Skip to main content

Actinobacteria–Plant Interactions: A Boon to Agriculture

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Growth Responses

Abstract

Plant diseases caused by soil-dwelling microorganisms are responsible for significant losses of agricultural crops each year. These losses are compounded in soils bearing insufficient micronutrients to adequately support plant health and development. While agrichemicals such as pesticides and fertilizers have played an important role in increasing crop production, the benefits have been overshadowed by damage to the environment, adverse human health effects, and the emergence of pesticide-resistant pathogens. Public perception of the risk posed by agrichemicals and their residues along with strict restrictions placed on the use of chemicals in agriculture have had serious negative economic impact. As a consequence, there is a growing market for alternative approaches to agricultural pest control and fertilization, fueled by the demand for chemical-free agricultural products. The development of microbial inoculants as plant growth promoters and biological control agents is a promising alternative to the use of agrochemicals. Actinobacteria are a group of Gram-positive bacteria that are ubiquitous in soil environments. Many species of Actinobacteria can colonize plant roots and surfaces. Additionally, they have the capacity to produce extracellular metabolites that not only enable them to outcompete phytopathogens but which also function as plant growth regulators. These qualities, among others, make Actinobacteria ideal candidates for development as microbial inoculants for use in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PB (1990) The potential of mycoparasites for biological control of plant diseases. Annu Rev Phytopathol 28:59–72

    PubMed  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    PubMed  CAS  Google Scholar 

  • Aharonowitz Y (1980) Nitrogen metabolite regulation of antibiotic biosynthesis. Annu Rev Microbiol 34:209–233

    PubMed  CAS  Google Scholar 

  • Aldesequy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol (Praha) 43:465–470

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Krieger, Melbourne, FL

    Google Scholar 

  • Aronson DB, Boyer GL (1994) Growth and siderophore formation in six iron-limited strains of Frankia. Soil Biol Biochem 26:561–567

    CAS  Google Scholar 

  • Atzorn RA, Crozier CT, Weeler CT, Sanberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–536

    CAS  Google Scholar 

  • Barakate M, Ouhdouch Y, Oufdou KH, Beaulieu C (2002) Characterization of rhizospheric soil streptomycetes from Moroccan habitats and their antibiotic activities. World J Microbiol Biotechnol 18:49–54

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto VV, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  Google Scholar 

  • Barona-Gomez F, Lautru S, Francou FX, Leblond P, Pernodet JL, Challis GL (2006) Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology 152:3355–3366

    PubMed  CAS  Google Scholar 

  • Basil A, Strap J, Knotek-Smith H, Crawford D (2004) Studies on the microbial populations of the rhizosphere of big sagebrush (Artemisia tridentata). J Ind Microbiol Biotechnol 31:278–288

    PubMed  CAS  Google Scholar 

  • Becker JO, Cook RJ (1988) Role of siderophores in suppression of Pythium species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    CAS  Google Scholar 

  • Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol 24:396–402

    CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    PubMed  CAS  Google Scholar 

  • Bibb MJ (1996) The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142:1335–1344

    PubMed  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    CAS  Google Scholar 

  • Bonfante P (2003) Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220

    PubMed  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of giberellins A1, A3, and isoA3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    PubMed  CAS  Google Scholar 

  • Bressan W (2003) Biological control of maize seed pathogenic fungi by use of actinomycetes. BioControl 48:233–240

    Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    PubMed  CAS  Google Scholar 

  • Brown ME (1975) Rhizosphere microorganisms opportunists bandits or benefactors. In: Walker N (ed) Soil microbiology. Butterworths, London, UK, pp 21–38

    Google Scholar 

  • Bunet R, Brock A, Rexer HU, Takano E (2006) Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 262:57–64

    PubMed  CAS  Google Scholar 

  • Burr TJ, Caesor AJ (1984) Beneficial plant bacteria. CRC Crit Rev Plant Sci 2:1–20

    Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (2002) Soil and plant effects on microbial community structure. Can J Microbiol 48:955–964

    PubMed  CAS  Google Scholar 

  • Campelo A, Gil J (2002) The candicidin gene cluster from Streptomyces griseus IMRU 3570. Microbiology 148:51–59

