Skip to main content

Microbial Remediation of Organometals and Oil Hydrocarbons in the Marine Environment

  • Chapter
  • First Online:
Marine Pollution and Microbial Remediation

Abstract

Marine environments are exposed to pollution that mostly results from human activities. Organometals and oil hydrocarbons are among the most hazardous pollutants. In surface waters and along the water column, these compounds are more easily degraded than in sediments, especially under anoxic conditions, where they are highly persistent. Due to their negative impact in living organisms, decontamination of polluted marine sites with minimum collateral impacts is imperative. Bioremediation strategies, benefiting from the ability of aerobic and anaerobic microorganisms to degrade organometals or oil hydrocarbons to simpler and less toxic derivatives, represent an alternative to traditional physicochemical decontamination methods. Different bioremediation strategies have been applied in marine environments, including monitored natural recovery, biostimulation, bioaugmentation and phytoremediation. Individual microbial agents or mixed microbial consortia able to remediate these pollutants in marine environments have been identified, and the most relevant mechanisms of biodegradation of pollutants are characterised.

This chapter provides an overview on microbial bioremediation of organometals and oil hydrocarbons in marine environments, focusing on the bioremediation concept, microbial aerobic/anaerobic agents, metabolic pathways and genetic determinants involved in the degradation/transformation processes while highlighting the importance of microbial consortia and their applications. A critical analysis of the advantages and limitations of microbial remediation and a perspective on future developments are also provided.

*Both authors contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman D, Hinga KR, Pilson MEQ (1990) Biogeochemistry of butyltins in an enclosed marine ecosystem. Environ Sci Technol 24(7):1027–1032

    Article  CAS  Google Scholar 

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156(1):5–14

    Article  CAS  Google Scholar 

  • Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170(5):361–369

    Article  CAS  Google Scholar 

  • Aitken C, Jones D, Maguire M, Gray N, Sherry A, Bowler B, Ditchfield A, Larter S, Head I (2013) Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochim Cosmochim Acta 109:162–174

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Salamah S, Eliyas M, Radwan SS (2010) Oil-bioremediation potential of Arabian Gulf mud flats rich in diazotrophic hydrocarbon-utilizing bacteria. Int Biodeter Biodegr 64(3):218–225

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17(3):463–470

    Article  CAS  Google Scholar 

  • Alzieu C (1998) Tributyltin: case study of a chronic contaminant in the coastal environment. Ocean Coast Manag 40(1):23–36

    Article  Google Scholar 

  • Alzieu C (2000) Impact of tributyltin on marine invertebrates. Ecotoxicology 9(1–2):71–76

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34(2):292–308

    Article  CAS  Google Scholar 

  • Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31(4):178–182

    Article  CAS  Google Scholar 

  • Ayanda OS, Fatoki OS, Adekola FA, Ximba BJ (2012) Fate and remediation of organotin compounds in seawaters and soils. Chem Sci Trans 1(3):470–481

    Article  CAS  Google Scholar 

  • Barron MG (2012) Ecological impacts of the deepwater horizon oil spill: implications for immunotoxicity. Toxicol Pathol 40(2):315–320

    Article  CAS  Google Scholar 

  • Barroso CM, Moreira MH (2002) Spatial and temporal changes of TBT pollution along the Portuguese coast: inefficacy of the EEC directive 89/677. Mar Pollut Bull 44(6):480–486

    Article  CAS  Google Scholar 

  • Barroso C, Moreira M, Bebianno M (2002) Imposex, female sterility and organotin contamination of the prosobranch Nassarius reticulatus from the Portuguese coast. Mar Ecol Prog Ser 230:127–135

    Article  Google Scholar 

  • Barug D (1981) Microbial degradation of bis(tributyltin) oxide. Chemosphere 10(10):1145–1154

    Article  CAS  Google Scholar 

  • Batel R, Bihari N, Rinkevich B, Dapper J, Schacke H, Schroder HC, Muller WEG (1993) Modulation of organotin-induced apoptosis by the water pollutant methyl mercury in a human lymphoblastoid tumor cell line and a marine sponge. Mar Ecol Prog Ser Oldendorf 93(3):245–251

    Article  Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60(4):1227–1231

    CAS  Google Scholar 

  • Bejarano AC, Michel J (2010) Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill. Environ Pollut 158(5):1561–1569

    Article  CAS  Google Scholar 

  • Bellas J, Saco-Álvarez L, Nieto Ó, Bayona JM, Albaigés J, Beiras R (2013) Evaluation of artificially-weathered standard fuel oil toxicity by marine invertebrate embryogenesis bioassays. Chemosphere 90(3):1103–1108

    Article  CAS  Google Scholar 

  • Ben Said O, Goñi-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R (2008) Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 104(4):987–997

    Article  CAS  Google Scholar 

  • Bernat P, Dlugonski J (2006) Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamella elegans. Chemosphere 62(1):3–8

    Article  CAS  Google Scholar 

  • Bianchi V, Masciandaro G, Ceccanti B, Doni S, Iannelli R (2010) Phytoremediation and bio-physical conditioning of dredged marine sediments for their re-use in the environment. Water Air Soil Pollut 210(1–4):187–195

