CrossRefGoogle Scholar
  54. Dubey SK, Roy U (2003) Biodegradation of tributyltins (organotins) by marine bacteria. Appl Organomet Chem 17(1):3–8CrossRefGoogle Scholar
  55. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, M Piceno Y, Reid FC, Stringfellow WT (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47(19):10860–10867CrossRefGoogle Scholar
  56. Dusane DH, Pawar VS, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarde SS (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27(6):645–654CrossRefGoogle Scholar
  57. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123CrossRefGoogle Scholar
  58. EC (2002) Official Journal of the European Community 2002, Commission Directive 2002/62/EC of 9 July 2002. vol LI 83. European CommunityGoogle Scholar
  59. Evans SM (1999) Tributyltin pollution: the catastrophe that never happened. Mar Pollut Bull 38(8):629–636CrossRefGoogle Scholar
  60. Evans SM, Birchenough AC, Brancato MS (2000) The TBT ban: out of the frying pan into the fire? Mar Pollut Bull 40(3):204–211CrossRefGoogle Scholar
  61. Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26(1):3–117CrossRefGoogle Scholar
  62. Festa S, Coppotelli BM, Morelli IS (2013) Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil. Int Biodeter Biodegr 85:42–51CrossRefGoogle Scholar
  63. Frache R, Rivaro P (2000) Occurence, pathways and bioaccumulation of organometallic compounds in marine environments. In: Gianguzza A, Ezio P, Sammartano S (eds) Chemical processes in marine environments, vol Part III. Environmental science. Springer, Berlin, pp 201–211CrossRefGoogle Scholar
  64. Friello DA, Mylroie JR, Chakrabarty AM (2001) Use of genetically engineered multi-plasmid microorganisms for rapid degradation of fuel hydrocarbons. Int Biodeterior Biodegrad 48(1):233–242CrossRefGoogle Scholar
  65. Gadd GM (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11(4):297–316CrossRefGoogle Scholar
  66. Gadd GM (2000) Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258(1–2):119–127CrossRefGoogle Scholar
  67. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2–4):109–119CrossRefGoogle Scholar
  68. Gallego S, Vila J, Tauler M, Nieto J, Breugelmans P, Springael D, Grifoll M (2013) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25:543–556Google Scholar
  69. García MT, Campos E, Marsal A, Ribosa I (2009) Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Res 43(2):295–302CrossRefGoogle Scholar
  70. Genovese M, Crisafi F, Denaro R, Cappello S, Russo D, Calogero R, Santisi S, Catalfamo M, Modica A, Smedile F (2014) Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Front Microbiol 5:(Article 162)Google Scholar
  71. Gray ND, Sherry A, Grant RJ, Rowan AK, Hubert CRJ, Callbeck CM, Aitken CM, Jones DM, Adams JJ, Larter SR (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13(11):2957–2975CrossRefGoogle Scholar
  72. Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A (2008) Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary. Org Geochem 39(8):1197–1203CrossRefGoogle Scholar
  73. Guitart C, García-Flor N, Bayona JM, Albaigés J (2007) Occurrence and fate of polycyclic aromatic hydrocarbons in the coastal surface microlayer. Mar Pollut Bull 54(2):186–194CrossRefGoogle Scholar
  74. Guitart C, García-Flor N, Miquel JC, Fowler SW, Albaigés J (2010) Effect of the accumulation of polycyclic aromatic hydrocarbons in the sea surface microlayer on their coastal air-sea exchanges. J Mar Syst 79(1–2):210–217CrossRefGoogle Scholar
  75. Haehnel J, Jeschek J, Schulz-Bull DE (2014) Quantitative determination of microbial oil degradation and of oil absorption by a new oil-binding system in a Baltic Sea mesocosm experiment. Int Oil Spill Conf Proc 2014(1):1059–1072CrossRefGoogle Scholar
  76. Hamada-Sato N, Asuka T, Kobayashi T, Imada C, Mizuishi K, Takeuchi M, Watanabe E (2002) Degradation of tributyltin by marine microorganisms in sediment collected from Tokyo Bay. Fish Sci 68(No. Sup 1):643–644Google Scholar
  77. Han Z, Sani B, Akkanen J, Abel S, Nybom I, Karapanagioti HK, Werner D (2015) A critical evaluation of magnetic activated carbon’s potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons. J Hazard Mater 286:41–47CrossRefGoogle Scholar
