Skip to main content
  • 182 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, H., Ohbayashi, F., Sugasaki, T., Kanchara, M., Teradam T., Shimada, T., Kawai, S., Mita, K., Kanamori, Y., Tamamoto, M.-T., and Oshiki, T. (2001) Two novel Pao-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements. Mol. Genet. Genomics 265: 375–385.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J.W., Kaufman, R.E., Kretschmer, P.J., Harrison, M., and Nienhuis, A.W. (1980) A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene. Nucl. Acid Res. 8: 6113–6128.

    Article  CAS  Google Scholar 

  • Adams, M.D., Celniker, S.E., Holt, R.A., and over 190 additional authors. (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185–2197.

    Google Scholar 

  • Agrawal, G.K., Yamazaki, M., Kobayashi, M., Hirochika, R., Miyao, A., and Hirochika, H. (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a Zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol. 125: 1248–1257.

    Article  PubMed  CAS  Google Scholar 

  • Ahlquist, P. (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296: 1270–1273.

    Article  PubMed  CAS  Google Scholar 

  • Allfrey, V., Faulkner, R.M., and Mirsky, A.E. (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. (USA) 51: 786–794.

    Article  CAS  Google Scholar 

  • Allshire, R. (2002) RNAi and heterochromatin — a hushed-up affair. Science 297: 1818–1819.

    Article  PubMed  CAS  Google Scholar 

  • Anaya, N. and Roncero, M.I.G. (1995) Skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum. Mol. Gen. Genet. 249: 637–647.

    Article  CAS  Google Scholar 

  • Aravin, A.A., Naumova, N.M., Tulin, A.V., Vagin, V.V., Rozovsky, Y.M., and Gvozdev, V.A. (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11: 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  • Arkhipova, I. and Meselson, M. (2000) Transposable elements in sexual and ancient asexual taxa. Proc. Natl. Acad. Sci. (USA) 97: 14473–14477.

    Article  CAS  Google Scholar 

  • Athma, P. and Peterson, T. (1991) Ac induces homologous recombination at the maize P locus. Genetics 128: 163–173.

    CAS  Google Scholar 

  • Athma, P., Grotewold, E., and Peterson, T. (1992) Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131: 199–209.

    CAS  Google Scholar 

  • Atkinson, P.W., Warren, W.D., and O’Brochta, D.A. (1993) The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. (USA) 90: 9693–9697.

    Article  CAS  Google Scholar 

  • Auge-Gouillou, C., Bigot, Y., Pollet, N., Hamelin, M.H., Meunier-Rotival, M., and Periquet, G. (1995) Human and other mammalian genomes contain transposons of the Mariner family. FEBS Lett. 368: 541–546.

    Article  PubMed  CAS  Google Scholar 

  • Avramova, Z. (2002) Heterochromatin in animals and plants, similarities and differences. Plant Physiol. 129: 40–49.

    Article  PubMed  CAS  Google Scholar 

  • Avramova, Z., SanMiguel, P., Georgiera, E., and Bennetzen, J.L. (1995) Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize adh1. Plant Cell 7: 1667–1680.

    CAS  Google Scholar 

  • Avramova, Z., Tikhonov, A., Chen, M., and Bennetzen, J.L. (1998) Matrix attachment regions and structural colinearity in the genomes of two grass species. Nucl. Acid Res. 26: 761–767.

    Article  CAS  Google Scholar 

  • Bae, Y.-A., Moon, S.-Y., Kong, Y., Cho, S.-Y. and Rhyu, M.-G. (2001) CsRNI a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Mol. Biol. Evol. 18: 1474–1483.

    CAS  Google Scholar 

  • Baker, B., Schell, J., Lörz, H., and Fedoroff, N. (1986) Transposition of the maize controlling element “Activator” in tobacco. Proc. Natl. Acad. Sci. (USA) 83: 4844–4848.

    Article  CAS  Google Scholar 

  • Baltimore, D. (1970) Viral RNA-dependent DNA polymerase. Nature 226: 1209–1211.

