Skip to main content
Log in

Toxic effects of tin compounds on microorganisms

  • Review Paper
  • Published:
Journal of Industrial Microbiology

Summary

Organotins are used for industrial and agricultural purposes and in antibiologic agents. They are significantly more toxic than inorganic tins, and eventually reach the environment where they can be toxic to a wide variety of organisms. Particular attention has been given to tributyltins which are highly toxic components of antifouling paints. Realization that the molecular species of organotin influences fate and effects of organotins led to development of sensitive methods for quantifying individual molecular species. Even though such methods are now available, little information has been obtained on the ability of microorganisms to bioaccumulate tin compounds. Trisubstituted alkyl and aryltins (R3Sn's) are more toxic than disubstituted compounds (R2Sn's) while monosubstituted organotins (RSn's) are still less toxic. R4Sn's are toxic only if they are metabolized to R3Sn's. Among trisubstituted compounds propyl-, butyl-, pentyl-, phenyl-, and cyclohexyl Sn's are generally the most toxic to microorganisms. Toxicity in the R3Sn series is related to total molecular surface area of the tin compound and to the octanol:water partition coefficient,K ow, which is a measure of hydrophobicity; a highK ow indicates greater hydrophobicity and predicts greater toxicity. Care must be taken when testing the toxicity of tin compounds, for a number of biological, physical and chemical factors can influence the apparent toxicity. Although little is known of the effects of tin compounds on microbial processes, a number of bacterial processes can be inhibited by organotins and all relate to membrane functions. They include effects on energy transduction, solute transport and retention and oxidation of substrates. Very little is known of how organotins exert their toxic effects on algae and fungi; Information on effects on chloroplasts and mitochondria stems principally from animal systems and from higher plants. Triorganotins act against chloroplasts and mitochondria by causing swelling, by acting as ionophores and by acting against ATPase, while diorganotins appear to act by binding to dithiol groups on enzymes and cofactors. Nucleic acids do not seem to be affected at environmentally relevant concentrations. Virtually nothing is known of the action of tin compounds on microbial enzymes, but resistant mutants are easy to obtain and should facilitate work to understand modes of microbial interaction with tin compounds and mechanisms of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldridge, W.N. 1976. The influence of organotin compounds on mitochondrial functions. In: Organotin compounds: new chemistry and applications (J.J. Zuckerman, ed.), pp. 186–196, Adv. Chem. Series 157.

  2. Aldridge, W.N. 1986. The toxicology and biological properties of organotin compounds. In: Tin as a vital nutrient (N.F. Cardarelli, ed.) pp. 245–261, CRC Press, Boca Raton, FL.

    Google Scholar 

  3. Aldridge, W.N. and A.W. Brown. 1988. The biological properties of methyl and ethyl derivatives of tin and lead. In: The biological alkylation of heavy metals (P.J. Craig and F. Glocking, eds.), pp. 147–163, Royal Soc. Chem., London.

    Google Scholar 

  4. Aldridge, W.N., J.E. Casida, R.H. Fish, E.C. Kimmel and B.W. Street. 1977. Action on mitochondria and toxicity of metabolites of tributyltin compounds. Biochem. Pharmacol. 26: 1997–2000.

    PubMed  Google Scholar 

  5. Aldridge, W.N. and J.E. Cremer. 1955. The biochemistry of organotin compounds. Diethyltin dichloride and triethyltin sulphate. Biochem. J. 61: 406–418.

    PubMed  Google Scholar 

  6. Aldridge, W.N., B.W. Street and J.G. Noltes. 1981. The action of 5-coordinate triorganotin compounds on rat liver mitochondria. Chem.-Biol. Interactions 34: 223–232.

    Google Scholar 

  7. Aldridge, W.N., B.W. Street and D.N. Skilleter. 1977. Oxidative phosphorylation: halide dependent and halide-independent effects of triorganotin and triorganolead compounds on mitochondrial functions. Biochem. J. 168: 353–364.

    PubMed  Google Scholar 

  8. Alzieu, C. 1986. TBT detrimental effects on oyster culture in France—evolution since antifouling paint regulation. Oceans 86 Proceedings, Vol. 4, pp. 1130–1134, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  9. Alzieu, C., J. Sanjuan, J.P. Deltreil and M. Borel. 1986. Tin Contamination in Arcachon Bay: Effects on Oyster Shell Anomalies. Mar. Poll. Bull. 17: 494–498.

    Google Scholar 

  10. Andres, C.F., J.C. Shaffer and A.S. Windeler. 1974. Comparison of the antibacterial properties of stannous fluoride and sodium fluoride mouthwashes. J. Dent. Res. 53: 457–460.

    PubMed  Google Scholar 

  11. Anonymous. 1986. Oceans 86 Proceedings, Vol. 4, IEEE Service Center, Piscataway, NJ.

  12. Anonymous. 1987. Oceans 87 Proceedings, Vol. 4, IEEE Service Center, Piscataway, NJ.

  13. Anraku, Y., H. Kobayashi, H. Amanuma and A. Yamaguchi. 1973. VII. Characterization of the reaction of restoration of active transport mediated by binding protein. J. Biochem. 74: 1249–1261.

    PubMed  Google Scholar 

  14. Argaman, Y., C.E. Hucks and S.E. Shelby, Jr., 1984. The effects of organotin on the activated sludge process. Water Res. 18: 535–542.

    Google Scholar 

  15. Asano, A., K. Imai and R. Sato. 1967. Oxidative phosphorylation inMicrococcus denitrificans. II. The properties of pyridine nucleotide transhydrogenase. Biochim. Biophys. Acta 143: 477–486.

    PubMed  Google Scholar 

  16. Ashby, J., S. Clark and P.J. Craig. 1988. The analysis of organotin compounds from environmental matrices. In: The biological alkylation of heavy metals (P.J. Craig and F. Clocking, eds.), pp. 263–290, Royal Soc. Chem., London.

    Google Scholar 

  17. Babich, H. and G. Stotzky. 1980. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit. Rev. Microbiol. 8: 99–145.

    PubMed  Google Scholar 

  18. Babich, H. and G. Stotzky. 1983. Heavy metal toxicity to microbemediated ecologic processes: a review and potential application to regulatory policies. Environ. Res. 36: 111–137.

    Google Scholar 

  19. Barnes, R.D., A.T. Bull and R.C. Poller. 1973. Studies on the persistence of the organotin fungicide fentin acetate (triphenyltin acetate) in the soil and on surfaces exposed to light. Pestic. Sci. 4: 305–317.

    Google Scholar 

  20. Beaumont, A.R., D.K. Mills and P.B. Newman. 1987. Some effects of tributyl tin (TBT) on marine algae. Oceans 87 Proceedings, Vol. 4, pp. 1488–1493, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  21. Beaumont, A.R. and M.D. Newman. 1986. Low levels of tributyltin reduce growth of marine microalgae. Mar. Poll. Bull. 17: 457–461.

    Google Scholar 

  22. Blair, W.R., G.J. Olson, F.E. Brinckman and W.P. Iverson. 1982. Accumulation and fate of tri-n-butyltin cation in estuarine bacteria. Microb. Ecol. 8: 241–251.