  78. Hanson BT, Yagi JM, Jeon CO, Madsen EM (2012) Role of nitrogen fixation in the autecology of Polaromonas naphthalenivorans in contaminated sediments. Environ Microbiol 14(6):1544–1557CrossRefGoogle Scholar
  79. Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosselló-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65(3):999–1004Google Scholar
  80. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208CrossRefGoogle Scholar
  81. Head IM, Swannell RPJ (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol 10(3):234–239CrossRefGoogle Scholar
  82. Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182CrossRefGoogle Scholar
  83. Head IM, Gray ND, Larter SR (2014) Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Front Microbiol 5(Article 566):1–23Google Scholar
  84. Hoch M (2001) Organotin compounds in the environment – an overview. Appl Geochem 16(7–8):719–743CrossRefGoogle Scholar
  85. Holmes DE, Risso C, Smith JA, Lovley DR (2011) Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 77(17):5926–5933CrossRefGoogle Scholar
  86. Huang L, Pu X, Pan J-F, Wang B (2013) Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea. Chemosphere 93(9):1957–1964CrossRefGoogle Scholar
  87. HuiJie L, CaiYun Y, Yun T, GuangHui L, TianLing Z (2011) Using population dynamics analysis by DGGE to design the bacterial consortium isolated from mangrove sediments for biodegradation of PAHs. Int Biodeter Biodegr 65(2):269–275CrossRefGoogle Scholar
  88. IMO (2001) International convention on the control of harmful anti-fouling systems on ships AFS/CONF/26. International Maritime Organization, LondonGoogle Scholar
  89. Incardona JP, Swarts TL, Edmunds RC, Linbo TL, Aquilina-Beck A, Sloan CA, Gardner LD, Block BA, Scholz NL (2013) Exxon Valdez to deepwater horizon: comparable toxicity of both crude oils to fish early life stages. Aquat Toxicol 142:303–316CrossRefGoogle Scholar
  90. International Energy Agency (2015) Oil market report. Accessed on 30 Apr 2015Google Scholar
  91. Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8CrossRefGoogle Scholar
  92. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7(5):885–895CrossRefGoogle Scholar
  93. Jiménez J, Miñambres B, García J, Díaz E (2004) Genomic insights in the metabolism of aromatic compounds in Pseudomonas. In: Ramos J-L (ed) Pseudomonas. Springer, US, pp 425–462CrossRefGoogle Scholar
  94. Jiménez N, Viñas M, Bayona JM, Albaiges J, Solanas AM (2007) The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. Appl Microbiol Biotechnol 77(4):935–945CrossRefGoogle Scholar
  95. Joo M, Kim J (2013) Characteristics of crude oil biodegradation by biosurfactant-producing bacterium Bacillus subtilis JK-1. J Korean Soc Appl Biol Chem 56(2):193–200CrossRefGoogle Scholar
  96. Jutkina J, Heinaru E, Vedler E, Juhanson J, Heinaru A (2011) Occurrence of plasmids in the aromatic degrading bacterioplankton of the baltic sea. Genes (Basel) 2(4):853–868Google Scholar
  97. Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L (2002) Dinitrogen fixation in the world’s oceans. In: Boyer E, Howarth R (eds) The nitrogen cycle at regional to global scales. Springer, Netherlands, pp 47–98CrossRefGoogle Scholar
  98. Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3(4):246–255CrossRefGoogle Scholar
  99. Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633Google Scholar
  100. Kawai S, Kurokawa Y, Harino H, Fukushima M (1998) Degradation of tributyltin by a bacterial strain isolated from polluted river water. Environ Pollut 102(2–3):259–263CrossRefGoogle Scholar
  101. Khanolkar DS, Naik MM, Dubey SK (2014) Biotransformation of tributyltin chloride by Pseudomonas stutzeri strain DN2. Braz J Microbiol 45(4):1239–1245CrossRefGoogle Scholar
  102. Khanolkar D, Dubey SK, Naik MM (2015a) Biotransformation of tributyltin chloride to less toxic dibutyltin dichloride and monobutyltin trichloride by Klebsiella pneumoniae strain SD9. Int Biodeterior Biodegrad 104:212–218CrossRefGoogle Scholar