    Article  PubMed  CAS  Google Scholar 

  • Bancroft, I., Bhatt, A.M., Sjodin, C., Scofield, S., Jones, J.D.G., and Dean, C. (1992) Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol. Gen. Genet. 233: 449–461.

    Google Scholar 

  • Banks, J., Kingsbury, J., Rabay, V., Schiefelbeing, J.W., Nelson, O., and Fedoroff, N. (1985). The Ac and Spm controlling element families in maize. Cold Spring Harbor Symp. Quant. Biol. 50: 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Bannister, A.J., Schneider, R., and Kouzarides, T. (2002) Histone methylation: dynamic or static? Cell 109: 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Barth, P.T. and Datta, N. (1977) Two naturally occurring transposons indistinguishable from Tn7. J. Gen. Bacteriol. 102: 129–134.

    CAS  Google Scholar 

  • Barth, P.T., Datta, N., Hedges, R.W., and Grinter, N.J. (1976) Transposition of a deoxyribonucleotide sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J. Bacteriol. 125: 800–810.

    PubMed  CAS  Google Scholar 

  • Bass, B.L. (2000) Double-stranded RNA as a template for gene silencing. Cell 101: 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe, D. (2001) Diced defence. Nature 409: 295–296.

    Article  PubMed  CAS  Google Scholar 

  • Bayev, A.A. Jr., Krayev, A.S., Lyubomirskaya, N.V., Ilyin, Y.V., Skryabin, K.G., and Georgiev, G.P. (1980) The transposable element Mdg3 in Drosophila melanogaster is flanked with the perfect direct and mismatched inverted repeats. Nucl. Acid Res. 8: 3263–3273.

    Article  Google Scholar 

  • Bayev, A.A. Jr., Lyubomirskaya, N.V., Dzhumagaliev, E.B., Ananiev, E.V., Amiantova, LG., and Ilyin Y.V. (1984) Structural organization of transposable element mdg4 from Drosophila melanogaster and a nucleotide sequence of its long terminal repeats. Nucl. Acid Res. 12: 3707–3723.

    Article  CAS  Google Scholar 

  • Beall, E.L. and Rio, D.C. (1998) Transposase makes critical contacts with, and is stimualted by, single-stranded DNA at the P element termini in vitro. EMBO 1 17: 2122–2136.

    Google Scholar 

  • Becker, D., Lutticke, R., Li, M., and Starlinger, P. (1992) Control of excision frequency of maize transposable element Ds in Petunia protoplasts. Proc. Natl. Acad. Sci. (USA) 89: 5552–5556.

    Article  CAS  Google Scholar 

  • Becker, H.-A. and Kunze, R. (1997) Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats. Mol. Gen. Genet. 254: 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Beguiristain, T., Grandbastien, M.-A., Puigdomenech, P., and Casacuberta, J.M. (2001) Three Tntl subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol. 127: 212–221.

    Article  PubMed  CAS  Google Scholar 

  • Behrens, U., Fedoroff, N., Laird, A., Müller-Neumann, M., Starlinger, P., and Yoder, J. (1984) Cloning of the Zea mays controlling element Ac from the wx-m7 allele. Mol. Gen. Genet. 194: 346–347.

    Article  CAS  Google Scholar 

  • Bellfort, M., Derbyshire, V., Parker, M.M., Cousinean, B., and Lambowitz, A.M. (2002) Mobile introns: pathways and proteins. In: Mobile DNA II. Craig, N., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds). ASM Press, Washington, DC. pp. 761–783.

    Google Scholar 

  • Bender, J. (2001) A vicious cycle: RNA silencing and DNA methylation in plants. Cell 106: 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Benito, M.I. and Walbot, V. (1994) The terminal inverted repeat sequences of MuDR are functionally active promoters in maize cells. Maydica 39: 255–264.