    PubMed  CAS  Google Scholar 

  • Carpenter-Boggs L, Loynachan T, Stahl P (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451

    CAS  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

    PubMed  CAS  Google Scholar 

  • Challis G, Hopwood D (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100:14555–14561

    PubMed  CAS  Google Scholar 

  • Chamberlain K, Crawford DL (1999) In vitro and in vivo antagonism of pathogenic turfgrass fungi by Streptomyces hygroscopicus strains YCED9 and WYE53. J Ind Microbiol Biotechnol 23:641–646

    PubMed  CAS  Google Scholar 

  • Chamberlain K, Crawford DL (2000) Thatch biodegradation and antifungal activities of two lignocellulolytic Streptomyces strains in laboratory cultures and in golf green turfgrass. Can J Microbiol 46:550–558

    PubMed  CAS  Google Scholar 

  • Champness WC, Chater KF (1994) Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp. In: Piggott PJ, Moran CP Jr, Youngman P (eds) Regulation of bacterial differentiation. American Society of Microbiology, Washington, DC, pp 61–93

    Google Scholar 

  • Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713

    PubMed  CAS  Google Scholar 

  • Chernin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Dekker, New York, NY, pp 171–225

    Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    PubMed  CAS  Google Scholar 

  • Clark GJ, Langley D, Bushell ME (1995) Oxygen limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture. Microbiology 141:663–669

    CAS  Google Scholar 

  • Cohen-Kupiec R, Broglie KE, Friesem D, Broglie RM, Chet I (1999) Molecular characterization of a novel b-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene 226:147–154

    PubMed  CAS  Google Scholar 

  • Collins R, Gaines H (1964) Production of hydrogen sulfide by Streptomyces odorifer. Appl Microbiol 12:335–336

    PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262

    PubMed  CAS  Google Scholar 

  • Crawford D, Lynch J, Whipps J, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  CAS  Google Scholar 

  • Crawford DL (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl Environ Microbiol 35:1041–1045

    PubMed  CAS  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Berlin, pp 169–198

    Google Scholar 

  • Cundliffe E (1989) How antibiotic producing microorganisms avoid suicide. Annu Rev Microbiol 43:207–223

    PubMed  CAS  Google Scholar 

  • Davelos AL, Xiao K, Samac DA, Martin AP, Kinkel LL (2004) Spatial variation in Streptomyces genetic composition and diversity in prairie soil. Microb Ecol 48:601–612

    PubMed  CAS  Google Scholar 

  • de Vasconcellos R, Cardoso E (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. BioControl 54:807–816

    Google Scholar 

  • de Weger LA, Boxtel R, Burg B, Gruters RA, Geels FP, Schippers B, Lugtenberg B (1986) Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp. J Bacteriol 165:585–594

    PubMed  Google Scholar 

  • DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot 29:442–447

    Google Scholar 

  • Dekker J (1963) Antibiotics in the control of plant diseases. Annu Rev Microbiol 17:243–262

    Google Scholar 

  • Demain AL, Fang A (1995) Emerging concepts of secondary metabolism in actinomycetes. Actinomycetologica 9:98–117

    Google Scholar 

  • Douling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant diseases. Trends Biotechnol 12:133–141

    Google Scholar 

  • El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149:185–195

    Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    CAS  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GE (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Google Scholar 

  • Elad Y, Chet I, Katan Y (1980) Trichoderma harzianum a biocontrol agent effective against Sclerotium rolfsiii and Rhizoctonica solani. Phytopathology 70:119–121

    Google Scholar 

  • Elliott M, Shamoun S, Sumampong G, James D, Masri S, Varga A (2009) Evaluation of several commercial biocontrol products on European and North American populations of Phytophthora ramorum. Biocontrol Sci Technol 19:1007–1021

    Google Scholar 

  • Emmert EA, Handelsman J (1999) Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    PubMed  CAS  Google Scholar 

  • Endo T, Matsuura K, Wakae O (1983) Effect of validamycin A on infection of Rhizoctonia solani in rice sheaths. Ann Phytopathol Soc Jpn 49:689–697

    CAS  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066

    PubMed  CAS  Google Scholar 

  • Fischer SE, Miguel MJ, Mori GB (2003) Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol Lett 219:53–62