  103. Khanolkar D, Dubey SK, Naik MM (2015b) Tributyltin chloride (TBTCl)-enhanced exopolysaccharide and siderophore production in an estuarine Alcaligenes faecalis strain. Arch Environ Contam Toxicol 68:612–621Google Scholar
  104. Kim GB, Nakata H, Tanabe S (1998) In vitro inhibition of hepatic cytochrome P450 and enzyme activity by butyltin compounds in marine mammals. Environ Pollut 99(2):255–261CrossRefGoogle Scholar
  105. Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives. Front Microbiol 5(Article 603):1–11Google Scholar
  106. Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8(10):2029–2044CrossRefGoogle Scholar
  107. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449(7164):898–901CrossRefGoogle Scholar
  108. Kolukirik M, Ince O, Ince BK (2011) Increment in anaerobic hydrocarbon degradation activity of halic bay sediments via nutrient amendment. Microb Ecol 61(4):871–884CrossRefGoogle Scholar
  109. Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol 45(4):1298–1306CrossRefGoogle Scholar
  110. Kvenvolden KA, Cooper CK (2003) Natural seepage of crude oil into the marine environment. Geo-Mar Lett 23(3–4):140–146CrossRefGoogle Scholar
  111. LaMontagne MG, Leifer I, Bergmann S, Van De Werfhorst LC, Holden PA (2004) Bacterial diversity in marine hydrocarbon seep sediments. Environ Microbiol 6(8):799–808CrossRefGoogle Scholar
  112. Landmeyer JE, Tanner TL, Watt BE (2004) Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release. Environ Sci Technol 38(15):4106–4112CrossRefGoogle Scholar
  113. Laughlin RB Jr, French W, Guard HE (1986) Accumulation of bis (tributyltin) oxide by the marine mussel Mytilus edulis. Environ Sci Technol 20(9):884–890CrossRefGoogle Scholar
  114. Lee RF, Valkirs AO, Seligman PF (1989) Importance of microalgae in the biodegradation of tributyltin in estuarine waters. Environ Sci Technol 23(12):1515–1518CrossRefGoogle Scholar
  115. Lee SE, Chung JW, Won HS, Lee DS, Lee YW (2012) Removal of methylmercury and tributyltin (TBT) using marine microorganisms. Bull Environ Contam Toxicol 88:239–244Google Scholar
  116. Lewis M, Pryor R (2013) Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability. Environ Pollut 180:345–367CrossRefGoogle Scholar
  117. Lin X, Lu F, Chen Y, Liu N, Cao Y, Xu L, Wei Y, Feng L (2015) One-step breaking and separating emulsion by tungsten oxide coated mesh. ACS Appl Mater Inter 7(15):8108–8113CrossRefGoogle Scholar
  118. Louvado A, Coelho FJRC, Domingues P, Santos AL, Gomes NCM, Almeida A, Cunha A (2012) Isolation of surfactant-resistant Pseudomonads from the estuarine surface microlayer. J Microbiol Biotechnol 22(3):283–291CrossRefGoogle Scholar
  119. Louvado A, Gomes NC, Simões MM, Almeida A, Cleary DF, Cunha A (2015) Polycyclic aromatic hydrocarbons in deep sea sediments: microbe-pollutant interactions in a remote environment. Sci Total Environ 526:312–328CrossRefGoogle Scholar
  120. Lu X-Y, Li B, Zhang T, Fang HHP (2012) Enhanced anoxic bioremediation of PAHs-contaminated sediment. Bioresour Technol 104:51–58CrossRefGoogle Scholar
  121. Lucas J, Perrichon P, Nouhaud M, Audras A, Leguen I, Lefrancois C (2014) Aerobic metabolism and cardiac activity in the descendants of zebrafish exposed to pyrolytic polycyclic aromatic hydrocarbons. Environ Sci Pollut R 21(24):13888–13897CrossRefGoogle Scholar
  122. Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot 65(6):317–322CrossRefGoogle Scholar
  123. Maanan M, Zourarah B, Sahabi M, Maanan M, Le Roy P, Mehdi K, Salhi F (2015) Environmental risk assessment of the Moroccan Atlantic continental shelf: the role of the industrial and urban area. Sci Total Environ 511:407–415CrossRefGoogle Scholar
  124. Macaulay BM, Rees D (2014) Bioremediation of Oil Spills: A Review of Challenges for Research Advancement. Ann Environ Sci 8:9–37Google Scholar
  125. Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeter Biodegr 70:141–147CrossRefGoogle Scholar
  126. Massias D, Grossi V, Bertrand J-C (2003) In situ anaerobic degradation of petroleum alkanes in marine sediments: preliminary results. Compt Rendus Geosci 335(5):435–439Google Scholar
  127. Mbadinga SM, Wang L-Y, Zhou L, Liu J-F, Gu J-D, Mu B-Z (2011) Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegrad 65(1):1–13CrossRefGoogle Scholar