    Google Scholar 

  • Bennetzen, J.I. (2000) Transposable element contributions in plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. (1984) Transposable element Mu/ is found in multiple copies only in Robertson’s mutator maize lines. J. Mol. Appl. Genet. 2: 519–524.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. (1996) The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., Springer, P.S., Cresse, A.D., and Hendrick, M. (1993) Specificity and regulation of the mutator transposable element system in maize. Crit. Rev. Plant Sciences 12: 57–95.

    CAS  Google Scholar 

  • Bennetzen, J.L., Swanson, J., Taylor, W.C., and Freeling, M. (1984) DNA insertion in the first intron of maize Adhl affects message levels: Cloning of pogenitor and mutant Adhl alleles. Proc. Natl. Acad. Sci. (USA) 81: 4125–4128.

    Article  CAS  Google Scholar 

  • Berg, D.E., Davis, J., Allet, B., and Rochaix, J.-D. (1975) Transposition of R factor genes to bacteriophage a,. Proc. Natl. Acad. Sci. (USA) 72: 3628–3632.

    Google Scholar 

  • Berger, B. and Haas, D. (2001) Transposase and cointegrase: specialized transposition proteins of the bacterial insertion sequence IS21 and related elements. Cell. Mol. Life Sci. 58: 403–419.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S.L. (2002) Histone modifications in transcriptional regulation. Curr. Opin. Genet. and Develop. 12: 142–148.

    Article  CAS  Google Scholar 

  • Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Besansky, N.J. (1990) A retrotransposable element from the mosquito Anopheles gambiae. Mol. Cell. Biol. 10: 863–871.

    CAS  Google Scholar 

  • Bhasin, A., Goryshin, I.Y., and Reznikoff, W.S. (1999) Hairpin formation in Tn5 transposition. J. Biol. Chem. 274: 37021–37029.

    Article  PubMed  CAS  Google Scholar 

  • Bhatt, A.M., Page, T., Lawson, E.J.R., Lister, C., and Dean, C. (1996) Use of Ac as an insertional mutagen in Arabidopsis. Plant J. 9: 935–945.

    Article  CAS  Google Scholar 

  • Bi, Y.-N. and Laten, H.M. (1996) Sequence analysis of a cDNA containing the gag and prot regions of the soybean retrovirus-like element, SIRE-1. Plant Mol. Biol. 30: 1315–1319.

    Article  CAS  Google Scholar 

  • Biery, M.C., Steward, F., Stellwagen, A.E., Raleigh, E.A., and Craig, N.L. (2000) A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucl. Acid Res. 28: 1067–1077.

    Article  CAS  Google Scholar 

  • Bingham, P.M. and Zachar, S. (1989) Retrotransposons and the FB transposon from Drosophila melanogaster. In: Mobile DNA. Berg, D.E. and Howe M.M. (eds.) ASM Press, Washington, DC. pp. 485–502.

    Google Scholar 

  • Bingham, P.M., Kidwell, M.G., and Rubin, G.M. (1982) The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P strain-specific transposon family. Cell 29: 995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Birchler, J.A., Bhadra, M.P., and Bhadra, U. (2000) Making noise about silence: repression of repeated genes in animals. Curr. Opin. Genet. Develop. 10: 211–216.

    Article  CAS  Google Scholar 

  • Bird, A. (2002) Methylation patterns and epigenetic memory. Genes Develop. 16: 6–21.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, R.K. and Gelbart, W.M. (1989) The transposable element hobo of Drosophila melanogaster. In: Mobile DNA. Berg, D.E. and Howe, M.M. (eds.) ASM Press, Washington DC. pp. 523–529.

    Google Scholar 

  • Boehm, U., Heinlein, M., Behrens, U., and Kunze, R. (1995) One of three nuclear localization signals of maize Activator (Ac) transposase overlaps the DNA-binding domain. Plant J. 7: 441–451.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, J.D. (2002) Putting mobile DNA to work: the toolbox. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 24–37.

