Skip to main content

Synergy of Actinomycete Co-inoculation

  • Chapter
  • First Online:
Plant Growth Promoting Actinobacteria

Abstract

Historically the symbioses between leguminous plants and rhizobia have attracted the attention of researchers due to the incidence of legumes for sustaining nutritional requirements to humans and animals. There have been large efforts to increase the ability to symbiotic N2 fixing and productivity of legumes. New research is focusing on increasing the legume–rhizobia symbiosis with increased biological nitrogen fixation (BNF), growth, and productivity. The inoculation of legumes with rhizosphere bacteria has often been found to increase symbiotic properties, plant biomass, and yields under greenhouse or field conditions. The potential to enhance plant growth, nodulation, nitrogen fixation, productivity of legumes by plant growth-promoting rhizobacteria (PGPR), and Rhizobium co-inoculation does exist, although most of studies have been conducted with Bacillus spp., Pseudomonas spp., or other genera and few with actinomycetes. The latter, a group of actinobacteria widely distributed in terrestrial ecosystems contribute to soil nutrient cycling and live in association with plants and are considered as one of the most important communities in the rhizosphere. They have a great ability to synthesize a series of bioactive metabolites and potential within the agroecosystem, where they play important roles in disease suppression and plant growth promotion in cultivated plants. In this sense, the purpose of this chapter is to show the synergistic effect of actinomycete co-inoculation on N2-fixing symbioses and their potential use in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular–arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401–409

    Article  Google Scholar 

  • Adesemoye A, Torbert H, Kloepper J (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Akarapisan A, Bhromsiri A, Sangmanee P (2008) Selection of suitable isolates of endophytic actinomycetes and rhizobia for improvement of N2 fixation and disease control of various Pisum sativum on the highland area. Asian J Food Ag-Ind S297–S306:297–306

    Google Scholar 

  • Ali N (2010) Soybean processing and utilization. In: Singh G (ed) The soybean: botany, production and uses. CAB International, London, pp 345–362

    Chapter  Google Scholar 

  • Ames RN, Reid CPP, Ingham ER (1984) Rhizosphere bacterial population responses to root colonization by a vesicular–arbuscular mycorrhizal fungus. New Phytol 96:555–563

    Article  Google Scholar 

  • April FM, Foght JM, Currah RS (2000) Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Can J Microbiol 46:38–49

    Article  CAS  PubMed  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1–24

    Article  Google Scholar 

  • Bagyaraj DJ (1984) Biological interaction with VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, pp 131–153

    Google Scholar 

  • Bai Y, Souleimanov A, Smith D (2002a) An inducible activator produced by a Serratia proteamaculans strain and its soybean growth-promoting activity under greenhouse conditions. J Exp Bot 373:1495–1502

    Article  Google Scholar 

  • Bai Y, Pan B, Charles T, Smith L (2002b) Co-inoculation dose and root zone temperature for plant growth-promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biol Biochem 34:1953–1957

    Article  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2004) Mycorrhizal fungi and plant growth-promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 351–371

    Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. In: Sparks DL (ed) Advances in agronomy. Academic, New York, pp 77–136

    Google Scholar 

  • Bashan Y, Holguin G, de-Bashan L (2004) Azospirillum-plant relationships: physiological molecular, agricultural, and environmental advances (1997─2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Beattie G (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht, pp 1–56

    Chapter  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  Google Scholar 

  • Bhattachryya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bouizgarne B, Ben Aouamar AA (2014) Diversity of plant associated actinobacteria. In: Maheshwari DK (ed) Bacterial diversity in sustainable agriculture. Springer, Basel, pp 41–99

    Google Scholar 

  • Cahuepé M (2004) Does Lotus glaber improve beef production at the Flooding Pampas? Lotus Newsl 34:38–43

    Google Scholar 

  • Cassán FD, Piccoli P, Bottini R (2003) Promoción del crecimiento vegetal por Azospirillum sp. a través de la producción de giberelinas. Un modelo alternativo para incrementar la producción agrícola. In: Albanesi A, Kunst C, Anriquez A, Luna S, Ledesma R (eds) Microbiología Agrícola. Un aporte de la investigación en Argentina para la sociedad. Universidad Nacional de Santiago del Estero, Santiago, pp 1–16

    Google Scholar 

  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  CAS  PubMed  Google Scholar 

  • Chaia EE (1998) Isolation of an effective strain of Frankia from nodules of Discaria trinervis (Rhamnaceae). Plant Soil 205:99–102

    Article  CAS  Google Scholar 

  • Coria D, Lucesoli R, Maresca S, Obregón E, Olmos G, Pettinari J, Quiroz García J, Rípodas I (2005) Manual para productores ganaderos de la Cuenca del Salado. Ediciones INTA, Buenos Aires

    Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonist of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dashti N, Zhang F, Hynes RK, Smith DL (1998) Plant growth-promoting rhizobacteria accelerate nodulation and increase fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213

    Article  CAS  Google Scholar 

  • do Vale Barreto Figueiredo M, Seldin L, Fernando de Araujo F, Ramos Mariano RL (2010) Plant growth-promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Heidelberg, pp 21–43

    Chapter  Google Scholar 

  • Dobbelaere S, Okon Y (2007) The plant growth-promoting effect and plant responses. In: Elmerich C, Newton E (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 145–170

    Chapter  Google Scholar 

  • Duponnois R (2006) Bacteria helping mycorrhiza development. In: Mukerji KG, Manoharachary C, Sing J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 297–310

    Chapter  Google Scholar 

  • Elliot LF, Lynch JM (1995) The international workshop on establishment of microbial inocula in soils: cooperative research project on biological resource management of the organization for economic cooperation and development (OECD). Am J Altern Agric 10:50–73

    Article  Google Scholar 

  • Escaray FJ, Gárriz A, Estrella MJ, Pieckenstain FL, Castagno N, Carrasco P, SanJuán J, Ruiz O (2012) Ecological and agronomic importance of the plant genus Lotus. It’s application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci 182:121–133

    Article  CAS  PubMed  Google Scholar 

  • Estrella MJ, Muñoz S, Soto MJ, Ruiz O, Sanjuán J (2009) Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado river basin (Argentine). Appl Environ Microbiol 75:1088–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth-promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Frioni L (2006) Microbiología: Básica, ambiental y agrícola. Universidad de la República, Facultad de Agronomía, Uruguay. Montevideo

    Google Scholar 

  • Gamalero E, Berta G, Glick B (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan S, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 1–22

    Chapter  Google Scholar 

  • Garbaye J (1994) Tansley Review No 76. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389

    Article  CAS  PubMed  Google Scholar 

  • Ghodhbane-Gtari F, Essoussi I, Chattaoui M, Jaouani A, Daffonchio D, Boudabous A, Gtari M (2010) Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50:51–57

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goodfellow M (2012) Phylum XXVI. Actinobacteria phyl. nov. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, the actinobacteria, parts A and B. Springer, New York

    Chapter  Google Scholar 

  • Goodfellow M, Cross T (1974) Actinomycetes. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition. Academic, London, pp 269–289

    Chapter  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregor AK, Klubek B, Varsa EC (2003) Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicum. Can J Microbiol 49:483–491

    Article  CAS  PubMed  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    Article  PubMed  Google Scholar 

  • Gupta A, Saxena AK, Gopal M, Tilak KVBR (1998) Effect of plant growth-promoting rhizobacteria on competitive ability of introduced Bradyrhizobium sp. (Vigna) for nodulation. Microbiol Res 153:113–117

    Article  Google Scholar 

  • Halder AK, Mishra AK, Chakarbarthy PK (1991) Solubilization of inorganic phosphates by Bradyrhizobium. Indian J Exp Biol 29:28–31

    CAS  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen über die Stickstoffnahrung der Gramineen und Leguminosen. Beilageheft zu der Zeitschrift des Vereins für die Rübenzucker-Industrie des Deutschen Reiches, Buchdruckerei der “Post.” Kayssler & Co., Berlin

    Google Scholar 

  • Huss-Danell K (1997) Tansley Review No 93. Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  • Janisiewicz WJ (1996) Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology 86:473–479

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Kellerman J, Medan D, Aagesen L, Hilger HH (2005) Rehabilitation of the South American genus Ochetophila Poepp. ex. Endl. (Rhamnaceae: Colletieae). N Z J Bot 43:865–869

    Article  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Gilbert-Clarey, Tours, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024

    Article  Google Scholar 

  • Knowlton S, Dawson JO (1983) Effects of Pseudomonas cepacia and cultural factors on the nodulation of Alnus rubra roots by Frankia. Can J Bot 61:2877–2882

    Article  Google Scholar 

  • Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–976

    Article  PubMed  Google Scholar 

  • Liu K (1999) Chemistry and nutritional value of soybean components. In: Liu K (ed) Soybeans: chemistry, technology and utilization. Aspen Publisher, New York, pp 25–94

    Google Scholar 

  • Matsukuma S, Okuda T, Watanabe J (1994) Isolation of actinomycetes from pine litter layers. Actinomycetologica 8:57–65

    Article  Google Scholar 

  • McCarthy AJ (1989) Lignocellulose-degrading actinomycetes. FEMS Microbiol Rev 46:145–163