  128. McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opin Biotechnol 27:46–54CrossRefGoogle Scholar
  129. McGenity T, Folwell B, McKew B, Sanni G (2012a) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8(1):10CrossRefGoogle Scholar
  130. McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012b) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquatic Biosyst 8:10–28Google Scholar
  131. McInerney MJ, Javaheri M, Nagle DP Jr (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol 5(2–3):95–101CrossRefGoogle Scholar
  132. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375CrossRefGoogle Scholar
  133. Milinkovitch T, Kanan R, Thomas-Guyon H, Le Floch S (2011) Effects of dispersed oil exposure on the bioaccumulation of polycyclic aromatic hydrocarbons and the mortality of juvenile Liza ramada. Sci Total Environ 409(9):1643–1650CrossRefGoogle Scholar
  134. Moreira ITA, Oliveira OMC, Triguis JA, dos Santos AMP, Queiroz AFS, Martins CMS, Silva CS, Jesus RS (2011) Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchem J 99(2):376–382CrossRefGoogle Scholar
  135. Murata S, Takahashi S, Agusa T, Thomas NJ, Kannan K, Tanabe S (2008) Contamination status and accumulation profiles of organotins in sea otters (Enhydra lutris) found dead along the coasts of California, Washington, Alaska (USA), and Kamchatka (Russia). Mar Pollut Bull 56:641–649CrossRefGoogle Scholar
  136. Nafees M, Waseem A, Khan AR (2013) Comparative study of laterite and bentonite based organoclays: Implications of hydrophobic compounds remediation from aqueous solutions. Sci World J Article ID 681769Google Scholar
  137. National Academy of Science (2002) Oil in the sea III: inputs, fates and effects. The National Academies Press, Washington, D CGoogle Scholar
  138. Nikolopoulou M, Pasadakis N, Kalogerakis N (2007) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination 211(1–3):286–295CrossRefGoogle Scholar
  139. Notar M, Leskovšek H, Faganeli J (2001) Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediments of the gulf of Trieste, Northern Adriatic Sea. Mar Poll Bull 42(1):36–44CrossRefGoogle Scholar
  140. Nzila A (2013) Update on the co-metabolism of organic pollutants by bacteria. Environ Poll 178:474–482CrossRefGoogle Scholar
  141. O’Brien AL, Keough MJ (2014) Ecological responses to contamination: a meta-analysis of experimental marine studies. Environ Pollut 195:185–191CrossRefGoogle Scholar
  142. Okoro HK, Fatoki OS, Adekola HA, Ximba BJ, Snyman RG (2011) Sources, environmental levels and toxicity of organotin in marine environment – a review. Asian J Chem 23(2):473–482Google Scholar
  143. Oliveira V, Gomes NCM, Almeida A, Silva AMS, Silva H, Cunha  (2015) Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microb Ecol 69(1):1–12CrossRefGoogle Scholar
  144. Ommedal H, Torsvik T (2007) Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column. Int J Syst Evol Microbiol 57(12):2865–2869CrossRefGoogle Scholar
  145. Pedetta A, Pouyte K, Herrera Seitz MK, Babay PA, Espinosa M, Costagliola M, Studdert CA, Peressutti SR (2013) Phenanthrene degradation and strategies to improve its bioavailability to microorganisms isolated from brackish sediments. Int Biodeter Biodegr 84:161–167CrossRefGoogle Scholar
  146. Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1–3):81–89CrossRefGoogle Scholar
  147. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302(5653):2082–2086CrossRefGoogle Scholar
  148. Pfiffner S, McInerney M, Jenneman G, Knapp R (1986) Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer. Appl Environ Microbiol 51:1224–1229Google Scholar
  149. Polymenakou P, Bertilsson S, Tselepides A, Stephanou E (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50(3):447–462CrossRefGoogle Scholar
  150. Prince William Sound Regional Citizens’ Advisory Council (2015) Prince William sound regional citizens’ advisory council comments on 40 CFR parts 110 and 300, National Contingency Plan Subparts A and J. AlaskaGoogle Scholar