    Article  CAS  Google Scholar 

  • Bik HM, Halanych KM, Sharma J, Thomas WK (2012) Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill. PLoS One 7(6):e38550

    Article  CAS  Google Scholar 

  • Boonchan S, Britz M, Stanley G (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Boopathy R (2003) Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions. Bioresour Technol 86(2):171–175

    Article  CAS  Google Scholar 

  • Bouchez M, Blanchet D, Bardin V, Haeseler F, Vandecasteele J-P (1999) Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation 10(6):429–435

    Article  CAS  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  • Brandsch R, Nowak KE, Binder N, Jastorff B (2001) Investigations concerning the sustainability of remediation by land deposition of tributyltin contaminated harbour sediments. J Soils Sediment 1(4):234–236

    Article  CAS  Google Scholar 

  • Brundrett M, Horita J, Anderson T, Pardue J, Reible D, Jackson WA (2015) The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments. Environ Sci Pollut 22:15377–15385

    Google Scholar 

  • Carson RT, Mitchell RC, Hanemann WM, Kopp RJ, Presser S, Ruud PA (1992) A contingent valuation study of lost passive use values resulting from the Exxon Valdez oil spill. University Library of Munich, Germany

    Google Scholar 

  • Chakrabarty A (1992) Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof 1980. Biotechnology 24:535–545

    CAS  Google Scholar 

  • Chronopoulou P-M, Fahy A, Coulon F, Païssé S, Goñi-Urriza M, Peperzak L, Acuña Alvarez L, McKew BA, Lawson T, Timmis KN, Duran R, Underwood GJC, McGenity TJ (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms. Environ Microbiol 15(1):242–252

    Article  CAS  Google Scholar 

  • Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63(9):3589–3593

    CAS  Google Scholar 

  • Coelho FJRC, Cleary DFR, Rocha RJM, Calado R, Castanheira JM, Rocha SM, Silva A, Simões MMQ, Oliveira V, Lillebo AI (2015) Unraveling the interactive effects of climate change and oil contamination on laboratory-simulated estuarine benthic communities. Global Chang Biol 21(5):1871–1886

    Article  Google Scholar 

  • Cooney JJ (1995) Organotin compounds and aquatic bacteria: a review. Helgol Mar Res 49(1):663–677

    Google Scholar 

  • Cooney JJ, Wuertz S (1989) Toxic effects of tin-compounds on microorganisms. J Ind Microbiol 4(5):375–402

    Article  CAS  Google Scholar 

  • Craig P (2003) Organometallic compounds in the environment, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Réa A (2004) Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane-and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54(1):77–83

    Article  CAS  Google Scholar 

  • Cruz A, Caetano T, Suzuki S, Mendo S (2007) Aeromonas veronii, a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal. Mar Environ Res 64:639–650

    Article  CAS  Google Scholar 

  • Cruz A, Oliveira V, Baptista I, Almeida A, Cunha A, Suzuki S, Mendo S (2012) Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria. Environ Toxicol 27(1):11–17

    Article  CAS  Google Scholar 

  • Cruz A, Henriques I, Sousa ACA, Baptista I, Almeida A, Takahashi S, Tanabe S, Correia A, Suzuki S, Anselmo AM (2014) A microcosm approach to evaluate the degradation of tributyltin (TBT) by Aeromonas molluscorum Av27 in estuarine sediments. Environ Res 132:430–437

    Article  CAS  Google Scholar 

  • Cruz A, Anselmo AM, Suzuki S, Mendo S (2015) Tributyltin (TBT): a review on microbial resistance and degradation. Crit Rev Environ Sci Technol 45(9):970–1006

    Article  CAS  Google Scholar 

  • Cruz-Uribe O, Rorrer GL (2006) Uptake and biotransformation of 2, 4, 6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii. Biotechnol Bioeng 93(3):401–412

    Article  CAS  Google Scholar 

  • Cui Z, Xu G, Gao W, Li Q, Yang B, Yang G, Zheng L (2014) Isolation and characterization of Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and fluoranthene by their syntrophic association with Marinobacter strains. Int Biodeter Biodegr 91:45–51

    Article  CAS  Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28(1–2):103–110

    Article  CAS  Google Scholar 

  • Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465

    Article  CAS  Google Scholar 

  • Dai S, Huang G, Chen C (1998) Fate of 14C-labeled tributyltin in an estuarine microcosm. Appl Organomet Chem 12:585–590

    Article  CAS  Google Scholar 

  • Dashti N, Ali N, Eliyas M, Khanafer M, Sorkhoh NA, Radwan SS (2015) Most hydrocarbonoclastic bacteria in the total environment are diazotrophic, which highlights their value in the bioremediation of hydrocarbon contaminants. Microbes Environ 30(1):70–75

    Article  Google Scholar 

  • de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19(6):579–589

    Article  CAS  Google Scholar 

  • Dell’Anno A, Beolchini F, Rocchetti L, Luna GM, Danovaro R (2012) High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments. Environ Pollut 167:85–92

    Article  CAS  Google Scholar 

  • Dolfing J, Larter S, Head I (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452