    Google Scholar 

  23. Blair, W.R., G.J. Olson, F.E. Brinckman, R.C. Paule and D.A. Becker. 1986. An international butyltin measurement methods intercomparison: sample preparation and results of analyses. NBSIR 86-3321. National Bureau of Standards, Gaithersburg, MD.

    Google Scholar 

  24. Blunden, S.J., L.A. Hobbs and P.J. Smith. 1984. The environmental chemistry of organotin compounds. In: Environmental Chemistry (H.J. Bowen, ed.), pp. 49–77, Royal Soc. Chem., London.

    Google Scholar 

  25. Bowman, B.J. and E.J. Bowman. 1986. H+-ATPase from mitochondria, plasma membranes and vacuoles of fungal cells. J. Membrane Biol. 94: 83–97.

    Google Scholar 

  26. Brinckman, F.E. 1981. Environmental organotin chemistry today: experiences in the field and laboratory. J. Organomet. Chem. Libr. 12: 343–376.

    Google Scholar 

  27. Brinckman, F.E., G.J. Olson, W.R. Blair and E.J. Parks. 1988. Implications of molecular speciation and topology of environmental metals: uptake mechanisms and toxicity of organotins. In: Aquatic Toxicology and Hazard Assessment: 10th Volume (W.J. Adams, G.A. Chapman and W.G. Landis, eds.), pp. 219–232, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  28. Bryan, G.W., P.E. Gibbs, G.R. Burt and L.G. Hummerstone. 1987. The effects of tributyltin (TBT) accumulations on adult dog-whelks,Nucella lapillus: long-term field and laboratory experiments. J. Mar. Biol. Ass. U.K. 67: 525–544.

    Google Scholar 

  29. Bushong, S.J., W.S. Hall, W.E. Johnson and L.W. Hall, Jr. 1987. Toxicity of tributyltin to selected Chesapeake Bay biota. Oceans 87 Proceedings, Vol. 4, pp. 1499–1503, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  30. Bygrave, F.L., C. Ramachandron and R.N. Robertson. 1978. The interaction of tributyltin with the mitochondrial calcium transport system of rat liver. Arch. Biochem. Biophys. 188: 301–307.

    PubMed  Google Scholar 

  31. Bygrave, F.L. and R.L. Smith. 1978. Inability of tributyltin-induced chloride/hydroxyl exchange to stimulate calcium transport in mitochondria isolated from flight muscle of the sheep blowflyLucilia cuprina. Biochem. J. 174: 1075–1077.

    PubMed  Google Scholar 

  32. Byrd, J.T. and M.O. Andreae. 1982. Tin and methyltin species in seawater: concentrations and fluxes. Science 218: 565–569.

    Google Scholar 

  33. Cain, K. and D.E. Griffiths. 1977. Studies of energy-linked reactions. Localization of the site of action of trialkyltin in yeast mitochondria. Biochem. J. 162: 575–580.

    PubMed  Google Scholar 

  34. Cain, K., R.L. Hyams and D.E. Griffiths. 1977. Studies on energy-linked reactions: inhibition of oxidative phosphorylation and energy-linked reactions by dibutyltin dichloride. FEBS Lett. 82: 23–28.

    PubMed  Google Scholar 

  35. Callow, M.E., P.A. Millner and L.V. Evans. 1978. Organotin resistance in green seaweeds. In: Proc. Ninth Int'l. Seaweed Symposium (A. Jensen and J.R. Stein, eds.), pp. 191–197, Science Press, Princeton, NJ.

    Google Scholar 

  36. Camosci, D.A. and N. Tinanoff. 1984. Anti-bacterial determinants of stannous fluoride. J. Dent. Res. 63: 1121–1125.

    PubMed  Google Scholar 

  37. Cardin, C.J. and A. Roy. 1986. Anticancer activity of organometallic compounds. 3. The reaction of dimethyltin dichloride with nucleotides under biologically relevant conditions. Inorg. Chim. Acta 125:63–66.

    Google Scholar 

  38. Cardwell, R.D. and A.W. Sheldon. 1986. A risk assessment concerning the fate and effects of tributyltins on the aquatic environment. Ocean 86 Proceedings, Vol. 4, pp. 1117–1124, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  39. Carraher, C.E., D.J. Giron, W.K. Woelk, J.A. Schroeder and M.F. Feddersen. 1979. Characterization of polyethyleneimine modified with organotin halides. Thermal, solubility and fungal properties. J. Appl. Polym. Sci. 23: 1501–1508.

    Google Scholar 

  40. Champ, M.A. and F.L. Lowenstein. 1987. TBT: the dilemma of high technology antifouling paints. Oceanus 30: 68–77.

    Google Scholar 

  41. Champ, M.A. and W.L. Pugh. 1987. Tributyltin antifouling paints: Introduction & overview. Oceans 87 Proceedings, Vol. 4, pp. 1296–1308. IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  42. Chang, L.W., T.M. Tiemeyer, G.R. Wenger and D.E. McMillan. 1982. Neuropathology of trimethyltin intoxication. III. Changes in the brain stem neurons. Environ. Res. 30: 399–411.

    Google Scholar 

  43. Chiba. 1987. Determination of tin in biological materials by atomic-absorption spectrometry with a graphite furnace. J. Anal. Toxicol. 11: 125–130.

    PubMed  Google Scholar 

  44. Christensen, G.M. and B. Riedel. 1981. Effect of water pollutants and other chemicals upon the activity of lipase in vitro. Arch. Environ. Contam. Toxicol. 10: 357–363.

    PubMed  Google Scholar 

  45. Cleary, J.J. and A.R.D. Stebbing. 1985. Organotin and total tin in coastal waters of southwest England. Mar. Poll. Bull. 16: 350–355.

    Google Scholar 

  46. Coleman, J.O.D. and J.M. Palmer. 1971. The influence of pH on the inhibition of oxidative phosphorylation and electron transport of triethyltin. Biochim. Biophys. Acta 245: 313–320.

    PubMed  Google Scholar 

  47. Cooney, J.J. 1988. Microbial transformations of tin and tin compounds. J. Ind. Microbiol. 3: 195–204.

    Google Scholar 

  48. Cooney, J.J. 1988. Interactions between microorganisms and tin compounds. In: The biological alkylation of heavy metals (P.J. Craig and F. Glockling, eds.), pp. 92–104, Royal Soc. Chem., London.

    Google Scholar 

  49. Cooney, J.J., L. deRome, O. Laurence and G.M. Gadd. 1989. Effects of organotin and organolead compounds on yeasts. J. Ind. Microbiol. 4: 279–288.

    Google Scholar 

  50. Cooney, J.J., A.T. Kronick, G.J. Olson, W.R. Blair and F.E. Brinckman. 1988. A modified method for quantifying methyl- and butyltins in estuarine sediments. Chemosphere 17: 1795–1802.

    Google Scholar 

  51. Cooney, J.J. and G.W. Pettibone. 1986. Metals and microbes in toxicity testing. Toxic Assess. 1: 487–499.

    Google Scholar 

  52. Cotta-Ramusino, M. and A. Doci. 1987. Acute toxicity of Brestan and fentin acetate on some freshwater organisms. Bull. Environ. Contam. Toxicol. 38: 647–652.