  151. Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FCY, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521–526CrossRefGoogle Scholar
  152. Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59(5):1444–1451Google Scholar
  153. Rahmanpour S, Ghorghani NF, Ashtiyani SML (2014) Heavy metal in water and aquatic organisms from different intertidal ecosystems, Persian Gulf. Environ Monit Assess 186(9):5401–5409CrossRefGoogle Scholar
  154. Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31(4):183–192CrossRefGoogle Scholar
  155. Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL (2011) Man and the last great wilderness: human impact on the deep sea. PLoS One 6(8):e22588CrossRefGoogle Scholar
  156. Ringelberg DB, Talley JW, Perkins EJ, Tucker SG, Luthy RG, Bouwer EJ, Fredrickson HL (2001) Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67(4):1542–1550CrossRefGoogle Scholar
  157. Roberts DA (2012) Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environ Int 40:230–243CrossRefGoogle Scholar
  158. Rocchetti L, Fonti V, Beolchini F, Dell’Anno A (2014) Bioremediation of contaminated marine sediments: examples of successful applications. Waste Manag Environ VII 180:335Google Scholar
  159. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490CrossRefGoogle Scholar
  160. Röling WFM, van Bodegom PM (2014) Toward quantitative understanding on microbial community structure and functioning: a modeling-centered approach using degradation of marine oil spills as example. Front Microbiol 5:125Google Scholar
  161. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13(3):249–252CrossRefGoogle Scholar
  162. Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27(0):191–194CrossRefGoogle Scholar
  163. Roy U, Bhosle S (2006) Microbial transformation of tributyltin chloride by Pseudomonas aeruginosa strain USS25 NCIM-5224. Appl Organomet Chem 20(1):5–11CrossRefGoogle Scholar
  164. Rudel H (2003) Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf 56(1):180–189CrossRefGoogle Scholar
  165. Rueter P, Rabus R, Wilkest H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (2004) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372(6505):455–458CrossRefGoogle Scholar
  166. Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Technol 45(17):1916–1945CrossRefGoogle Scholar
  167. Saint-Louis R, Pelletier E, Marsot P, Fournier R (1994) Distribution and effects of tributyltin chloride and its degradation products on the growth of the marine alga Pavlova lutheri in continuous culture. Water Res 28(12):2533–2544CrossRefGoogle Scholar
  168. Sakultantimetha A, Keenan HE, Beattie TK, Aspray TJ, Bangkedphol S, Songsasen A (2010) Acceleration of tributyltin biodegradation by sediment microorganisms under optimized environmental conditions. Int Biodeterior Biodegrad 64(6):467–473CrossRefGoogle Scholar
  169. Sakultantimetha A, Keenan HE, Beattie TK, Bangkedphol S, Cavoura O (2011) Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere 83(5):680–686CrossRefGoogle Scholar
  170. Santillo D, Johnston P, Langston WJ (2001) Tributyltin (TBT) antifoulants: a tale of ships, snails and imposex. In: Harremoes P, Gee D, MacGarvin M et al (eds) Late lessons from early warnings: the precautionary principle 1896–2000. European Environmental Agency, Copenhagen, pp 135–148Google Scholar
  171. Santos MM, Hallers-Tjabbes CCT, Santos AM, Vieira N (2002) Imposex in Nucella lapillus, a bioindicator for TBT contamination: re-survey along the Portuguese coast to monitor the effectiveness of EU regulation. J Sea Res 48(3):217–223CrossRefGoogle Scholar
  172. Schwacke LH, Smith CR, Townsend FI, Wells RS, Hart LB, Balmer BC, Collier TK, De Guise S, Fry MM, Guillette LJ Jr (2013) Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Environ Sci Technol 48(1):93–103CrossRefGoogle Scholar
  173. Sekizawa J, Suter Il G, Birnbaum L (2003) Integrated human and ecological risk assessment: a case study of tributyltin and triphenyltin compounds. Hum Ecol Risk Assess 9(1):325–342CrossRefGoogle Scholar
  174. Seo J-S, Keum Y-S, Li QX (2009) Bacterial degradation of aromatic hydrocarbons. Int J Environ Res Public Health 6:278–309CrossRefGoogle Scholar