    Article  CAS  Google Scholar 

  • Du J, Chadalavada S, Chen Z, Naidu R (2014) Environmental remediation techniques of tributyltin contamination in soil and water: a review. Chem Eng J 235:141–150

    Article  CAS  Google Scholar 

  • Dubey SK, Roy U (2003) Biodegradation of tributyltins (organotins) by marine bacteria. Appl Organomet Chem 17(1):3–8

    Article  CAS  Google Scholar 

  • Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, M Piceno Y, Reid FC, Stringfellow WT (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47(19):10860–10867

    Article  CAS  Google Scholar 

  • Dusane DH, Pawar VS, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarde SS (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27(6):645–654

    Article  CAS  Google Scholar 

  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    Article  CAS  Google Scholar 

  • EC (2002) Official Journal of the European Community 2002, Commission Directive 2002/62/EC of 9 July 2002. vol LI 83. European Community

    Google Scholar 

  • Evans SM (1999) Tributyltin pollution: the catastrophe that never happened. Mar Pollut Bull 38(8):629–636

    Article  CAS  Google Scholar 

  • Evans SM, Birchenough AC, Brancato MS (2000) The TBT ban: out of the frying pan into the fire? Mar Pollut Bull 40(3):204–211

    Article  CAS  Google Scholar 

  • Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26(1):3–117

    Article  Google Scholar 

  • Festa S, Coppotelli BM, Morelli IS (2013) Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil. Int Biodeter Biodegr 85:42–51

    Article  CAS  Google Scholar 

  • Frache R, Rivaro P (2000) Occurence, pathways and bioaccumulation of organometallic compounds in marine environments. In: Gianguzza A, Ezio P, Sammartano S (eds) Chemical processes in marine environments, vol Part III. Environmental science. Springer, Berlin, pp 201–211

    Chapter  Google Scholar 

  • Friello DA, Mylroie JR, Chakrabarty AM (2001) Use of genetically engineered multi-plasmid microorganisms for rapid degradation of fuel hydrocarbons. Int Biodeterior Biodegrad 48(1):233–242

    Article  CAS  Google Scholar 

  • Gadd GM (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11(4):297–316

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258(1–2):119–127

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2–4):109–119

    Article  CAS  Google Scholar 

  • Gallego S, Vila J, Tauler M, Nieto J, Breugelmans P, Springael D, Grifoll M (2013) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25:543–556

    Google Scholar 

  • García MT, Campos E, Marsal A, Ribosa I (2009) Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Res 43(2):295–302

    Article  CAS  Google Scholar 

  • Genovese M, Crisafi F, Denaro R, Cappello S, Russo D, Calogero R, Santisi S, Catalfamo M, Modica A, Smedile F (2014) Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Front Microbiol 5:(Article 162)

    Google Scholar 

  • Gray ND, Sherry A, Grant RJ, Rowan AK, Hubert CRJ, Callbeck CM, Aitken CM, Jones DM, Adams JJ, Larter SR (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13(11):2957–2975

    Article  CAS  Google Scholar 

  • Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A (2008) Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary. Org Geochem 39(8):1197–1203

    Article  CAS  Google Scholar 

  • Guitart C, García-Flor N, Bayona JM, Albaigés J (2007) Occurrence and fate of polycyclic aromatic hydrocarbons in the coastal surface microlayer. Mar Pollut Bull 54(2):186–194

    Article  CAS  Google Scholar 

  • Guitart C, García-Flor N, Miquel JC, Fowler SW, Albaigés J (2010) Effect of the accumulation of polycyclic aromatic hydrocarbons in the sea surface microlayer on their coastal air-sea exchanges. J Mar Syst 79(1–2):210–217

    Article  Google Scholar 

  • Haehnel J, Jeschek J, Schulz-Bull DE (2014) Quantitative determination of microbial oil degradation and of oil absorption by a new oil-binding system in a Baltic Sea mesocosm experiment. Int Oil Spill Conf Proc 2014(1):1059–1072

    Article  Google Scholar 

  • Hamada-Sato N, Asuka T, Kobayashi T, Imada C, Mizuishi K, Takeuchi M, Watanabe E (2002) Degradation of tributyltin by marine microorganisms in sediment collected from Tokyo Bay. Fish Sci 68(No. Sup 1):643–644

    Google Scholar 

  • Han Z, Sani B, Akkanen J, Abel S, Nybom I, Karapanagioti HK, Werner D (2015) A critical evaluation of magnetic activated carbon’s potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons. J Hazard Mater 286:41–47

    Article  CAS  Google Scholar 

  • Hanson BT, Yagi JM, Jeon CO, Madsen EM (2012) Role of nitrogen fixation in the autecology of Polaromonas naphthalenivorans in contaminated sediments. Environ Microbiol 14(6):1544–1557

    Article  CAS  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosselló-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65(3):999–1004

    CAS  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208

    Article  CAS  Google Scholar 

  • Head IM, Swannell RPJ (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol 10(3):234–239

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182

    Article  CAS  Google Scholar 

  • Head IM, Gray ND, Larter SR (2014) Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Front Microbiol 5(Article 566):1–23

    Google Scholar 

  • Hoch M (2001) Organotin compounds in the environment – an overview. Appl Geochem 16(7–8):719–743