    PubMed  Google Scholar 

  53. Crowe, A.J. 1987. Review: Organotin compounds in agriculture since 1980. Part 2. Acaricidal. antifeedant, chemosterilant and insecticidal properties. Appl. Organomet. Chem. 1: 331–346.

    Google Scholar 

  54. Cremer, J.E. The biochemistry of organotin compounds. 1958. The conversion of tetraethyltin into tirethyltin in mammals. Biochem. J. 68: 685–692.

    PubMed  Google Scholar 

  55. Davies, A. and P.J. Smith. 1980. Recent advances in organotin chemistry. Adv. Inorg. Chem. Radiochem. 23: 1–77.

    Google Scholar 

  56. Davies, I.M., S.K. Bailey and D.C. Moore. 1987. Tributyltin in Scottish sea lochs, as indicated by degree of imposex in the dogwhelk,Nucella lapillus (L.). Mar. Poll. Bull. 18: 400–404.

    Google Scholar 

  57. Davies, I.M. and J.C. McKie. 1987. Accumulation of total tin and tributyltin in muscle tissue of farmed Atlantic salmon. Mar. Poll. Bull. 18: 405–407.

    Google Scholar 

  58. Davies, I.M., J.C. McKie and J.D. Paul. 1986. Accumulation of tin and tributyltin from antifouling paint by cultivated scallops (Pectin maximus) and Pacific oysters (Crasostrea gigas). Aquaculture 55: 103–114.

    Google Scholar 

  59. Dawson, A.P. and M.J. Selwyn. 1974. The action of trialkyltin compounds on mitochondrial respiration. The effect of pH. Biochem. J. 138: 349–357.

    Google Scholar 

  60. Dawson, A.P. and M.J. Selwyn. 1975. The action of tributyltin on energy coupling in coupling factor deficient submitochondrial particles. Biochem. J. 152: 333–339.

    PubMed  Google Scholar 

  61. Donard, O.F.X., F.T. Short and J.H. Weber. 1987. Regulation of tin and methyltin compounds by the green algaEnteromorpha under simulated estuarine conditions. Can. J. Fish. Aquat. Sci. 44: 140–145.

    Google Scholar 

  62. Donard, O.F.X. and J.H. Weber. 1985. Behavior of methyltin compounds under simulated conditions. Environ. Sci. Technol. 19: 1104–1110.

    Google Scholar 

  63. Dooley, C.A. and P. Kenis. 1987. Response of bioluminescent bacteria to alkyltin compounds. Oceans 87 Proceedings, Vol. 4, pp. 1517–1524, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  64. Drummond, G.S. and A. Kappas. 1982. Chemoprevention of neonatal jaundice: Potency of tin-protoporphyrin in an animal model. Science 217:1250–1252.

    PubMed  Google Scholar 

  65. Duncan, J. 1980. The toxicology of molluscicides. The organotins. Pharmac. Ther. 10: 407–429.

    Google Scholar 

  66. Ebdon, L., K. Evans and S. Hill. 1988. The variation of tributyltin levels with time in selected estuaries prior to the introduction of regulations governing the use of tributyltin-based anti-fouling paints. Sci. Total Environ. 68: 207–223.

    Google Scholar 

  67. Ebdon, L., S.J. Hill and P. Jones. 1985. Speciation of tin in natural waters using coupled high performance liquid chromatography-flame atomic absorption spectrometry. Analyst 110: 515–517.

    Google Scholar 

  68. Elliott, B.M., W.N. Aldridge and J.W. Bridges. 1979. Triethyltin binding to cat haemoglobin. Biochem. J. 177: 461–470.

    PubMed  Google Scholar 

  69. Emanuel, E.L., M.A. Carver, G.C. Solani and D.E. Griffiths. 1984. Differential inhibition of F0F1-ATPase-catalyzed reactions in bovineheart submitochondrial particles by organotin compounds. Biochim. Biophys. Acta 766: 209–214.

    PubMed  Google Scholar 

  70. Eng, G., E.J. Tierney, J.M. Bellama and F.E. Brinckman. 1988. Correlation of molecular total surface area with organotin toxicity for biological and physicochemical applications. Appl. Organomet. Chem. 2: 171–175.

    Google Scholar 

  71. Evans, D.W. and R.B. Laughlin, Jr. 1984. Accumulation ofbis(tributyltin) oxide by the mud crab,Rhithropanopeus harrisii. Chemosphere 13: 213–219.

    Google Scholar 

  72. Farrow, B.G. and A.P. Dawson. 1978. Investigation of the interaction of triethyltin with rat liver mitochondria using binding studies and Mössbauer spectroscopy. Eur. J. Biochem. 86: 85–95.

    PubMed  Google Scholar 

  73. Fish, R.H., E.C. Kimmel and J.E. Casida. 1975. Bioorganotin chemistry: biological oxidation of tributyltin derivatives. J. Organomet. Chem. 93: C1-C4.

    Google Scholar 

  74. Froelich, P.N., L.W. Kaul, J.T. Byrd, M.O. Andreae and K.K. Roe. 1985. Arsenic, barium, germanium, tin, dimethylsulfide and nutrient biogeochemistry in Charlotte Harbor, Florida, a phosphorus-enriched estuary. Estuar. Coast. Shelf Sci. 20: 239–264.

    Google Scholar 

  75. Gibbs, P.E. and G.W. Bryan. 1986. Reproductive failure in populations of the dog-whelk,Nucella lapillus, caused by imposex induced by tributyltin from antifouling paints. J. Mar. Biol. Ass. U.K. 66: 767–777.

    Google Scholar 

  76. Gibbs, P.E. and G.W. Bryan. 1987. TBT paints and the demise of the dogwhelk,Nucella lapillus (Gastropoda). Oceans 87 Proceedings, Vol. 4, pp. 1482–1487, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  77. Gibbs, P.E., G.W. Bryan, P.L. Pascoe and G.R. Burt. 1987. The use of the dog-whelk,Nucella lapillus, as an indicator of tributyltin (TBT) contamination. J. Mar. Biol. Ass. U.K. 67: 507–523.

    Google Scholar 

  78. Gould, J.M. 1976. Inhibition by triphenyltin chloride of a tightly-bound membrane component involved in photophosphorylation. Eur. J. Biochem. 62: 567–575.

    PubMed  Google Scholar 

  79. Gould, J.M. 1978. Dithiol-specific reversal of triphenyltin inhibition of CF0-catalyzed transmembrane proton transfer in chloroplasts. FEBS Lett. 94: 90–94.

    Google Scholar 

  80. Griffiths, D.E. and I. Connerton. 1988. Effects of trialkyllead compounds on mitochondrial energy conservation. Appl. Organomet. Chem. 2: 177–180.

    Google Scholar 

  81. Guffanti, A.A., S. Clejan, L.H. Falk, D.B. Hicks and T.A. Krulwich. 1987. Isolation and characterization of uncoupler-resistant mutants ofBacillus subtilis. J. Bacteriol. 169: 4469–4478.

    PubMed  Google Scholar 

  82. Hall, L.W., M.J. Lenkevich, W.S. Hall, A.E. Pinkney and S.J. Bushong. 1987. Evaluation of butyltin compounds in Maryland waters of Chesapeake Bay. Mar. Poll. Bull. 18: 78–83.