    PubMed  CAS  Google Scholar 

  • Fravel D (1988) Role of antibiosis in biocontrol of plant disease. Annu Rev Phytopathol 26:75–91

    CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    PubMed  CAS  Google Scholar 

  • Frederickson JK, Elliott LF (1985) Effects on winter wheat seedling growth by toxin-producing rhizobacteria. Plant Soil 83:399–409

    Google Scholar 

  • Fries N, Forsman B (1951) Quantitative determination of certain nucleic acid derivatives in pea root exudate. Physiol Plant 4:410–420

    Google Scholar 

  • Gaskins MH, Albrecht SL, Hubbell DH (1985) Rhizosphere bacteria and their use to increase plant productivity: a review. Agric Ecosyst Environ 12:99–116

    Google Scholar 

  • Gerber N, Lechevalier H (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Environ Microbiol 13:935–938

    CAS  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29:1233–1239

    CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Gonzalez-Franco AC, Deobald LA, Spivak A, Crawford DL (2003) Actinobacterial chitinase-like enzymes: profiles of rhizosphere versus non-rhizosphere isolates. Can J Microbiol 49:683–698

    PubMed  CAS  Google Scholar 

  • Gonzalez-Franco AC, Robles-Hernandez L, Nuñez-Barrios A, Strap JL, Crawford DL (2009) Molecular and cultural analysis of seasonal actinomycetes in soils from Artemisia tridentata habitat. Phyton – Int J Exp Bot 78:83–90

    Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    PubMed  CAS  Google Scholar 

  • Grayston SJ, Campbell CD (1996) Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiol 16:1031–1038

    PubMed  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudates and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Google Scholar 

  • Gregor AK, Klubek B, Varsa EC (2003) Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicumi. Can J Microbiol 49:483–491

    PubMed  CAS  Google Scholar 

  • Guerinot M, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    PubMed  CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh L, Poole P (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Hajlaou MR, Traquair JA, Jarvis WR, Belanger RR (1994) Antifungal activity of extracellular metabolites produced by Sporothrix flocculosa. Biocontrol Sci Technol 4:229–237

    Google Scholar 

  • Hamby-Salove MB (2002) Plant growth promotion and siderophore production by selected root-colonizing, nonpathogenic Streptomyces species. MS Thesis, University of Idaho, Moscow, ID, USA

    Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    CAS  Google Scholar 

  • Harned RL, Hidy PH, Corum CJ, Jones KL (1951) Nigericin, a new crytalline antibiotic from an unidentified Streptomyces. Antibiot Chemother 1:594–596

    CAS  Google Scholar 

  • Heisey RM, Putnam AR (1990) Herbicidal activity of the antibiotics geldanamycin and nigericin. J Plant Growth Regul 9:19–25

    CAS  Google Scholar 

  • Hématy K, Cherk C, Somerville S (2009) Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12:406–413

    PubMed  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    PubMed  CAS  Google Scholar 

  • Hofte M, Seong KY, Jurkevitch E, Verstraete W (1991) Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK2. Plant Soil 130:249–257

    CAS  Google Scholar 

  • Hoster F, Schmitz JE, Daniel R (2005) Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl Microbiol Biotechnol 66:434–442

    PubMed  CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Google Scholar 

  • Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology 141:2823–2829

    PubMed  CAS  Google Scholar 

  • Jaeger CH 3rd, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    PubMed  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    PubMed  CAS  Google Scholar 

  • Jones DL, Darrah PR, Kochian LV (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential in root iron uptake. Plant Soil 180:57–66

    CAS  Google Scholar 

  • Kang MJ, Strap JL, Crawford DL (2010) Isolation and characterization of potent antifungal strains of the Streptomyces violaceusniger clade active against Candida albicans. J Ind Microbiol Biotechnol 37:35–41

    PubMed  CAS  Google Scholar 

  • Kempf HJ, Wolf G (1989) Erwinia herbicola as a biocontrol agent of Fusarium culmorum and Puccinia recondita f. sp. tritici on wheat. Phytopathology 79:990–994

    Google Scholar 

  • Kim BS, Moon SS, Hwang BK (1999) Isolation, identification and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77:850–858

    CAS  Google Scholar 

  • King H, Wallace R (1956) Morphological and physiological groups of soil bacteria from the roots of barley and oats. Can J Microbiol 2:473–481

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Kortemaa H, Rita H, Haahtela K, Smolander A (1994) Root-colonization ability of antagonistic Streptomyces griseoviridis. Plant Soil 163:77–83

    Google Scholar 

  • Krsek M, Wellington EM (2001) Assessment of chitin decomposer diversity within an upland grassland. Antonie Van Leeuwenhoek 79:261–267

    PubMed  CAS  Google Scholar 

  • Lacey J (1973) Actinomycetes in soils, composts and fodders. In: Sykes G, Skinner FA (eds) Actinomycetales: characteristics and practical importance. Academic, London, UK, pp 231–251

    Google Scholar 

  • Lanoot B, Vancanneyt M, Dawyndt P, Cnockaert M, Zhang J, Huang Y, Liu Z, Swings J (2004) BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus, S. phaeopurpureus. Syst Appl Microbiol 27:84–92

    PubMed  CAS  Google Scholar 

  • Leben C, Keitt G (1954) Antibiotics and plant disease, effects of antibiotics in control of plant diseases. J Agric Food Chem 2:234–238

    CAS  Google Scholar 

  • Lechevalier M (1989) Actinomycetes in agriculture and forestry. In: Goodfellow M, Williams ST, Williams MM (eds) Actinomycetes in biotechnology. Academic, New York, NY, pp 327–358

    Google Scholar 

  • LeVier K, Guerinot ML (1996) The Bradyrhizobium japonicum FegA gene encodes an iron-regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors. J Bacteriol 178:7265–7275

    PubMed  CAS  Google Scholar 

  • Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci 107:235–241

    CAS  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitw NR, Hofman D, Kempt HJ, Van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695

    CAS  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 76:386–389

    Google Scholar 

  • Lynch JM (1990) Beneficial interactions between micro-organisms and roots. Biotechnol Adv 8:335–346

    PubMed  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    CAS  Google Scholar 

  • Mahadevan B, Crawford D (1997) Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb Technol 20:489–493

    CAS  Google Scholar 

  • Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140:1045–1050

    PubMed  CAS  Google Scholar 

  • Marschner H, Romheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    CAS  Google Scholar 

  • Martin J, Dmain A (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251

    PubMed  CAS  Google Scholar 

  • Marugg J, van Spanje DM, Hoekstra WPM, Schippers B, Weisbeek PJ (1985) Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. J Bacteriol 164:563–570

    PubMed  CAS  Google Scholar 

  • McCarthy AJ (1987) Lignocellulose-degrading actinomycetes. FEMS Microbiol Rev 46:145–163

    CAS  Google Scholar 

  • Merriman PR, Price RD, Kollmorgen JF, Piggott T, Ridge EH (1974) Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Aust J Agric Res 25:219–226

    Google Scholar 

  • Merzaeva OV, Shirokikh IG (2010) Production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:44–50

    CAS  Google Scholar 

  • Miller TW, Chaiet L, Cole DJ, Cole LJ, Flor JE, Goegelman RT, Gullo VP, Joshua H, Kempf AJ, Krellwitz WR, Monaghan RL, Ormond RE, Wilson KE, Albers-Schönberg G, Putter I (1979) Avermectins, new family of potent anthelmintic agents: isolation and chromatographic properties. Antimicrob Agents Chemother 15:368–371

    PubMed  CAS  Google Scholar 

  • Mondal G, Sen B (1999) Siderophore production by Aspergillus niger AN27, a biocontrol agent. Curr Sci 77:337–338

    CAS  Google Scholar 

  • Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    PubMed  CAS  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    CAS  Google Scholar 

  • Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160:304–312

    PubMed  CAS  Google Scholar 

  • Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, Thompson CJ (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: cloning and analysis of the genes involved in the alanylation step. Mol Gen Genet 205:42–50

    CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    PubMed  CAS  Google Scholar 

  • Neal JR Jr, Larson RI, Atkinson TG (1973a) Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant Soil 39:209–212

    Google Scholar 

  • Neal JR Jr, Atkinson TG, Larson RI (1973b) Changes in rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome. Can J Microbiol 16:153–158

    Google Scholar 

  • Neeno-Eckwall EC, Kinkel LL, Schottel JL (2001) Competition and antibiosis in the biological control of potato scab. Can J Microbiol 47:332–340

    PubMed  CAS  Google Scholar 

  • Neilands J, Leong S (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    CAS  Google Scholar 

  • Neilands JB (1984) Siderophores of bacteria and fungi. Microbiol Sci 1:9–14

    PubMed  CAS  Google Scholar 

  • Okabe M, Kuwajima T, Satoh M, Kimura K, Okamura K, Okamoto R (1992) Preferential and high-yield production of a cephamycin C by dissolved oxygen controlled fermentation. J Ferment Bioeng 73:292–296

    CAS  Google Scholar 

  • Omura S, Nakagawa A, Sadakane N (1979) Structure of herbimycin A, a new ansamycin antibiotic. Tetrahedron Lett 44:4323–4326

    Google Scholar 

  • Pasura A (2008) Biological control of Pythium root rot in soilless potting mixes. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA

    Google Scholar 

  • Patten C, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    PubMed  CAS  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (1997) Enzymes that regulate ethylene levels–1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ACC synthase and ACC oxidase. Indian J Exp Biol 35:1–17

    PubMed  CAS  Google Scholar 

  • Raatikainen OJ, Paivinen TH, Tahvonen RT (1994) HPLC separation and subsequent detection of aromatic heptaene polyenes in peat after treatment with Streptomyces griseoviridis. Pestic Sci 41:149–154

    CAS  Google Scholar 

  • Rangaswami G, Ethiraj S (1962) Antibiotic production by Streptomyces species in unamended soil. Phytopathology 15:989–992

    Google Scholar 

  • Reigh G, O’Connell M (1993) Siderophore-mediated iron transport correlates with the presence of specific iron-regulated proteins in the outer membrane of Rhizobium meliloti. J Bacteriol 175:94–102

    PubMed  CAS  Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer J, Briat J, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225

    CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  CAS  Google Scholar 

  • Rothrock CS, Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solanii in soil. Can J Microbiol 30:1440–1447

    Google Scholar 

  • Rovira AD (1956) Plant root excretions in relation to the rhizosphere effect. I. The nature of root exudate from oat and peas. Plant Soil 7:178–194

    Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Formulation of a Strepomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253

    CAS  Google Scholar 

  • Schneider M, De Brujin FJ (1996) Rep-PCR mediated genomic fingerprinting of rhizobia and computer-assisted phylogenetic pattern analyses. World J Microbiol Biotechnol 12:163–174

    CAS  Google Scholar 

  • Schroth M, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    PubMed  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    PubMed  CAS  Google Scholar 

  • Simeoni LA, Lindsay WL, Baker R (1987) Critical iron level associated with biological control of Fusarium wilt. Phytopathology 77:1057–1061

    CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    PubMed  CAS  Google Scholar 

  • Smith J, Putnam A, Nair M (1990) In vitro control of Fusarium diseases of Asparagus officinalis L. with a Streptomyces or its polyene antibiotic, faerifungin. J Agric Food Chem 38:1729–1733

    Google Scholar 

  • Smucker AJM (1993) Soil environmental modifications of root dynamics and measurement. Annu Rev Phytopathol 31:191–218

    Google Scholar 

  • Soares ACF, Da Silva C, Da Silva M, Perez JO (2007) Production of streptomycete inoculum in sterilized rice. Sci Agric (Piracicaba Braz) 64:641–644

    Google Scholar 

  • Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    PubMed  Google Scholar 

  • Srinivasan MC, Laxman RS, Deshpande MV (1991) Physiology and nutritional aspects of actinomycetes: an overview. World J Microbiol Biotechnol 7:171–184

    Google Scholar 

  • Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus silvestris L.). Plant Soil 81:185–194

    CAS  Google Scholar 

  • Sturdíková M, Proksa B, Uhrín D, Fuska J (1990) Regulation of biosynthesis of thiolutin and aureothricin in Streptomyces kasugaensis. Folia Microbiol 35:278–283

    Google Scholar 

  • Suslow TV, Schroth MN (1982) Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111–115

    Google Scholar 

  • Tahvonen R, Avikainen H (1987) The biological control of seedborne Alternaria brassicicola of cruciferous plants with a powdery preparation of Streptomyces sp. J Agric Sci 59:199–208

    Google Scholar 

  • Takagi SI, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    CAS  Google Scholar 

  • Takiguchi Y, Mishima H, Okuda M, Terao M, Aoki A, Fukuda R (1980) Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physico-chemical properties. J Antibiot 33:1120–1127

    PubMed  CAS  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    CAS  Google Scholar 

  • Thomas DI, Cove JH, Baumberg S, Jones CA, Rudd BA (1991) Plasmid effects on secondary metabolite production by a streptomycete synthesizing an anthelmintic macrolide. J Gen Microbiol 137:2331–2337

    PubMed  CAS  Google Scholar 

  • Thomas L, Crawford DL (1998) Cloning of clustered Streptomyces viridosporus T7A lignocellulose catabolism genes encoding peroxidase and endoglucanase and their extracellular expression in Pichia pastoris. Can J Microbiol 44:240–245

    Google Scholar 

  • Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    PubMed  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    PubMed  CAS  Google Scholar 

  • Tomiya T, Uramoto M, Isono K (1990) Isolation and structure of phosphazomycin C. J Antibiot (Tokyo) 43:118–121

    CAS  Google Scholar 

  • Trejo-Estrada S, Paszczynski A, Crawford DL (1998a) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED9. J Ind Microbiol Biotechnol 21:81–90

    CAS  Google Scholar 

  • Trejo-Estrada SR, Sepulveda IR, Crawford DL (1998b) In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turfgrass. World J Microbiol Biotechnol 14:865–872

    Google Scholar 

  • Trigo C, Ball AS (1994) Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances? Microbiology 140:3145–3152

    PubMed  CAS  Google Scholar 

  • Tsuchiya K, Kobayashi S, Nishikiori T, Nakagawa T, Tatsuta K (1997) NK10958P, a novel plant growth regulator produced by Streptomyces sp. J Antibiot (Tokyo) 50:259–260

    CAS  Google Scholar 

  • Val G, Marín S, Mellado R (2009) A sensitive method to monitor Bacillus subtilis and Streptomyces coelicor-related bacteria in maize rhizobacterial communities: the use of genome-wide microarrays. Microb Ecol 58:108–115

    PubMed  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root-rot. Appl Environ Microbiol 62:1630–1635

    PubMed  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortez A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    CAS  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    PubMed  CAS  Google Scholar 

  • Wallace R, Lochhead A (1949) Qualitative studies of soil microorganisms: VIII. Influence of various crop plants on the nutritional groups of soil bacteria. Soil Sci 67:63–70

    CAS  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang H (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559

    Google Scholar 

  • Weber T, Allard T, Tipping E, Benedetti MF (2006) Modelling iron binding to organic matter. Environ Sci Technol 40:7488–7493

    PubMed  CAS  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    CAS  Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Below ground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Wilkins K, Schöller C (2009) Volatile organic metabolites from selected Streptomyces strains. Actinomycetologica 23:27–33

    CAS  Google Scholar 

  • Williamson N, Brian P, Wellington EM (2000) Molecular detection of bacterial and streptomycete chitinases in the environment. Antonie Van Leeuwenhoek 78:315–321

    PubMed  CAS  Google Scholar 

  • Yamada O, Kaise Y, Futatsuya F, Ishida S, Ito K (1972) Studies on plant growth regulating activities of anisomycin and toyocamycin. Agric Biol Chem 36:2013–2015

    CAS  Google Scholar 

  • Yang CC, Leong J (1982) Production of desferrioxamines B and E from a ferroverdin-producing Streptomyces species. J Bacteriol 149:381–383

    PubMed  CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    PubMed  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    PubMed  CAS  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author thanks A. Latos for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice L. Strap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strap, J.L. (2011). Actinobacteria–Plant Interactions: A Boon to Agriculture. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20332-9_13

Download citation

Publish with us

Policies and ethics