  175. Shimasaki Y, Kitano T, Oshima Y, Inoue S, Imada N, Honjo T (2003) Tributyltin causes masculinization in fish. Environ Toxicol Chem 22(1):141–144CrossRefGoogle Scholar
  176. Siddique T, Penner T, Klassen J, Nesbo C, Foght JM (2012) Microbial communities involved in methane production from hydrocarbons in oil sands tailings. Environ Sci Technol 46(17):9802–9810Google Scholar
  177. Siegert M, Cichocka D, Herrmann S, Grundger F, Feisthauer S, Richnow H-H, Springael D, Kruger M (2011) Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron-and sulfate-reducing conditions. FEMS Microbiol Lett 315(1):6–16CrossRefGoogle Scholar
  178. Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN, Earl K, Adams PN, Zimmerman AR (2012) Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proc Natl Acad Sci 109(28):11234–11239CrossRefGoogle Scholar
  179. Singh AK, Sherry A, Gray ND, Jones DM, Bowler BF, Head IM (2014) Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments. Front Microbiol 5:(Article 160)Google Scholar
  180. Smith BS (1971) Sexuality in the American mud snail Nassarius obsoletus. Proc Malacolog Soc London 39:377–378Google Scholar
  181. So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65(7):2969–2976Google Scholar
  182. Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Micro 3(9):700–710Google Scholar
  183. Sorkhoh NA, Ali N, Dashti N, Al-Mailem DM, Al-Awadhi H, Eliyas M, Radwan SS (2010) Soil bacteria with the combined potential for oil utilization, nitrogen fixation, and mercury resistance. Int Biodeter Biodegr 64(3):226–231CrossRefGoogle Scholar
  184. Sousa ACA, Pastorinho MR, Takahashi S, Tanabe S (2013) Organotin compounds from snails to humans. In: Lichtfouse ESJ, Robert D (eds) Environmental chemistry for a sustainable world: pollutant diseases, remediation and recycling, vol 4. Springer, Switzerland, pp 215–275CrossRefGoogle Scholar
  185. Sternberg R, Gooding M, Hotchkiss A, LeBlanc G (2010) Environmental-endocrine control of reproductive maturation in gastropods: implications for the mechanism of tributyltin-induced imposex in prosobranchs. Ecotoxicology 19(1):4–23CrossRefGoogle Scholar
  186. Suárez-Suárez A, López-López A, Tovar-Sánchez A, Yarza P, Orfila A, Terrados J, Arnds J, Marqués S, Niemann H, Schmitt-Kopplin P (2011) Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Environ Microbiol 13(6):1488–1499CrossRefGoogle Scholar
  187. Suehiro F, Kobayashi T, Nonaka L, Tuyen BC, Suzuki S (2006) Degradation of tributyltin in microcosm using Mekong River sediment. Microb Ecol 52(1):19–25CrossRefGoogle Scholar
  188. Sun MY, Dafforn KA, Johnston EL, Brown MV (2013) Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol 15(9):2517–2531CrossRefGoogle Scholar
  189. Taha HM, Said HA, Abbas NH, Khaleafa AFM (2009) Biosorption and biodegradation of the antifouling compound tributyltin (TBT) by microalgae. Am Eurasian J Sci Res 4(1):1–6Google Scholar
  190. Takeuchi I, Takahashi S, Tanabe S, Miyazaki N (2001) Caprella watch: a new approach for monitoring butyltin residues in the ocean. Mar Environ Res 52(2):97–113CrossRefGoogle Scholar
  191. Tang YJ, Carpenter S, Deming J, Krieger-Brockett B (2005) Controlled release of nitrate and sulfate to enhance anaerobic bioremediation of phenanthrene in marine sediments. Environ Sci Technol 39(9):3368–3373CrossRefGoogle Scholar
  192. Tang X, He L, Tao X, Dang Z, Guo C, Lu G, Yi X (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181(1–3):1158–1162CrossRefGoogle Scholar
  193. Tareq FS, Lee H-S, Lee Y-J, Lee JS, Shin HJ (2015) Ieodoglucomide C and ieodoglycolipid, new glycolipids from a marine-derived bacterium Bacillus licheniformis 09IDYM23. Lipids 50(5):513–519CrossRefGoogle Scholar
  194. Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2006) Biodegradation of crude oil by nitrogen fixing marine bacteria Azotobacter chroococcum. Res J Microbiol 1(5):401–408CrossRefGoogle Scholar
  195. Tixier C, Sancelme M, Aıt-Aıssa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46(4):519–526CrossRefGoogle Scholar
  196. Toccalino PL, Johnson RL, Boone DR (1993) Nitrogen limitation and nitrogen fixation during alkane biodegradation in a sandy soil. Appl Environ Microbiol 59(9):2977–2983Google Scholar