    Article  Google Scholar 

  • McCarthy AJ, Williams ST (1992) Actinomycetes as agent of biodegradation in the environment—a review. Gene 115:189–192

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin TJ, Owens PA, Alt SG (1985) Competition studies with fast growing Rhizobium japonicum strains. Can J Microbiol 31:220–223

    Article  Google Scholar 

  • Mehboob I, Naveed M, Zahir ZA, Sessitsch A (2013) Potential of rhizosphere bacteria for improving Rhizobium-legume symbiosis. In: Arora NK (ed) Plan microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 305–1349

    Chapter  Google Scholar 

  • Morel MA, Braña V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production. In: Goyal S (ed) Crop plant. INTECH, Croatia, pp 217–240

    Google Scholar 

  • Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant-microbe interactions for suitable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plan microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 51–103

    Chapter  Google Scholar 

  • Nonomura H (1989) Genus Streptosporangium couch. In: Williams ST, Sharpe M, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Williams, Baltimore, pp 2545–2551

    Google Scholar 

  • Okazaki T, Takahashi K, Kizuka M, Enokita R (1995) Studies on actinomycetes isolated from plant leaves. Annu Rep Sankyo Res Lab 47:97–106

    Google Scholar 

  • Pankaj K, Bansal RK, Dabur KR (2011) Effect of rhizobacteria as seedling inoculation on rootknot nematode and plant growth in rice-nursery. Indian J Nematol 41:41–46

    Google Scholar 

  • Paz RC, Rocco RA, Reinoso H, Menéndez AB, Pieckenstain LF, Ruiz OA (2012) Comparative study of alkaline, saline and mixed saline-alkaline stresses with regard to their effects on growth, nutrient accumulation and root morphology of Lotus tenuis. J Plant Growth Regul 31:448–459

    Article  CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Probanza A, Lucas JA, Acero N, Gutierrez Mañero FJ (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth 1. Characterization of growth-promoting and growth-inhibiting bacterial strains. Plant Soil 182:59–66

    Article  CAS  Google Scholar 

  • Probanza A, Acero N, Ramos B, Gutierrez Mañero FJ (1997) Effects of European alder (Alnus glutinosa (L.) Gaertn) rhizobacteria on nodular metabolism and root development. Plant Growth Regul 22:145–149

    Article  CAS  Google Scholar 

  • Qin S, Xing K, Jiang JH, Lu H (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    Article  CAS  PubMed  Google Scholar 

  • Requena BN, Jimenez I, Toro M, Barea JM (1997) Interactions between plant growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystem. New Phytol 136:667–677

    Article  Google Scholar 

  • Rillig MC, Mummey DL, Ramsey PW, Klironomos JN, Gannon JE (2006) Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiol Ecol 57:389–395

    Article  CAS  PubMed  Google Scholar 

  • Sannazzaro AI, Bergottini VM, Paz RC, Castagno LN, Menéndez AB, Ruiz OA, Pieckenstain FL, Estrella MJ (2011) Comparative symbiotic performance of native rhizobia of the Flooding Pampa and strains currently used for inoculating Lotus tenuis in this region. Antonie Van Leeuwenhoek 99:371–379

    Article  PubMed  Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94:11–19

    Article  PubMed  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2014) Diversity utility and potential of actinobacteria in the agro-ecosystem. In: Maheshwari DK (ed) Bacterial diversity in sustainable agriculture. Springer, Cham, pp 23–40

    Google Scholar 

  • Semédo LTAS, Linhares AA, Gomes RC, Manfio GP, Alviano CS, Linhares LF, Coelho RRR (2001) Isolation and characterization of actinomycetes from Brazilian tropical soils. Microbiol Res 155:291–299

    Article  PubMed  Google Scholar 

  • Sindhu S, Suneja S, Goel A, Parmar N, Dadarwal K (2002) Plant growth-promoting effects of Pseudomonas sp. on co-inoculation with Mesorhizobium sp. ciceri strain under sterile and wilt sick soil conditions. Appl Soil Ecol 19:57–64

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Soe KM (2009) Effects of endophytic actinomycetes and bradyrhizobia on nodulation and nitrogen fixation of different soybean varieties. MS thesis, Chaing Mai University, Thailand

    Google Scholar 

  • Soe KM, Yamakawa T (2013) Evaluation of effective Myanmar Bradyrhizobium strains isolated from Myanmar soybean and effects of co-inoculation with Streptomyces griseoflavus P4 for nitrogen fixation. Soil Sci Plant Nutr 59:361–370

    Article  CAS  Google Scholar 

  • Soe KM, Bhromsiri A, Karladee D, Yamakawa T (2012) Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr 58:319–325

    Article  Google Scholar 

  • Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    Article  PubMed  Google Scholar 

  • Solans M (2008) Influencia de rizoactinomicetes nativos sobre el desarrollo de la planta actinorrícica Ochetophila trinervis. Thesis, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Río Negro, Argentina

    Google Scholar 

  • Solans M, Vobis G (2003) Actinomycetes saprofíticos asociados a la rizósfera y rizoplano de Discaria trinervis. Ecol Aust 13:97–107

    Google Scholar 

  • Solans M, Vobis G (2013) Biology of actinomycetes in the rhizosphere of nitrogen-fixing plants. In: Amoroso MJ, Benimeli CS, Cuozzo SA (eds) Actinobacteria application in bioremediation and production of industrial enzymes. CRC Press, Boca Ratón, pp 1–25

    Chapter  Google Scholar 

  • Solans M, Vobis G, Wall LG (2009) Saprophytic actinomycetes promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high N. J Plant Growth Regul 28:106–114

    Article  CAS  Google Scholar 

  • Solans M, Vobis G, Cassán F, Luna V, Wall LG (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202

    Article  CAS  Google Scholar 

  • Solans M, Ruíz OA, Wall LG (2015) Effect of actinobacteria on Lotus tenuisMesorhizobium loti symbiosis: preliminary study. Symbiosis 65:33–37

    Article  CAS  Google Scholar 

  • Spaink HP, Kondorosi A, Hooykaas PJJ (1998) The rhizobiaceae. Kluwer, Dordrecht

    Book  Google Scholar 

  • Sprents JI (2002) Nodulation in legumes. Royal Botanic Gardens, Kew

    Google Scholar 

  • Strap JL (2011) Actinobacteria–plant interactions: a boon to agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 285–307

    Chapter  Google Scholar 

  • Takana Y, Omura S (1990) Metabolism and products of actinomycetes—an introduction. Actinomycetologica 4:13–14

    Article  Google Scholar 

  • Takisawa M, Colwell RR, Hill RT (1993) Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl Environ Microbiol 59:997–1002

    Google Scholar 

  • Thapanapongworakul P (2003) Characterization of endophytic actinomycetes capable of controlling sweet pea root rot diseases and effects on root nodule bacteria. MSc thesis, Chiang Mai University, Thailand

    Google Scholar 

  • Tilak K, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant growth-promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71

    Article  CAS  Google Scholar 

  • Tisdale SL, Nelson WL (1975) Soil fertility and fertilizers. Macmillan Publishing, New York

    Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2162–2171

    Article  CAS  Google Scholar 

  • Tortosa RD (1983) El género Discaria (Rhamnaceae). Bol Soc Argent Bot 22:301–335

    Google Scholar 

  • Trujillo ME, Kroppenstedt RE, Schumann P, Carro L, Martinez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Kroppenstedt RE, Fernandez-Molinero C, Schumann P, Martinez-Molina E (2007) Micromonospora lupine sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804

    Article  CAS  PubMed  Google Scholar 

  • Valverde C, Wall LG (1999) Regulation of nodulation in Discaria trinervis (Rhamnaceae) -Frankia symbiosis. Can J Bot 77:1302–1310

    Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as bio-fertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 266:205–230

    Article  CAS  Google Scholar 

  • Vestberg M, Cassells AC, Schubert A, Cordier C, Gianinazzi S (2002) Arbuscular mycorrhizal fungi and micropropagation of high value crops. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhäuser, Basel, pp 223–233

    Chapter  Google Scholar 

  • Vignolio OR, Fernández ON (2006) Bioecología de Lotus glaber mill (Fabaceae) en la Pampa Deprimida (provincia de Buenos Aires). Revisión bibliográfica. Rev Argent Prod Anim 26:113–130

    Google Scholar 

  • Vobis G, Chaia EE (1998) El rol de los actinomycetes en el suelo. En: Actas XVI Congreso Argentino de la Ciencia del Suelo. Villa Carlos Paz, Córdoba, pp 375–381

    Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    CAS  PubMed  Google Scholar 

  • Wall LG, Berry AM (2008) Early interactions, infection and nodulation in actinorhizal symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 147–166

    Chapter  Google Scholar 

  • Weir BS (2012) The current taxonomy of rhizobia. NZ rhizobia website. http://www.rhizobia.co.nz/taxonomy/rhizobia.html. Accessed 10 Oct 2015

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes R, Smith D (1996) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Article  Google Scholar 

  • Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J, Lindström K, Zhang L, Zhang X, Strobel GA (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau, China. Curr Microbiol 62:182–190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Solans, M., Vobis, G., Jozsa, L., Wall, L.G. (2016). Synergy of Actinomycete Co-inoculation. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_10

Download citation

Publish with us

Policies and ethics