    Article  CAS  Google Scholar 

  • Holmes DE, Risso C, Smith JA, Lovley DR (2011) Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 77(17):5926–5933

    Article  CAS  Google Scholar 

  • Huang L, Pu X, Pan J-F, Wang B (2013) Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea. Chemosphere 93(9):1957–1964

    Article  CAS  Google Scholar 

  • HuiJie L, CaiYun Y, Yun T, GuangHui L, TianLing Z (2011) Using population dynamics analysis by DGGE to design the bacterial consortium isolated from mangrove sediments for biodegradation of PAHs. Int Biodeter Biodegr 65(2):269–275

    Article  CAS  Google Scholar 

  • IMO (2001) International convention on the control of harmful anti-fouling systems on ships AFS/CONF/26. International Maritime Organization, London

    Google Scholar 

  • Incardona JP, Swarts TL, Edmunds RC, Linbo TL, Aquilina-Beck A, Sloan CA, Gardner LD, Block BA, Scholz NL (2013) Exxon Valdez to deepwater horizon: comparable toxicity of both crude oils to fish early life stages. Aquat Toxicol 142:303–316

    Article  CAS  Google Scholar 

  • International Energy Agency (2015) Oil market report. Accessed on 30 Apr 2015

    Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8

    Article  CAS  Google Scholar 

  • Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7(5):885–895

    Article  CAS  Google Scholar 

  • Jiménez J, Miñambres B, García J, Díaz E (2004) Genomic insights in the metabolism of aromatic compounds in Pseudomonas. In: Ramos J-L (ed) Pseudomonas. Springer, US, pp 425–462

    Chapter  Google Scholar 

  • Jiménez N, Viñas M, Bayona JM, Albaiges J, Solanas AM (2007) The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. Appl Microbiol Biotechnol 77(4):935–945

    Article  CAS  Google Scholar 

  • Joo M, Kim J (2013) Characteristics of crude oil biodegradation by biosurfactant-producing bacterium Bacillus subtilis JK-1. J Korean Soc Appl Biol Chem 56(2):193–200

    Article  CAS  Google Scholar 

  • Jutkina J, Heinaru E, Vedler E, Juhanson J, Heinaru A (2011) Occurrence of plasmids in the aromatic degrading bacterioplankton of the baltic sea. Genes (Basel) 2(4):853–868

    CAS  Google Scholar 

  • Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L (2002) Dinitrogen fixation in the world’s oceans. In: Boyer E, Howarth R (eds) The nitrogen cycle at regional to global scales. Springer, Netherlands, pp 47–98

    Chapter  Google Scholar 

  • Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3(4):246–255

    Article  CAS  Google Scholar 

  • Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633

    Google Scholar 

  • Kawai S, Kurokawa Y, Harino H, Fukushima M (1998) Degradation of tributyltin by a bacterial strain isolated from polluted river water. Environ Pollut 102(2–3):259–263

    Article  CAS  Google Scholar 

  • Khanolkar DS, Naik MM, Dubey SK (2014) Biotransformation of tributyltin chloride by Pseudomonas stutzeri strain DN2. Braz J Microbiol 45(4):1239–1245

    Article  CAS  Google Scholar 

  • Khanolkar D, Dubey SK, Naik MM (2015a) Biotransformation of tributyltin chloride to less toxic dibutyltin dichloride and monobutyltin trichloride by Klebsiella pneumoniae strain SD9. Int Biodeterior Biodegrad 104:212–218

    Article  CAS  Google Scholar 

  • Khanolkar D, Dubey SK, Naik MM (2015b) Tributyltin chloride (TBTCl)-enhanced exopolysaccharide and siderophore production in an estuarine Alcaligenes faecalis strain. Arch Environ Contam Toxicol 68:612–621

    Google Scholar 

  • Kim GB, Nakata H, Tanabe S (1998) In vitro inhibition of hepatic cytochrome P450 and enzyme activity by butyltin compounds in marine mammals. Environ Pollut 99(2):255–261

    Article  CAS  Google Scholar 

  • Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives. Front Microbiol 5(Article 603):1–11

    Google Scholar 

  • Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8(10):2029–2044

    Article  CAS  Google Scholar 

  • Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449(7164):898–901

    Article  CAS  Google Scholar 

  • Kolukirik M, Ince O, Ince BK (2011) Increment in anaerobic hydrocarbon degradation activity of halic bay sediments via nutrient amendment. Microb Ecol 61(4):871–884

    Article  CAS  Google Scholar 

  • Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol 45(4):1298–1306

    Article  CAS  Google Scholar 

  • Kvenvolden KA, Cooper CK (2003) Natural seepage of crude oil into the marine environment. Geo-Mar Lett 23(3–4):140–146

    Article  CAS  Google Scholar 

  • LaMontagne MG, Leifer I, Bergmann S, Van De Werfhorst LC, Holden PA (2004) Bacterial diversity in marine hydrocarbon seep sediments. Environ Microbiol 6(8):799–808

    Article  Google Scholar 

  • Landmeyer JE, Tanner TL, Watt BE (2004) Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release. Environ Sci Technol 38(15):4106–4112