    Google Scholar 

  83. Hall, L.W., Jr., and A.E. Pinkney. 1985. Acute and sublethal effects of organotin compounds on aquatic biota: an interpretative literature evaluation. CRC Crit. Rev. Toxicol. 14: 159–209.

    Google Scholar 

  84. Hallas, L.E. and J.J. Cooney. 1981. Tin and tin-resistant microorganisms in Chesapeake Bay. Appl. Environ. Microbiol. 41: 466–471.

    Google Scholar 

  85. Halles, L.E. and J.J. Cooney. 1981. Effects of stannic chloride and organotin compounds on estuarine microorganisms. Dev. Ind. Microbiol. 22: 529–535.

    Google Scholar 

  86. Hallas, L.E., J.S. Thayer and J.J. Cooney. 1982. Factors affecting the toxic effect of tin on estuarine microorganisms. Appl. Environ. Microbiol. 44: 193–197.

    Google Scholar 

  87. Harris, J.R.W. and J.J. Cleary. 1987. Particle-water partitioning and organotin dispersal in an estuary. Oceans 87 Proceedings, Vol. 4, pp. 1370–1374, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  88. Hinga, K.R., D. Adelman and M.E.Q. Pilson. 1987. Radiolabeled butyl tin studies in the MERE enclosed ecosystems. Oceans 87 Proceedings, Vol. 4, pp. 1416–1420. IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  89. Huggett, R.J., M.A. Unger and D.J. Westbrook. 1986. Organotin concentrations in the southern Chesapeake Bay. Oceans 86 Proceedings, Vol. 4, pp. 1262–1265, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  90. Ishii, T. 1982. Tin in marine algae. Bull. Japanese Soc. Sci. Fish. 48: 1609–1615.

    Google Scholar 

  91. Ito, M. and Y. Ohnishi. 1981. Isolation ofE. coli mutants which are resistant to an inhibitor of H+-ATPase, tributyltin and also to uncouplers of oxidative phosphorylation. FEBS Lett. 136: 225–230.

    PubMed  Google Scholar 

  92. Johansen, K. and F. Mohlenberg. 1987. Impairment of egg production inAcartia tonsa exposed to tributyltin oxide. Ophelia 27: 137–141.

    Google Scholar 

  93. Jonas, R.B., C.C. Gilmour, D.L. Stoner, M.M. Weir and J.H. Tuttle. 1984. Comparison of methods to measure acute metal and organometal toxicity to natural aquatic microbial communities. Appl. Environ. Microbiol. 47: 1005–1011.

    PubMed  Google Scholar 

  94. Kaars Sijpesteijn, A., J.G.A. Luijten and G.J.M. Van der Kerk. 1969. Organometallic fungicides. In: Fungicides—An advanced treatise. Vol. II (D.C. Torgeson, ed.), pp. 331–336, Academic Press, NY and London.

    Google Scholar 

  95. Kaars Sijpesteijn, A., F. Rijkens, J.G.A. Luijten and L.C. Willemsens. 1962. On the antifungal and antibacterial activity of some trisubstituted organogermanium, organotin and organolead compounds. Ant. van Leeuwenh. J. Microbiol. Serol. 28: 346–356.

    Google Scholar 

  96. Kahana L. and A. Kaars Sijpesteijn. 1967. Studies on the mode of action of the antibacterial agent diethyltin dichloride onE. coli. Ant. van Leeuwenh. J. Microbio. Serol. 33: 427–438.

    Google Scholar 

  97. Kahn, J.S. 1968. Chlorotri-n-butyltin. An inhibitor of phosphorylation in isolated chloroplasts. Biochim. Biophys. Acta 153: 203–210.

    PubMed  Google Scholar 

  98. Kappas, A. and M.D. Maines. 1976. Tin: A potent inducer of heme oxygenase in kidney. Science 192: 60–62.

    PubMed  Google Scholar 

  99. Kimmel, E.C., R.H. Fish and J.E. Casida. 1977. Bioorganotin chemistry. Metabolism of organotin compounds in microsomal monooxygenase systems and in mammals. J. Agric. Food Chem. 25: 1–9.

    Google Scholar 

  100. Kobayashi, H., E. Kin and Y. Anraku. 1974. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline inEscherichia coli. J. Biochem. 76: 251–261.

    PubMed  Google Scholar 

  101. Krowke, R., U. Bluth and D. Neubert. 1986. In vitro studies on the embryotoxic potential of (bis[tri-n-butyltin])oxide in a limb bud organ culture system. Arch. Toxicol. 58: 125–129.

    PubMed  Google Scholar 

  102. Lancashire, W.E. and D.E. Griffiths. 1971. Biocide resistance in yeast: isolation and general properties of trialkyltin resistant mutants. FEBS Lett. 17: 209–214.

    PubMed  Google Scholar 

  103. Lancashire, W.E. and D.E. Griffiths. 1975. Studies on energy-linked reactions: isolation, characterization and genetic analysis of trialkyltin-resistant mutants ofSaccaromyces cereviseae. Eur. J. Biochem. 51: 377–392.

    PubMed  Google Scholar 

  104. Laughlin, R.B., Jr. 1986. Bioacumulation of tributyltin: the link between environment and organism. Oceans 86 Proceedings, Vol. 4, pp. 1206–1209. IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  105. Laughlin, R.B., Jr. and W.J. French. 1980. Comparative study of the acute toxicity of a homologous series of trialkyltins to larval shore crabs,hemigrapsus nudus, and lobster,homarus americanus. Bull. Environ. Contam. Toxicol. 25: 802–809.

    PubMed  Google Scholar 

  106. Laughlin, R.B., Jr., W. French and H.E. Guard. 1986. Accumulation of bis(tributyltin) oxide by the marine musselmytilus edulis. Environ. Sci. Technol. 20: 884–890.

    Google Scholar 

  107. Laughlin, R.B., Jr., H.E. Guard and W.M. Coleman, III. 1986. Tributyltin in seawater: speciation and octanol-water partition coefficient. Environ. Sci. Technol. 20: 201–204.

    Google Scholar 

  108. Laughlin, R.B., Jr., R.B. Johannesen, W. French, H. Guard and F.E. Brinckman. 1985. Structure-activity relationships for organotin compounds. Environ. Toxicol. Chem. 4: 343–351.

    Google Scholar 

  109. Laughlin, R.B., Jr., P. Pendoley and R.G. Gustafson. 1987. Sublethal effects of tributyltin on the hard shell clam,Mercenaria mercenaria. Oceans 87 Proceedings, Vol. 4, pp. 1494–1498. IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  110. Lawler, I.F. and J.C. Aldrich. 1987. Sublethal effects of bis (tributyltin) oxide onCrassostrea gigas spat. Mar. Poll. Bull. 18: 274–278.

    Google Scholar 

  111. Lee, R.F. 1985. Metabolism of tributyltin oxide by crabs, oysters and fish. Mar. Environ. Res. 17: 145–148.

    Google Scholar 

  112. Lee, R.F. 1986. Metabolism of BIS 1 (tributyltin) oxide by estuarine animals. Oceans 86 Proceedings, Vol. 4, pp. 1182–1188, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  113. Lee, R.F., A.O. Valkirs and P.F. Seligman. 1987. Fate of tributyltin in estuarine waters. Oceans 87 Proceedings, Vol. 4, pp. 1411–1415. IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  114. Leow, A.C.T. and D.D. Leaver. 1977. Effect of triethyltin onEscherichia coli K-12. Chem. Biol. Inter. 19: 339–351.

    Google Scholar 

  115. Liu, D. 1985. Effect of bacterial cultures on microbial toxicity assessment. Bull. Environ. Contam. Toxicol. 34: 331–339.

    PubMed  Google Scholar 

  116. Lloyd, D. and S.W. Edwards. 1977. Mitochondrial adenosine triphosphatase of the fission yeast,Schizsaccharomyces pombe 972h. Changes in inhibitor sensitivities during the cell cycle indicate similarities and differences in binding sites. Biochem. J. 162: 581–590.

    PubMed  Google Scholar 

  117. Luijten, J.G.A. 1972. Applications and biological effects of organotin compounds. In: Organotin compounds, Vol. 3, (Sawyer, A.K. ed.), pp. 931–974, Marcel Dekker, Inc., New York.

    Google Scholar 

  118. Luijten, J.G.A. and G.J.M. Van der Kerk. 1961. Investigations on organo-tin compounds. XIV. Preparation and antifungal properties of some triaryl- and triarylalkyl-tin acetates. J. Appl. Chem. 11: 35–37.

    Google Scholar 

  119. Mackay, D. 1982. Correlation of Bioconcentration Factors. Environ Sci. Technol. 16: 274–278.

    Google Scholar 

  120. Maguire, R.J. 1984. Butyltin compounds and inorganic tin in sediments in Ontario. Environ. Sci. Technol. 18: 291–294.

    Google Scholar 

  121. Maguire, R.J. 1987. Environmental aspects of tributyltin. Appl. Organomet. Chem. 1: 475–498.

    Google Scholar 

  122. Maguire, R.J., J.H. Carey and E.J. Hale. 1983. Degradation of the tri-n-butyltin species in water. J. Agric. Food Chem. 31: 1060–1065.

    Google Scholar 

  123. Maguire, R.J., Y.K. Chau, G.A. Bengert, E.J. Hale, P.T.S. Wong and O. Kramer. 1982. Occurrence of organotin compounds in Ontario lakes and rivers. Environ. Sci. Technol. 16: 698–702.

    Google Scholar 

  124. Maguire, R.J. and R.K. Tkacz. 1985. Degradation of tri-n-butyltin species in water and sediment from Toronto harbor. J. Agric. Food Chem. 33: 947–953.

    Google Scholar 

  125. Maguire, R.J. and R.K. Tkacz. 1987. Concentration of tributyltin in the surface microlayer of natural waters. Water Poll. Res. J. 22: 227–233.

    Google Scholar 

  126. Maguire, R.J., P.T.S. Wong and J.S. Rhamey. 1984. Accumulation and metabolism of tri-n-butyltin cation by a green alga,Ankistrodesmus falcatus. Can. J. Fish. Aquat. Sci. 41: 537–540.

    Google Scholar 

  127. Matthias, C.L., J.M. Bellama, G.J. Olson and F.E. Brinckman. 1986. Comprehensive method for determination of aquatic butyltin and butylmethyltin species at ultratrace levels using simultaneous hydridization/extraction with GC-FPD. Environ. Sci. Technol. 20: 609–615.

    Google Scholar 

  128. Matthias, C.L., G. J. Olson, F.E. Brinckman and J.M. Bellama, 1988. In press.

  129. McLean, J.R.N., D.H. Blakey, G.R. Douglas and J.G. Kaplan. 1983. The effect of stannous and stannic (tin) chloride on DNA in Chinese hamster ovary cells. Mutat. Res. 119: 195–201.

    PubMed  Google Scholar 

  130. Mesubi, M.A., U.B. Eke and T.T. Bamgboye. 1988. Synthesis, structural and biocidal activity studies of triorganotin (IV) compounds of some N-protected amino-acids. Appl. Organomet. Chem. 2: 121–127.

    Google Scholar 

  131. Minchin, D., C.B. Duggan and W. King. 1987. Possible effects of organotins on scallop recruitment. Mar. Poll. Bull. 18: 604–608.

    Google Scholar 

  132. Mueller, M.D. 1984. Tributyltin detection at trace levels in water and sediments using GC with flame-photometric detection and GC-MS. Fresenius Z Anal. Chem. 317: 32–36.

    Google Scholar 

  133. Mukohata, Y. and Y. Kaji. 1981. Light-induced membrane-potential increase, ATP synthesis, and proton uptake inHalobacterium halobium R1mR Catalyzed by Halorhodopsin: Effects ofN,N′-dicyclohexylcarbodiimide triphenyltin chloride, and 3,5-di-tert.-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Arch. Biochem. Biophys. 206: 72–76.

    PubMed  Google Scholar 

  134. Newby, P.J. and G.M. Gadd. 1988. Morphological response of some common spoilage fungi towards triorganotin compounds. In: The biological alkylation of heavy elements. (Craig, P.J. and F. Glocking eds.), pp. 164–167, Royal Soc. Chem. London.

    Google Scholar 

  135. Nishimoto, K. and G. Fuse. 1966. Fungicidal and wood preservative properties of organotin compounds. Tin and its uses. 70: 3–5.

    Google Scholar 

  136. Noland, E.A., P.T. McCauley, R.J. Bull. 1983. Dimethyltin dichloride: investigations into its gastrointestinal absorption and transplacental transfer. J. Toxicol. Environ. Health. 12: 89–98.

    PubMed  Google Scholar 

  137. Noltes, J.G., J.G.A. Luijten and G.W.M. Van der Kerk. 1961. Investigations on organotin compounds. XV. The antifungal properties of some functionally substituted organotin compounds. J. Appl. Chem. 11: 38–40.

    Google Scholar 

  138. Olson, G.J. and F.E. Brinckman. 1986. Biodegradation of tributyltin by Chesapeake Bay microorganisms. Oceans 86 Proceedings, Vol. 4, pp. 1196–1201, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  139. Orsler R.J. and G.E. Holland. 1982. Degradation of tributyltin oxide by fungal culture filtrates. Int. Biodeterior. Bull. 18: 95–98.

    Google Scholar 

  140. Orsler, R.J. and G.E. Holland. 1984. The interaction between tri-n-butyltin oxide and agar gel as related to a fungus inhibition assay. Int. Biodeterior. 20: 37–41.

    Google Scholar 

  141. Oshchepkova, E.P. and D.A. Kochkin. 1981. Inhibition ofPenicillium purpurogenum growth by organotin compounds. Microbiol. 50: 885–890.

    Google Scholar 

  142. Padan, E., D. Zilberstein and H. Rottenberg. 1976. Proton electrochemical gradient inEscherichia coli cells. Eur. J. Biochem. 533–541.

  143. Penninks, A.H., P.M. Verschuren and W. Sienen. 1983. Dibutyltin dichloride uncouples oxidative phosphorylation in rat liver mitochondria. Toxicol. Appl. Pharmacol. 70: 115–120.

    PubMed  Google Scholar 

  144. Peterson, P.J., M.A.S. Burton, M. Gregson, S.M. Nye and E.K. Porter. 1976. Tin in plants and surface waters in Malaysian ecosystems. Trace Substances in Environ. Health-X. pp. 123–132.

  145. Peterson, P.J., M.A.S. Burton, M. Gregson, S.M. Nye and E.K. Porter. 1979. Accumulation of tin by mangrove species in West Malaysia. Sci. Total Environ. 11: 213–221.

    Google Scholar 

  146. Pettibone, G.W. and J.J. Cooney. 1986. Effect of organotins on fecal pollution indicator organisms. Appl. Environ. Microbiol. 52: 562–566.

    PubMed  Google Scholar 

  147. Pettibone, G.W. and J.J. Cooney. 1988. Toxicity of methyltins to microbial populations in estuarine sediments. J. Ind. Microbiol. 2: 373–378.

    Google Scholar 

  148. Piver, W.T. 1973. Organotin compounds: industrial applications and biological investigation. Environ. Health Perspect. 4: 61–79.

    PubMed  Google Scholar 

  149. Prough, R.A., M.A. Stalmach, P. Wiebkin and J.W. Bridges. 1981. The microsomal metabolism of the organometallic derivatives of the Group-IV elements, germanium, tin and lead. Biochem. J. 196: 763–770.

    PubMed  Google Scholar 

  150. Ramos, S., S. Schuldiner and H.R. Kaback. 1976. Electrochemical gradient of protons and its relationship to active transport inEscherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 73: 1892–1896.

    PubMed  Google Scholar 

  151. Randall, L. and J.H. Weber. 1986. Adsorptive behavior of butyltin compounds under simulated estuarine conditions. Sci. Total Environ. 57: 191–203.

    Google Scholar 

  152. Rapsomanikis, S. and R.M. Harrison. 1988. Speciation of butyltin compounds in oyster samples. Appl. Organomet. Chem. 2: 151–157.

    Google Scholar 

  153. Rexrode, M. 1987. Ecotoxicity of tributyltin Oceans 87 Proceedings, Vol. 4, pp. 1443–1455, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  154. Rice, C.D., F.A. Espourteille and R.J. Huggett. 1987. Analysis of tributyltin in estuarine sediments and oyster tissue,Crassostrea virginica. Appl. Organomet. Chem. 1: 000-000.

    Google Scholar 

  155. Robertson, D.G., S-N. Kim, R.H. Gray and F.A. De La Iglesia. 1987. The pathogenesis of trimethyltin chloride-induced nephrotoxicity. Fundamental Appl. Toxicol. 8: 147–158.

    Google Scholar 

  156. Rosa, M.S. 1969. Evidence for histidine in the triethyltin-binding site of rat hemoglobin. Biochem. J. 111: 129–137.

    PubMed  Google Scholar 

  157. Rosenberg, D.W. and G.S. Drummond. 1983. Direct in vitro effects of bis(tributyltin)oxide on hepatic cytochrome P-450. Biochem. Pharmacol. 24: 3823–3829.

    Google Scholar 

  158. Rosenberg, D.W., G.S. Drummond, H.H. Cornish and A. Kappas. 1980. Prolonged induction of hepatic heme oxygenase and decrease in cygochrome P-450 content by organotin compounds. Biochem. J. 190: 465–468.

    PubMed  Google Scholar 

  159. Rosenberg, D.W., G.S. Drummond and A. Kappas. 1981. The influence of organometals on heme metabolism. In vivo and in vitro studies with organotins. Molec. Pharmacol. 21: 150–158.

    Google Scholar 

  160. Saxena, P.N. and A.J. Crowe. 1988. An investigation of the efficacy of organotin compounds for the control of the cotton stainer,Dysdercus cingulatus, the mosquito,Anophelese stephensi, and the common house fly,Musca domestica. Appl. Organomet. Chem. 2: 185–187.

    Google Scholar 

  161. Schweinfurth, H.A. and P. Gunzel. 1987. The tributyltins: mammalian toxocity and risk evaluation for humans. Oceans 87 Proceedings, Vol. 4, pp. 1421–1431, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  162. Seidel, S.L., V.F. Hodge and E.D. Goldber. 1980. Tin as an environmental pollutant. Thalassia Jugosl. 16: 209–223.

    Google Scholar 

  163. Seligman, P.F., C.M. Adema, P.M. Stang, A.O. Valkirs and J.G. Grovhoug. 1987. Monitoring and prediction of tributyultin in the Elizabeth River and Hampton Roads. Virginia. 1357–1363, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  164. Seligman, P.F., J.G. Brovhoug, A.O. Valkirs, P.M. Stang, R. Fransham, M.O. Stallard, B. Davidson and R.F. Lee. 1989. Distribution and fate of tributyltin in the marine environment. Appl. Organomet. Chem. (in press).

  165. Seligman, P.F., A.O. Valkirs, P.M. Stang and R.F. Lee. 1988. Evidence for rapid degradation of tributyltin in a marina. Mar. Poll. Bull. 19: 531–534.

    Google Scholar 

  166. Seligman, P.F., A.O. Valkirs and R.F. Lee. 1986. Degradation of tributyltin in San Diego Bay, California, waters. Environ. Sci. Technol. 20: 1229–1235.

    Google Scholar 

  167. Selwyn, M.J. 1976. Triorganotin compounds as ionophores and inhibitors of ion translocating ATPases. Adv. Chem. Ser. 157: 204–226.

    Google Scholar 

  168. Selwyn, M.J. and A.S. Watling. 1988. Anion transport by alkyl derivatives of heavy metals. In: The Biological Alkylation of Heavy Elements (Craig, P.J. and F. Glockling eds.) pp. 291–295, Royal Soc. Chem. London.

    Google Scholar 

  169. Sherman, L.R. and F. Huber. 1988. Relationship of cytotoxic groups in organotin molecules and the effectiveness of the compounds against leukemia. Appl. Organomet. Chem. 2: 65–72.

    Google Scholar 

  170. Short, J.W. 1987. Measuring Tri-n-butyltin in salmon by atomic absorption: analysis with and without gas chromatography. Bull. Environ. Contam. Toxicol. 39: 412–416.

    PubMed  Google Scholar 

  171. Short, J.W. and F.P. Thrower. 1986. Accumulation of butyltins in muscle tissue of Chinook salmon reared in sea pens treated with tri-n-butyltin. Oceans 86 Proceedings, Vol. 4, pp. 1177–1181, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  172. Siebenlist, K.R. and F. Taketa. 1980. Inhibition of red cell and yeast hexokinase by triethyltin bromide [(C2H5)3SnBr]. Biochem. Biophys Res. Comm. 95: 758–764.

    PubMed  Google Scholar 

  173. Siebenlist, K.R. and F. Taketa. 1981. Interactions of triethyltin bromide with components of the red cell. Toxicol. Appl. Pharmacol. 58: 67–75.

    PubMed  Google Scholar 

  174. Siebenlist, K.R. and F. Taketa. 1983a. Inactivation of yeast hexokinase B by triethyltin bromide. Biochem. 22: 4229–4234.

    Google Scholar 

  175. Siebenlist, K.R. and F. Taketa. 1983b. Inactivation of yeast hexokinase B by triethyltin bromide and reactivation by dithiothreitol and glucose. Biochem. 22: 4642–4646.

    Google Scholar 

  176. Siebenlist, K.R. and F. Taketa. 1983c. The effects of triethyltin bromide on red cell and brain cyclic AMP-dependent protein kinases. J. Biol. Chem. 258: 11384–11390.

    PubMed  Google Scholar 

  177. Siebenlist, K.R. and F. Taketa. 1983. The effects of triethyltin bromide on red cell and brain cyclic AMP-dependent protein kinases. J. Biol. Chem. 258: 11384–11390.

    PubMed  Google Scholar 

  178. Singh, A.P. and P.D. Bragg. 1976. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant ofE. coli. Biochim. Biophys. Acta 423: 450–461.

    PubMed  Google Scholar 

  179. Singh, A.P. and P.D. Gragg. 1978. Lack of involvement of lipoic acid in membrane-associated energy transduction inEscherichia coli. Biochem. Biophys. Res. Commun. 81: 161–167.

    PubMed  Google Scholar 

  180. Singh, A.P. and P.D. Bragg. 1979. The action of tributyltin chloride on the uptake of proline and glutamine by intact cells ofE. coli cells. Can. J. Biochem. 57: 1376–1383.

    PubMed  Google Scholar 

  181. Singh, A.P. and P.D. Bragg. 1979. The action of tributyltin chloride on energy-dependent transhydrogenation of NADP+ by NADH in membranes ofE. coli. Can. J. Biochem. 57: 1384–1391.

    PubMed  Google Scholar 

  182. Singh, A.P. 1980. II. The role of mutants in the studies of energy-transduction inE. coli. Ind. J. Microbiol. 20: 333–361.

    Google Scholar 

  183. Singh, A.P. and K. Singh. 1984. Isolation and characterization of TBT resistant mutants ofE. coli. Z. Naturf. 39c: 293–299.

    Google Scholar 

  184. Singh, A.P. and K. Singh. 1985. Differential sensitivity to TBT of cytochrome-containing and cytochrome-deficient cells ofE. coli SASX76. Experientia 41: 764–767.

    PubMed  Google Scholar 

  185. Skilleter, D.N. 1975. The decrease of mitochondrial substrate uptake caused by trialkyltin and trialkyllead compounds in chloride media and its relevance to inhibition of oxidative phosphorylation. Biochem. J. 146: 465–471.

    PubMed  Google Scholar 

  186. Skilleter, D.N. 1976. The influence of adenine nucleotides and oxidizable substrates on triethyltin-mediated chloride uptake by rat liver mitochondria in potassium chloride media. Biochem. J. 154: 271–274.

    PubMed  Google Scholar 

  187. Slesinger, A.E. and I. Dressler. 1978. The environmental chemistry of three organotin chemicals. In: Report of the Organotin Workship, Feb. 17–19, 1978 (Good, M., ed.), pp. 115–162, University of New Orleans, New Orleans, LA.

    Google Scholar 

  188. Smith, P.J. 1978. Toxicological data on organotin compounds. Int. Tin Res. Inst. Publ. 538. 20 pp.

  189. Smith, G.N., F.S. Fischer and R.J. Axelson. 1976. Volatilization and photodecomposition of Plictran miticide. J. Agric. Food Chem. 24: 1225–1229.

    PubMed  Google Scholar 

  190. Soderquist, G.J. and D.G. Crosby. 1978. Determination of triphenyltin hydroxyde and its degradation products in water. Anal. Chem. 50: 1435–1439.

    Google Scholar 

  191. Soderquist, C.J. and D.G. Crosby. 1980. Degradation of triphenyltin hydroxide and its degradation products in water. Anal. Chem. 50: 111–117.

    Google Scholar 

  192. Soracco, R.J. and D.H. Pope. 1983. Bacteriostatic and bactericidal modes of action of bis(tributyltin)oxide onLegionella pneumophila. Appl. Environ. Microbiol. 45: 48–57.

    PubMed  Google Scholar 

  193. Stephenson, M.D., D.R. Smith, L.W. Hall, Jr., W.E. Johnson, P. Michel, J. Short, M. Waldock, R.J. Huggett, P. Seligman and S. Kila. 1987. An international intercomparison of butyltin determinations in mussel tissue and sediments. Oceans 87 Proceedings, Vol. 4, pp. 1334–1338, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  194. Stockdale, M., A.P. Dawson and M.J. Selwyn. 1970. Effects of trialkyltin and triphenyltin compounds on mitochondrial respiration. Eur. J. Biochem. 15: 342–351.

    PubMed  Google Scholar 

  195. Stallard, M., V. Hodge and E.D. Goldberg. 1987. TBT in California coastal waters: monitoring and assessment. Environ. Monitoring Assess. 9: 195–220.

    Google Scholar 

  196. Tan, L.P., M.L. Ng and V.G. Kumar Das. 1978. The effect of triethyltin compounds on tubulin polymerization. J. Neurochem. 31: 1035–1041.

    PubMed  Google Scholar 

  197. Thayer, J.S. 1984. Organometallic compounds and living organisms. Academic Press, New York.

    Google Scholar 

  198. Thayer, J.S. and F.E. Brinckman. 1982. The biological methylation of metals and metalloids. Adv. Organomet. Chem. 20: 313–356.

    Google Scholar 

  199. Thayer, J.S., R.B. Jonas and J.J. Cooney. 1986. The effects of tin compounds on cell growth and development. In: Tin as a vital nutrient (Cardarelli, N.F. ed.), pp. 85–93, CRC Press, Boca Raton, FL.

    Google Scholar 

  200. Thomas, T.E. and M.G. Robinson. 1987. Initial characterization of the mechanisms responsible for the tolerance ofAmphora coffeaeformis to cooper and tributyltin. Bot. Mar. 30: 47–53.

    Google Scholar 

  201. Thompson, J.A.J., M.G. Sheffer, R.C. Pierce, Y.K. Chau, J.J. Cooney, W.R. Cullen and J.R. Maguire. 1985. Organotin compounds in the aquatic environment. NRCC Assoc. Comm. Scientific Criteria Environ. Qual., Pub. No. NRCC 22494, National Research Council of Canada, Ottawa, Ontario, 284 pp.

    Google Scholar 

  202. Tipping, E., B. Ketterer, L. Christodoulides, B.M. Elliott, W.N. Aldridge and J.W. Bridges. 1979. The interactions of triethyltin with rat glutathione-S-transferases A B and C. Enzyme-inhibition and equilibrium-dialysis studies. Chem.-Biol. Interact. 24: 317–327.

    PubMed  Google Scholar 

  203. Unger, M.A., W.G. MacIntyre and R.J. Huggett. 1987. Equilibrium sorption of tributyltin chloride by Chesapeake Bay sediments. Oceans 87 Proceedings, Vol. 4, pp. 1381–1385, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  204. Unsel, M. 1984. Accumulation and loss of tin by the mussel. Ocean. Acta 7: 493–498.

    Google Scholar 

  205. U.S. Public Law 100-330 102 Stat. 605. Organotin antifouling paint control act of 1988, June 16, 1988.

  206. Valkirs, A.O., P.F. Seligman and R.F. Lee. 1986. Butyltin partitioning in marine waters and sediment. Oceans 86 Proceedings, Vol. 4, pp. 1165–1170, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  207. Valkirs, A.O., P.F. Seligman, G.J. Olson, F.E. Brinckman, C.L. Matthias and J.M. Bellama. 1987. Di- and tributyltin species in marine and estuarine waters. Inter-laboratory comparison of two ultratrace analytical methods employing hydride generation and atomic absorption or flame photometric detection. Analyst 112: 17–20.

    PubMed  Google Scholar 

  208. Van der Kerk, G.J.M. and J.G.A. Luijten. 1954. Investigations on organo-tin compounds. III. The biocidal properties of organo-tin compounds. J. Appl. Chem. 4: 314–319.

    Google Scholar 

  209. Van der Kerk, G.J.M. and J.G.A. Luijten. 1956. Investigations on organo-tin compounds. V. The preparation and antifungal properties of unsymmetrical tri-n-alkyltin acetates. J. Appl. Chem. 6: 56–60.

    Google Scholar 

  210. Van Koten, G. and J.G. Noltes. 1976. Chiral pentacoordinate trioorganotin halides. In: Organotin compounds: new chemistry and applications (Zuckerman, J.J. ed.), p. 275, Advanced Chemical Series 147, American Chemical Society, Washington, DC.

    Google Scholar 

  211. Waldock, M.J. and J.E. Thain. 1983. Shell thickening inCrassostrea gigas: organotin antifouling or sediment induces? Mar. Poll. Bull. 14: 411–415.

    Google Scholar 

  212. Waldock, M.J., J.E. Thain and M.E. Waite. 1987. The distribution and potential toxic effects of TBT in UK estuaries during 1986. Appl. Organomet. Chem. Vol. 1/4: 287–301.

    Google Scholar 

  213. Walsh, G.E., L.L. McLaughlin, E.M. Lores, M.K. Louie and C.H. Deans. 1985. Effects of organotin on growth and survival of two marine diatomsSkeletonema costatum andThalassiosira pseudonana. Chemosphere 14: 383–392.

    Google Scholar 

  214. Ward, S.C., G.C. Cramm, P.R. Parrish, H. Trachman and A. Slesinger. 1981. Bioaccumulation and chronic toxicity of bis(tributyltin)oxide (TBTO): tests with a saltwater fish. In: Aquatic Toxicology and Hazard Assessment: Fourth Conference, ASTM STP 737 (Branson, D.R. and K.L. Dickson, eds.), pp. 183–200, American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  215. Ward, S.C., R.C. Taylor and A.J. Crowe. 1988. The in vitro antiherpes activity of some selected antitumor organotin compounds. Appl. Organomet. Chem. 2: 47–52.

    Google Scholar 

  216. Walting-Payne, A.S. and M.J. Selwyn. 1970. Effects of some organometallic compounds on the permeability of chloroplast membranes. FEBS Lett. 10: 139–142.

    PubMed  Google Scholar 

  217. Watling-Payne, A.S. and M.J. Selwyn. 1974. Inhibition and uncoupling of photophosphorylation in isolated chloroplasts by organotin, organomercury and diphenyleneiodonium compounds. Biochem. J. 142: 65–74.

    PubMed  Google Scholar 

  218. Watling-Payne, A.S. and M.J. Selwyn. 1975. Decrease of proton permeability of CF1-deficient chloroplast particles by triphenyltin. FEBS Lett. 58: 57–61.

    Google Scholar 

  219. Weis, J.S., J. Gottlieb and Jill Kwiatkowski. 1987. Tributyltin retards regeneration and produces deformities of limbs in the fiddler crab,Uca pugilator. Arch. Environ. Contam. Toxicol. 16: 321–326.

    PubMed  Google Scholar 

  220. Wolniakowski, K.U., M.D. Stephenson and G.S. Ichikawa. 1987. Tributyltin concentrations and Pacific oyster deformation in Coos Bay, Oregon. Oceans 87 Proceedings, Vol. 4, pp. 1438–1443, IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  221. Wong, P.T.S., Y.K. Chau, O. Kramer and G.A. Bengert. 1982. Structure-toxicity relationship of tin compounds on algae. Can. J. Fish Aquat. Sci. 39: 483–488.

    Google Scholar 

  222. Wright, D.A. and W.H. Roosenburg. 1982. Trimethyltin toxicity to larvalUca pugilator: effects of temperature and salinity. Arch. Environ. Contam. Toxicol 11: 491–495.

    PubMed  Google Scholar 

  223. Wulf, R.G. and K.H. Byington. 1975. On the structure-activity relations and mechanism of organotin-induced, nonenergy dependent swelling of liver mitochondria. Arch. Biochem. Biophys. 167: 176–185.

    PubMed  Google Scholar 

  224. Yamada, J. 1981. Effects of trialkyltin chlorides onE. coli spheroplasts. Agric. Biol. Chem. 45: 997–999.

    Google Scholar 

  225. Yamada, J., K. Oishi, K. Tatsuguchi and T. Watanabe. 1979. Interaction of trialkyltin chloride with inorganic phosphates and phospholipids. Agric. Biol. Chem. 43: 1015–1020.

    Google Scholar 

  226. Yamada, J., K. Tatsuguchi and T. Watanabe. 1978. Effects of trialkyltin chlorides on microbial growth. Agric. Biol. Chem. 42: 1167–1172.

    Google Scholar 

  227. Yamada, J., K. Tatsuguchi and T. Watanabe. 1978. Uptake of tripropyltin byEscherichia coli. Agric. Biol. Chem. 42: 1867–1870.

    Google Scholar 

  228. Yamada, J., K. Tatsuguchi and T. Watanabe. 1979. Cell lysis and leakage of cell consituents by tripropyltin chloride. Agric. Biol. Chem. 43: 125–130.

    Google Scholar 

  229. Yamada, J. and T. Watanabe. 1979. Effect of tripropyltin chloride on transport system inE. coli. Agric. Biol. Chem. 43: 1681–1686.

    Google Scholar 

  230. Yamada, J. and T. Watanabe. 1979. Effect of tripropyltin chloride on functional reactions inE. coli. Agric. Biol. Chem. 43: 1293–1300.

    Google Scholar 

  231. Zedler, R.J. and C.B. Beiter. 1962. Organotins: biological activity, uses. Soap Cosmet. Chem. Spec. 38: 75–78.

    Google Scholar 

  232. Zuckerman, J.J., R.P. Reisdorf, H.V. Ellis, III and R.R. Wilkinson. 1978. Organotins in biology and the environment. In: organometals and organometalloids, Occurrence and Fate in the Environment (Brinckman, F.E. and J.M. Bellema, eds.), American Chemical Society Symposium Series Vol. 82, pp. 388–424, American Chemical Society, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooney, J.J., Wuertz, S. Toxic effects of tin compounds on microorganisms. Journal of Industrial Microbiology 4, 375–402 (1989). https://doi.org/10.1007/BF01569539

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569539

Key words

Navigation