    Google Scholar 

  • Boeke, J.D. and Sandmeyer, S.B. (1991) Yeast transposable elements. In: The Molecular and Cellular Biology of the Yeast Saccharomyces. Vol. 1. Broach, J.R., Pringle, J.R., and Jones, E.W. (eds.) Cold Spring Harbor Lab. Press. pp. 193–261.

    Google Scholar 

  • Boeke, J.D., Garfinker, D.J., Styles, C.A., and Fink, G.R. (1985) Ty elements transpose through an RNA intermediate. Cell 40: 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Bonas, U., Sommer, H., and Saedler, H. (1984a) The 17-kb Taml element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene. EMBO J. 3: 1015–1019.

    CAS  Google Scholar 

  • Bonas, U., Sommer, H., Harrison, B.J., and Saedler, H. (1984b) The transposable element Tam] of Antirrhinum majus is 17 kb long. Mol. Gen. Genet. 194: 138–143.

    Article  CAS  Google Scholar 

  • Bonner, J., Huang, R.-C., and Maheshwari, N. (1961) The physical state of newly synthesized RNA. Proc. Nat. Acad Sci. (USA) 47: 1548–1554.

    Article  CAS  Google Scholar 

  • Bottinger, P., Steinmetz, A., Schieder, O., and Pickardt, T. (2001) Agrobacterium-mediated transformation of Vicia faba. Mol. Breeding 8: 243–254.

    Article  CAS  Google Scholar 

  • Bowen, N.J. and McDonald, J.F. (2001) Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. Genome Res. 11: 1527–1540.

    CAS  Google Scholar 

  • Branciforte, D. and Martin, S.L. (1994) Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol. 14: 2584–2592.

    Article  PubMed  CAS  Google Scholar 

  • Bregliano, J.-C. and Kidwell, M.G. (1983) Hybrid dysgenesis determinants. In: Mobile Genetic Elements. Shapiro, J.A. (ed.) Academic Press, NY. pp. 363–410.

    Google Scholar 

  • Breiman, A., Felsenberg, T., and Galun, E. (1989) Is No region variability in wheat invariably caused by tissue culture? Theor. Appl. Genet. 77: 809–814.

    Article  Google Scholar 

  • Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

    CAS  Google Scholar 

  • Brenner, S., Elgar, G., Sanford, R., Macrae, A., Venkatesh, B., and Aparicio, S. (1993) Characterization of the pufferfish (Fugu) genome as a compact vertebrate genome. Nature 366: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, S.D., Xiao, T., Sun, Z.-W, Caldwell, J.A., Shahanowiz, J., Hunt, D.E., Allis, C.D., and Strahl, B.D. (2002) Trans-histone regulatory pathway in chromatin. Nature 418: 498.

    Article  PubMed  CAS  Google Scholar 

  • Brink, R.A. and Nilan, R.A. (1952) The relation between light variegated and medium variegated pericarp in maize. Genetics 37: 519–544.

    PubMed  CAS  Google Scholar 

  • Britten, R.J., McCormack, T.J., Mears, T.L., and Davidson, E.H. (1995) Gypsy/Ty3-class retrotransposons integrated in DNA of herning, tunicate and echinogerms. J. Mol. Evol. 40: 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Briza, J., Niedermeierova, H., Pavingerova, D., Thomas, C.M., Klimyuk, V.I., and Jones, J.D.G. (2002) Transposition patterns of unlinked transposed Ds elements from two T-DNA location in tomato chromosomes 7 and 8. Mol. Genet. Genomics 266: 882–890.

    Article  PubMed  CAS  Google Scholar 

  • Bucheton, A. (1995) The relationship betwee the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet. 11: 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E. and Wessler, S.R. (1992) Tourist: A large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283–1294.

    CAS  Google Scholar 

  • Bureau, T.E. and Wessler, S.R. (1994a) Stowaway: A new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916.

    CAS  Google Scholar 

  • Bureau, T.E. and Wessler, S.R. (1994b) Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc. Natl. Acad. Sci. (USA) 91: 1411–1415.

    Article  CAS  Google Scholar 

  • Bureau, T.E., Ronald, P.C., and Wessler, S.R. (1996). A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. (USA) 93: 8524–8529.