    Article  CAS  Google Scholar 

  • Laughlin RB Jr, French W, Guard HE (1986) Accumulation of bis (tributyltin) oxide by the marine mussel Mytilus edulis. Environ Sci Technol 20(9):884–890

    Article  CAS  Google Scholar 

  • Lee RF, Valkirs AO, Seligman PF (1989) Importance of microalgae in the biodegradation of tributyltin in estuarine waters. Environ Sci Technol 23(12):1515–1518

    Article  CAS  Google Scholar 

  • Lee SE, Chung JW, Won HS, Lee DS, Lee YW (2012) Removal of methylmercury and tributyltin (TBT) using marine microorganisms. Bull Environ Contam Toxicol 88:239–244

    Google Scholar 

  • Lewis M, Pryor R (2013) Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability. Environ Pollut 180:345–367

    Article  CAS  Google Scholar 

  • Lin X, Lu F, Chen Y, Liu N, Cao Y, Xu L, Wei Y, Feng L (2015) One-step breaking and separating emulsion by tungsten oxide coated mesh. ACS Appl Mater Inter 7(15):8108–8113

    Article  CAS  Google Scholar 

  • Louvado A, Coelho FJRC, Domingues P, Santos AL, Gomes NCM, Almeida A, Cunha A (2012) Isolation of surfactant-resistant Pseudomonads from the estuarine surface microlayer. J Microbiol Biotechnol 22(3):283–291

    Article  CAS  Google Scholar 

  • Louvado A, Gomes NC, Simões MM, Almeida A, Cleary DF, Cunha A (2015) Polycyclic aromatic hydrocarbons in deep sea sediments: microbe-pollutant interactions in a remote environment. Sci Total Environ 526:312–328

    Article  CAS  Google Scholar 

  • Lu X-Y, Li B, Zhang T, Fang HHP (2012) Enhanced anoxic bioremediation of PAHs-contaminated sediment. Bioresour Technol 104:51–58

    Article  CAS  Google Scholar 

  • Lucas J, Perrichon P, Nouhaud M, Audras A, Leguen I, Lefrancois C (2014) Aerobic metabolism and cardiac activity in the descendants of zebrafish exposed to pyrolytic polycyclic aromatic hydrocarbons. Environ Sci Pollut R 21(24):13888–13897

    Article  CAS  Google Scholar 

  • Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot 65(6):317–322

    Article  CAS  Google Scholar 

  • Maanan M, Zourarah B, Sahabi M, Maanan M, Le Roy P, Mehdi K, Salhi F (2015) Environmental risk assessment of the Moroccan Atlantic continental shelf: the role of the industrial and urban area. Sci Total Environ 511:407–415

    Article  CAS  Google Scholar 

  • Macaulay BM, Rees D (2014) Bioremediation of Oil Spills: A Review of Challenges for Research Advancement. Ann Environ Sci 8:9–37

    Google Scholar 

  • Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeter Biodegr 70:141–147

    Article  CAS  Google Scholar 

  • Massias D, Grossi V, Bertrand J-C (2003) In situ anaerobic degradation of petroleum alkanes in marine sediments: preliminary results. Compt Rendus Geosci 335(5):435–439

    Google Scholar 

  • Mbadinga SM, Wang L-Y, Zhou L, Liu J-F, Gu J-D, Mu B-Z (2011) Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegrad 65(1):1–13

    Article  CAS  Google Scholar 

  • McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opin Biotechnol 27:46–54

    Article  CAS  Google Scholar 

  • McGenity T, Folwell B, McKew B, Sanni G (2012a) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8(1):10

    Article  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012b) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquatic Biosyst 8:10–28

    Google Scholar 

  • McInerney MJ, Javaheri M, Nagle DP Jr (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol 5(2–3):95–101

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  Google Scholar 

  • Milinkovitch T, Kanan R, Thomas-Guyon H, Le Floch S (2011) Effects of dispersed oil exposure on the bioaccumulation of polycyclic aromatic hydrocarbons and the mortality of juvenile Liza ramada. Sci Total Environ 409(9):1643–1650

    Article  CAS  Google Scholar 

  • Moreira ITA, Oliveira OMC, Triguis JA, dos Santos AMP, Queiroz AFS, Martins CMS, Silva CS, Jesus RS (2011) Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchem J 99(2):376–382

    Article  CAS  Google Scholar 

  • Murata S, Takahashi S, Agusa T, Thomas NJ, Kannan K, Tanabe S (2008) Contamination status and accumulation profiles of organotins in sea otters (Enhydra lutris) found dead along the coasts of California, Washington, Alaska (USA), and Kamchatka (Russia). Mar Pollut Bull 56:641–649

    Article  CAS  Google Scholar 

  • Nafees M, Waseem A, Khan AR (2013) Comparative study of laterite and bentonite based organoclays: Implications of hydrophobic compounds remediation from aqueous solutions. Sci World J Article ID 681769

    Google Scholar 

  • National Academy of Science (2002) Oil in the sea III: inputs, fates and effects. The National Academies Press, Washington, D C

    Google Scholar 

  • Nikolopoulou M, Pasadakis N, Kalogerakis N (2007) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination 211(1–3):286–295

    Article  CAS  Google Scholar 

  • Notar M, Leskovšek H, Faganeli J (2001) Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediments of the gulf of Trieste, Northern Adriatic Sea. Mar Poll Bull 42(1):36–44

    Article  CAS  Google Scholar 

  • Nzila A (2013) Update on the co-metabolism of organic pollutants by bacteria. Environ Poll 178:474–482

    Article  CAS  Google Scholar 

  • O’Brien AL, Keough MJ (2014) Ecological responses to contamination: a meta-analysis of experimental marine studies. Environ Pollut 195:185–191

    Article  CAS  Google Scholar 

  • Okoro HK, Fatoki OS, Adekola HA, Ximba BJ, Snyman RG (2011) Sources, environmental levels and toxicity of organotin in marine environment – a review. Asian J Chem 23(2):473–482

    CAS  Google Scholar 

  • Oliveira V, Gomes NCM, Almeida A, Silva AMS, Silva H, Cunha  (2015) Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microb Ecol 69(1):1–12

    Article  CAS  Google Scholar 

  • Ommedal H, Torsvik T (2007) Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column. Int J Syst Evol Microbiol 57(12):2865–2869

    Article  CAS  Google Scholar 

  • Pedetta A, Pouyte K, Herrera Seitz MK, Babay PA, Espinosa M, Costagliola M, Studdert CA, Peressutti SR (2013) Phenanthrene degradation and strategies to improve its bioavailability to microorganisms isolated from brackish sediments. Int Biodeter Biodegr 84:161–167

    Article  CAS  Google Scholar 

  • Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1–3):81–89

    Article  CAS  Google Scholar 

  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302(5653):2082–2086

    Article  CAS  Google Scholar 

  • Pfiffner S, McInerney M, Jenneman G, Knapp R (1986) Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer. Appl Environ Microbiol 51:1224–1229

    CAS  Google Scholar 

  • Polymenakou P, Bertilsson S, Tselepides A, Stephanou E (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50(3):447–462

    Article  CAS  Google Scholar 

  • Prince William Sound Regional Citizens’ Advisory Council (2015) Prince William sound regional citizens’ advisory council comments on 40 CFR parts 110 and 300, National Contingency Plan Subparts A and J. Alaska

    Google Scholar 

  • Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FCY, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521–526

    Article  CAS  Google Scholar 

  • Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59(5):1444–1451

    CAS  Google Scholar 

  • Rahmanpour S, Ghorghani NF, Ashtiyani SML (2014) Heavy metal in water and aquatic organisms from different intertidal ecosystems, Persian Gulf. Environ Monit Assess 186(9):5401–5409

    Article  CAS  Google Scholar 

  • Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31(4):183–192

    Article  CAS  Google Scholar 

  • Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL (2011) Man and the last great wilderness: human impact on the deep sea. PLoS One 6(8):e22588

    Article  CAS  Google Scholar 

  • Ringelberg DB, Talley JW, Perkins EJ, Tucker SG, Luthy RG, Bouwer EJ, Fredrickson HL (2001) Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67(4):1542–1550

    Article  CAS  Google Scholar 

  • Roberts DA (2012) Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environ Int 40:230–243

    Article  CAS  Google Scholar 

  • Rocchetti L, Fonti V, Beolchini F, Dell’Anno A (2014) Bioremediation of contaminated marine sediments: examples of successful applications. Waste Manag Environ VII 180:335

    CAS  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490

    Article  CAS  Google Scholar 

  • Röling WFM, van Bodegom PM (2014) Toward quantitative understanding on microbial community structure and functioning: a modeling-centered approach using degradation of marine oil spills as example. Front Microbiol 5:125

    Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13(3):249–252

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27(0):191–194

    Article  CAS  Google Scholar 

  • Roy U, Bhosle S (2006) Microbial transformation of tributyltin chloride by Pseudomonas aeruginosa strain USS25 NCIM-5224. Appl Organomet Chem 20(1):5–11

    Article  CAS  Google Scholar 

  • Rudel H (2003) Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf 56(1):180–189

    Article  CAS  Google Scholar 

  • Rueter P, Rabus R, Wilkest H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (2004) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372(6505):455–458

    Article  Google Scholar 

  • Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Technol 45(17):1916–1945

    Article  CAS  Google Scholar 

  • Saint-Louis R, Pelletier E, Marsot P, Fournier R (1994) Distribution and effects of tributyltin chloride and its degradation products on the growth of the marine alga Pavlova lutheri in continuous culture. Water Res 28(12):2533–2544

    Article  CAS  Google Scholar 

  • Sakultantimetha A, Keenan HE, Beattie TK, Aspray TJ, Bangkedphol S, Songsasen A (2010) Acceleration of tributyltin biodegradation by sediment microorganisms under optimized environmental conditions. Int Biodeterior Biodegrad 64(6):467–473

    Article  CAS  Google Scholar 

  • Sakultantimetha A, Keenan HE, Beattie TK, Bangkedphol S, Cavoura O (2011) Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere 83(5):680–686

    Article  CAS  Google Scholar 

  • Santillo D, Johnston P, Langston WJ (2001) Tributyltin (TBT) antifoulants: a tale of ships, snails and imposex. In: Harremoes P, Gee D, MacGarvin M et al (eds) Late lessons from early warnings: the precautionary principle 1896–2000. European Environmental Agency, Copenhagen, pp 135–148

    Google Scholar 

  • Santos MM, Hallers-Tjabbes CCT, Santos AM, Vieira N (2002) Imposex in Nucella lapillus, a bioindicator for TBT contamination: re-survey along the Portuguese coast to monitor the effectiveness of EU regulation. J Sea Res 48(3):217–223

    Article  CAS  Google Scholar 

  • Schwacke LH, Smith CR, Townsend FI, Wells RS, Hart LB, Balmer BC, Collier TK, De Guise S, Fry MM, Guillette LJ Jr (2013) Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Environ Sci Technol 48(1):93–103

    Article  CAS  Google Scholar 

  • Sekizawa J, Suter Il G, Birnbaum L (2003) Integrated human and ecological risk assessment: a case study of tributyltin and triphenyltin compounds. Hum Ecol Risk Assess 9(1):325–342

    Article  CAS  Google Scholar 

  • Seo J-S, Keum Y-S, Li QX (2009) Bacterial degradation of aromatic hydrocarbons. Int J Environ Res Public Health 6:278–309

    Article  CAS  Google Scholar 

  • Shimasaki Y, Kitano T, Oshima Y, Inoue S, Imada N, Honjo T (2003) Tributyltin causes masculinization in fish. Environ Toxicol Chem 22(1):141–144

    Article  CAS  Google Scholar 

  • Siddique T, Penner T, Klassen J, Nesbo C, Foght JM (2012) Microbial communities involved in methane production from hydrocarbons in oil sands tailings. Environ Sci Technol 46(17):9802–9810

    Google Scholar 

  • Siegert M, Cichocka D, Herrmann S, Grundger F, Feisthauer S, Richnow H-H, Springael D, Kruger M (2011) Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron-and sulfate-reducing conditions. FEMS Microbiol Lett 315(1):6–16

    Article  CAS  Google Scholar 

  • Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN, Earl K, Adams PN, Zimmerman AR (2012) Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proc Natl Acad Sci 109(28):11234–11239

    Article  CAS  Google Scholar 

  • Singh AK, Sherry A, Gray ND, Jones DM, Bowler BF, Head IM (2014) Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments. Front Microbiol 5:(Article 160)

    Google Scholar 

  • Smith BS (1971) Sexuality in the American mud snail Nassarius obsoletus. Proc Malacolog Soc London 39:377–378

    Google Scholar 

  • So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65(7):2969–2976

    CAS  Google Scholar 

  • Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Micro 3(9):700–710

    Google Scholar 

  • Sorkhoh NA, Ali N, Dashti N, Al-Mailem DM, Al-Awadhi H, Eliyas M, Radwan SS (2010) Soil bacteria with the combined potential for oil utilization, nitrogen fixation, and mercury resistance. Int Biodeter Biodegr 64(3):226–231

    Article  CAS  Google Scholar 

  • Sousa ACA, Pastorinho MR, Takahashi S, Tanabe S (2013) Organotin compounds from snails to humans. In: Lichtfouse ESJ, Robert D (eds) Environmental chemistry for a sustainable world: pollutant diseases, remediation and recycling, vol 4. Springer, Switzerland, pp 215–275

    Chapter  Google Scholar 

  • Sternberg R, Gooding M, Hotchkiss A, LeBlanc G (2010) Environmental-endocrine control of reproductive maturation in gastropods: implications for the mechanism of tributyltin-induced imposex in prosobranchs. Ecotoxicology 19(1):4–23

    Article  CAS  Google Scholar 

  • Suárez-Suárez A, López-López A, Tovar-Sánchez A, Yarza P, Orfila A, Terrados J, Arnds J, Marqués S, Niemann H, Schmitt-Kopplin P (2011) Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Environ Microbiol 13(6):1488–1499

    Article  CAS  Google Scholar 

  • Suehiro F, Kobayashi T, Nonaka L, Tuyen BC, Suzuki S (2006) Degradation of tributyltin in microcosm using Mekong River sediment. Microb Ecol 52(1):19–25

    Article  CAS  Google Scholar 

  • Sun MY, Dafforn KA, Johnston EL, Brown MV (2013) Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol 15(9):2517–2531

    Article  Google Scholar 

  • Taha HM, Said HA, Abbas NH, Khaleafa AFM (2009) Biosorption and biodegradation of the antifouling compound tributyltin (TBT) by microalgae. Am Eurasian J Sci Res 4(1):1–6

    Google Scholar 

  • Takeuchi I, Takahashi S, Tanabe S, Miyazaki N (2001) Caprella watch: a new approach for monitoring butyltin residues in the ocean. Mar Environ Res 52(2):97–113

    Article  CAS  Google Scholar 

  • Tang YJ, Carpenter S, Deming J, Krieger-Brockett B (2005) Controlled release of nitrate and sulfate to enhance anaerobic bioremediation of phenanthrene in marine sediments. Environ Sci Technol 39(9):3368–3373

    Article  CAS  Google Scholar 

  • Tang X, He L, Tao X, Dang Z, Guo C, Lu G, Yi X (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181(1–3):1158–1162