  197. Tsang CK, Lau PS, Tam NFY, Wong YS (1999) Biodegradation capacity of tributyltin by two Chlorella species. Environ Pollut 105(3):289–297CrossRefGoogle Scholar
  198. United States Environmental Protection Agency (2015) U.S. Environmental protection agency national contingency plan product schedule. EPA,Washington, DCGoogle Scholar
  199. Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C (2012) Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 96:270–276CrossRefGoogle Scholar
  200. Vallero DA (2010) Applied microbial ecology. Environmental biotechnology. Academic, San DiegoGoogle Scholar
  201. van Beilen JB, Panke S, Lucchini S, Franchini AG (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630CrossRefGoogle Scholar
  202. Vázquez JA, Rial D (2014) Inhibition of selected bacterial growth by three hydrocarbons: mathematical evaluation of toxicity using a toxicodynamic equation. Chemosphere 112:56–61CrossRefGoogle Scholar
  203. Vieira LR, Guilhermino L (2012) Multiple stress effects on marine planktonic organisms: influence of temperature on the toxicity of polycyclic aromatic hydrocarbons to Tetraselmis chuii. J Sea Res 72:94–98CrossRefGoogle Scholar
  204. Vila J, Nieto J, Mertens J, Springael D, Grifoll M (2010) Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol Ecol 73:349–362Google Scholar
  205. Vilela WFD, Fonseca SG, Fantinatti-Garboggini F, Oliveira VM, Nitschke M (2014) Production and properties of a surface-active lipopeptide produced by a new marine Brevibacterium luteolum strain. Appl Biochem Biotechnol 174(6):2245–2256CrossRefGoogle Scholar
  206. von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552CrossRefGoogle Scholar
  207. Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10(8):1948–1963CrossRefGoogle Scholar
  208. Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12(3):237–241CrossRefGoogle Scholar
  209. Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72(2):179–197CrossRefGoogle Scholar
  210. Weelink SAB, van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biol Technol 9(4):359–385Google Scholar
  211. Weiner JM, Lovley DR (1998) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl Environ Microbiol 64(5):1937–1939Google Scholar
  212. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276CrossRefGoogle Scholar
  213. Xie Y, Su R, Zhang L, Wang X A study on biosorption and biodegradation of tributyltin by two red tide microalgae. In: International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), 2011, Nanjing, China, 24–26 June 2011. pp 7331–7334Google Scholar
  214. Yakimov M, Timmis K, Golyshin P (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266CrossRefGoogle Scholar
  215. Yang T, Nigro LM, Gutierrez T, D’Ambrosio L, Joye SB, Highsmith R, Teske A (2014) Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep Sea Res II (in press) http://dx.doi.org/10.1016/j.dsr2.2014.01.014i
  216. Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51(8):1071–1077CrossRefGoogle Scholar
  217. Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401(6750):266–269CrossRefGoogle Scholar
  218. Zhang Z, Lo IMC (2015) Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community. Appl Microbiol Biotechnol 99:5683–5696Google Scholar
  219. Zhang Z, Zheng G, Lo IMC (2014) Enhancement of nitrate-induced bioremediation in marine sediments contaminated with petroleum hydrocarbons by using microemulsions. Environ Sci Pollut 22:8296–8306Google Scholar
  220. Zhang G, Pan Z, Wang X, Mo X, Li X (2015) Distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the food web of Nansi Lake, China. Environ Monit Assess 187(4):1–12Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Andreia Cruz
    • 1
    Email author
  • Ana Julia Cavaleiro
    • 2
  • Ana M. S. Paulo
    • 2
  • António Louvado
    • 1
  • M. Madalena Alves
    • 2
  • Adelaide Almeida
    • 1
  • Ângela Cunha
    • 1
  1. 1.Biology Department & Centre for Environmental and Marine Studies (CESAM)University of AveiroAveiroPortugal
  2. 2.Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations