Skip to main content
Log in

Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate phytohormone production by symbiotic and saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis which had previously proved to stimulate nodulation by Frankia. Three saprophytic strains out of 122, isolated from the rhizosphere of this plant with multiple enzymatic activities were selected for plant growth experiments in pots: Streptomyces sp. (BCRU-MM40), Actinoplanes sp. (BCRU-ME3) and Micromonospora sp. (BCRU-MM18). For experiments, the symbiotic N2-fixing strain Frankia (BCU110501), isolated from nodules of the same actinorhizal plant was used. Phytohormone production was evaluated in supernatant of non-inoculated and inoculated culture media in exponential growth phase. Indole 3-acetic acid (IAA) and gibberellic acid (GA3) were analyzed by gas chromatography-mass spectrometry (GC–MS), while zeatine (Z) production was determined by gas chromatography-flame ionization detector and high performance liquid chromatography (HPLC fluorescent and UV). The levels of the three phytohormones produced by the saprophytic rhizoactinomycetes were higher than that produced by the symbiotic Frankia strain. Zeatine biosynthesis was higher (μg ml−1) than IAA and GA3 (ng ml−1), and Micromonospora strain produced the highest levels of these phytohormones. Although O. trinervis has been shown to be intercellularly infected by Frankia without mediation of root hair deformation, when plants were co-inoculated with actinomycetes’ culture, some root hair deformation was observed. This is the first report on identification of IAA, GA3 and Z in saprophytic actinomycetes and their potential role in plant–microbe interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing Bacteria. J Appl Bacteriol 40:129–134

    CAS  Google Scholar 

  • Berry AM, Torrey JG (1983) Root hair deformation in the infection process of Alnus rubra. Can J Bot 61:2863–2876

    Article  Google Scholar 

  • Berry AM, Kahn RKS, Booth MC (1989) Identification of indole compounds secreted by Frankia HFPArl3 in defined culture medium. Plant Soil 118:205–209

    Article  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  Google Scholar 

  • Cassán F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum lipoferum hydrolize conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rise dwarf mutants. Plant Physiol 125:2053–2058

    Article  Google Scholar 

  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense AZ39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European J Soil Biol 45:28–35

    Article  Google Scholar 

  • Chaia E (1998) Isolation of an inffective strain of Frankia from nodules of Discaria trinervis (Rhamnaceae). Plant Soil 205:99–102

    Article  CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant- associated bacteria. Crit Gen Microbiol 128:2157–2163

    Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence análisis of an Azospirillum brasilense indole-3-pyruvate decaoboxylase. Mol Gen Genet 243:463–472

    CAS  Google Scholar 

  • Crozier A, Arruda P, Jasmin JM, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54:2833–2837

    CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Van de Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azozpirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  • Emerson R (1958) Mycological organization. Mycol 50:598–621

    Article  Google Scholar 

  • Frioni L (2006) Microbiología básica, ambiental y agrícola. Universidfad de la República, Facultad de Agronomía. Montevideo, Uruguay

    Google Scholar 

  • Gabbarini L, Wall LG (2008) Analysis of nodulation kinetics in Frankia–Discaria trinervis symbiosis reveals different factors involved in the nodulation process. Physiol Plant 133:776–785

    Article  CAS  Google Scholar 

  • Gams W, van der Aa HA, van der Platas-Niterink AJ, Samson RA, Stalpers JA (1980) CBS Course of mycology. Institute of the Royal Netherlands, Baarn Academy of sciences and letters. Centraalbureau voor Schimmelcultures

    Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre J, Jaubet M, Simon D et al (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  Google Scholar 

  • Glick B (1995) The enhacement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick B, Patten C, Holguin G, Penrose D (1999). Biochemical and genetic mechanisms used by growth promoting rhizobacteria. London Imperial College Press

  • Goodfellow M, Cross T (1974) Actinomycetes. In: Dikinson CH, Pugh JGF (eds) Biology of plant litter decomposition. Academic Press, London, pp 269–289

    Google Scholar 

  • Hirsch AM, Fang Y (1994) Plant hormones and nodulation: what`s the connection? Plant Mol Biol 26:5–9

    Article  CAS  Google Scholar 

  • Hirsch AM, Fang Y, Asad S, Kapulnik Y (1997) The role of phytohormones in plant-microbe symbioses. Plant Soil 194:171–184

    Article  CAS  Google Scholar 

  • Höflich G, Wiehe W, Kuhn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experiencia 50:897–905

    Article  Google Scholar 

  • Huss-Danell K (1978) Nitrogenase activity measurements in intact plants of Alnus incana. Physiol Plant 43:372–376

    Article  CAS  Google Scholar 

  • Liste H-H (1993) Stimulation of simbiosis and growth of Lucerne by combined inoculation with Rhizobium meliloti and Pseudomonas fluorescens. Zentralbl Mikrobiol 148:163–176

    Google Scholar 

  • Martínez-Morales L, Soto-Urzuquíza L, Baca B, Sanchez-Ahedo J (2003) Indole-3-butyric acid (IBA) production in culture médium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 11229:1–7

    Google Scholar 

  • Mudler L, Hogg B, Bersoult A, Cullimore JV (2005) Integration of signaling pathways in the establishment of the legume-rhizobia symbiosis. Physiol Plant 123:207–218

    Article  Google Scholar 

  • Murry AS, Fontaine MS, Torrey JG (1984) Growth kinetics and nitrogenase induction in Frankia sp. HFPArl3 grown in batch culture. Plant Soil 78:61–78

    Article  CAS  Google Scholar 

  • Patten CL, Glick B (1996) Bacterial biosynthesis of indole 3 acetic acid. Can J Microbiol 42:207–220

    Article  CAS  Google Scholar 

  • Patten CL, Glick B (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  Google Scholar 

  • Peters NK, Crist-Estes DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91:690–693

    Article  CAS  Google Scholar 

  • Ribaudo CM, Krumpholz EM, Cassán FD, Botín R, Cantore ML, Curá JA (2006) Azospirillum sp. Promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 24:175–185

    Article  Google Scholar 

  • Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    Article  Google Scholar 

  • Solans M (2008) Influencia de rizoactinomicetes nativos sobre el desarrollo de la planta actinorrícica Ochetophila trinervis. PhD Thesis. Universidad Nacional del Comahue. Bariloche, Argentina

  • Solans M, Vobis G (2003) Actinomycetes saprofíticos asociados a la rizósfera y rizoplano de Discaria trinervis. Ecol Austral 13:97–107

    Google Scholar 

  • Solans M, Vobis G, Wall LG (2009) Saprophytic actinomycetes promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high N. J Plant Growth Regul 28:106–114

    Article  CAS  Google Scholar 

  • Stevens GA, Berry AM (1988) Cytokinin secretion by Frankia sp. HFPArl3 in defined medium. Plant Physiol 87:15–16

    Article  CAS  Google Scholar 

  • Takana Y, Omura S (1990) Metabolism and products of actinomycetes–an introduction. Actinomycetol 4:13–14

    Article  Google Scholar 

  • Thimann KV (1936) On the physiology of the formation of nodules on legume roots. Proc Natl Acad Sci USA 22:511–514

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Penisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involning Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2162–2171

    Article  Google Scholar 

  • Valverde C, Wall LG (1999) Regulation of nodulation in Discaria trinervis (Rhamnaceae)–Frankia symbiosis. Can J Bot 77:1302–1310

    Google Scholar 

  • Valverde C, Wall LG (2005) Ethylene modulates the susceptibility of the root for nodulation in actinorhizal Discaria trinervis. Physiol Plant 124:121–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided through grants by Universidad Nacional del Comahue 04/B118 and Agencia Nacional de Promoción Científica y Tecnológica PICT 10006 and PICT 20568, Universidad Nacional de Quilmes, all from Argentina. F. Cassán, V. Luna and L. G. Wall are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Solans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solans, M., Vobis, G., Cassán, F. et al. Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis . World J Microbiol Biotechnol 27, 2195–2202 (2011). https://doi.org/10.1007/s11274-011-0685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0685-7

Keywords

Navigation