    Article  CAS  Google Scholar 

  • Tareq FS, Lee H-S, Lee Y-J, Lee JS, Shin HJ (2015) Ieodoglucomide C and ieodoglycolipid, new glycolipids from a marine-derived bacterium Bacillus licheniformis 09IDYM23. Lipids 50(5):513–519

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2006) Biodegradation of crude oil by nitrogen fixing marine bacteria Azotobacter chroococcum. Res J Microbiol 1(5):401–408

    Article  CAS  Google Scholar 

  • Tixier C, Sancelme M, Aıt-Aıssa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46(4):519–526

    Article  CAS  Google Scholar 

  • Toccalino PL, Johnson RL, Boone DR (1993) Nitrogen limitation and nitrogen fixation during alkane biodegradation in a sandy soil. Appl Environ Microbiol 59(9):2977–2983

    CAS  Google Scholar 

  • Tsang CK, Lau PS, Tam NFY, Wong YS (1999) Biodegradation capacity of tributyltin by two Chlorella species. Environ Pollut 105(3):289–297

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2015) U.S. Environmental protection agency national contingency plan product schedule. EPA,Washington, DC

    Google Scholar 

  • Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C (2012) Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 96:270–276

    Article  CAS  Google Scholar 

  • Vallero DA (2010) Applied microbial ecology. Environmental biotechnology. Academic, San Diego

    Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    Article  Google Scholar 

  • Vázquez JA, Rial D (2014) Inhibition of selected bacterial growth by three hydrocarbons: mathematical evaluation of toxicity using a toxicodynamic equation. Chemosphere 112:56–61

    Article  CAS  Google Scholar 

  • Vieira LR, Guilhermino L (2012) Multiple stress effects on marine planktonic organisms: influence of temperature on the toxicity of polycyclic aromatic hydrocarbons to Tetraselmis chuii. J Sea Res 72:94–98

    Article  CAS  Google Scholar 

  • Vila J, Nieto J, Mertens J, Springael D, Grifoll M (2010) Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol Ecol 73:349–362

    CAS  Google Scholar 

  • Vilela WFD, Fonseca SG, Fantinatti-Garboggini F, Oliveira VM, Nitschke M (2014) Production and properties of a surface-active lipopeptide produced by a new marine Brevibacterium luteolum strain. Appl Biochem Biotechnol 174(6):2245–2256

    Article  CAS  Google Scholar 

  • von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552

    Article  CAS  Google Scholar 

  • Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10(8):1948–1963

    Article  CAS  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12(3):237–241

    Article  CAS  Google Scholar 

  • Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72(2):179–197

    Article  CAS  Google Scholar 

  • Weelink SAB, van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biol Technol 9(4):359–385

    CAS  Google Scholar 

  • Weiner JM, Lovley DR (1998) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl Environ Microbiol 64(5):1937–1939

    CAS  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276

    Article  CAS  Google Scholar 

  • Xie Y, Su R, Zhang L, Wang X A study on biosorption and biodegradation of tributyltin by two red tide microalgae. In: International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), 2011, Nanjing, China, 24–26 June 2011. pp 7331–7334

    Google Scholar 

  • Yakimov M, Timmis K, Golyshin P (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  Google Scholar 

  • Yang T, Nigro LM, Gutierrez T, D’Ambrosio L, Joye SB, Highsmith R, Teske A (2014) Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep Sea Res II (in press) http://dx.doi.org/10.1016/j.dsr2.2014.01.014i

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51(8):1071–1077

    Article  CAS  Google Scholar 

  • Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401(6750):266–269

    Article  CAS  Google Scholar 

  • Zhang Z, Lo IMC (2015) Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community. Appl Microbiol Biotechnol 99:5683–5696

    Google Scholar 

  • Zhang Z, Zheng G, Lo IMC (2014) Enhancement of nitrate-induced bioremediation in marine sediments contaminated with petroleum hydrocarbons by using microemulsions. Environ Sci Pollut 22:8296–8306

    Google Scholar 

  • Zhang G, Pan Z, Wang X, Mo X, Li X (2015) Distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the food web of Nansi Lake, China. Environ Monit Assess 187(4):1–12

    Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the European Regional Development Fund (ERDF), through the Operational Programme Thematic Factors of Competitiveness (COMPETE), and the Portuguese Foundation for Science and Technology (FCT) in the frame of project FCOMP-010124-FEDER-027917 (FCT: PTDC/AAG-TEC/3428/2012). The authors also thank the FCT strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), and Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). Research of AC was funded by the postdoctoral grant (BPD/UI88/2886/2013), from the project “Sustainable Use of Marine Resources” – MARES (CENTRO-07-ST24-FEDER-002033), funded by QREN, Mais Centro- Programa Operacional Regional do Centro e União Europeia/Fundo Europeu de Desenvolvimento Regional. AL was funded by a PhD grant SFRH/BD/86447/2012 funded by FCT. Research of AJC was supported by ERC grant (project 323009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Cruz, A. et al. (2017). Microbial Remediation of Organometals and Oil Hydrocarbons in the Marine Environment. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_4

Download citation

Publish with us

Policies and ethics