    Article  CAS  Google Scholar 

  • Burke, W.D., Eickbush, D.G., Xiong, Y., Jakubczak, J., and Eickbush, T.H. (1993) Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol. Biol. Evol. 10: 163–185.

    PubMed  CAS  Google Scholar 

  • Burr, B. and Burr, F.A. (1980) Detection of changes in maize DNA at the Shrunken locus due to the intervention of Ds elements. Cold Spring Harbor Symp. Quant. Biol. 45: 463–465.

    Article  Google Scholar 

  • Burr, B. and Burr, F.A. (1981) Controlling-element events at the Shrunken locus in maize. Genetics 98: 143–156.

    PubMed  CAS  Google Scholar 

  • Burr, B. and Burr, F.A. (1982) Ds controlling elements of maize at the Shrunken locus are large and dissimilar insertions. Cell 29: 977–986.

    CAS  Google Scholar 

  • Burwinkel, B. and Kilimann, M.W. (1998) Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol. Biol. 277: 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Cambareri, E.B., Helber, J., and Kinsey, J.A. (1994) Tad1–1, an active LINE-like element of Neurospora crassa. Mol. Gen. Genet. 242: 658–665.

    CAS  Google Scholar 

  • Cameron, J.R., Loh, E.Y., and Davis, R.W. (1979) Evidence for tranposition of dispersed repetitive DNA families in yeast. Cell 16: 739–751.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, A. (1980) Some general questions about movable elements and their implications. Cold Spring Harbor Symp. Quant. Biol. 45: 1–9.

    Article  Google Scholar 

  • Campbell, A. (1983) Bacteriophage X. In: Mobile Genetic Elements. Shapiro, J.A. (ed.) Academic Press, NY. pp. 65–103.

    Google Scholar 

  • Campuzano, S., Balcells, L., Villares, R., Carramolino, L., Garcia-Alonso, L., and Modollell, J. (1986) Excess function Hairy-wing mutations caused by gypsy and copia insertions within structural genes of the achaete-scute locus of Drosophila. Cell 44: 303–312.

    Article  PubMed  CAS  Google Scholar 

  • Cann, R.L., Stoneking, M., and Wilson (1987) Mitochondrial DNA and human evolution. Nature 325: 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Caplen, N.J., Parrish, S., Imani, F., Fire, A., and Morgan, R.A. (2002) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. (USA) 98: 9742–9747.

    Article  Google Scholar 

  • Cardon, G.H., Frey, M., Seadler, H., and Gierl, A. (1993). Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J. 3: 773–784.

    CAS  Google Scholar 

  • Carmichael, G.G. (2002) Silencing viruses wth RNA. Nature 418: 379–380.

    Article  PubMed  CAS  Google Scholar 

  • Carmirand, A., St.-Pierre, B., Marineau, C., and Brisson, N. (1990) Occurrence of a copia like transposable element in one of the introns of the potato starch phosphorylase gene. Mol. Gen. Genet. 224: 33–39.

    Google Scholar 

  • Carpenter, R. and Coen, E.S. (1990) Floral homeotic mutations produced by transposonmutagenesis in Antirrhinum majus. Genes Develop. 4: 1483–1493.

    Article  CAS  Google Scholar 

  • Carroll, B.J., Klimyuk, V.I., Thomas, C.M., Bishop, G.J., Harrison, K., Scofield, S.R., and Jones, J.D.G. (1995) Germinal transpositions of the maize element Dissociation from T-DNA loci in tomato. Genetics 139: 407–420.

    PubMed  CAS  Google Scholar 

  • Cartegni, L., Chew, S.L., and Krainer, A.R. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. 3: 285–298.

    Article  CAS  Google Scholar 

  • Casacuberta, E., Casacuberta, J.M., Puigdomenech, P., and Monfort, A. (1998) Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the emigrant family of elements. Plant J. 16: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta, J.M. and Granbastien, M.-A. (1993) Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucl. Acid Res. 21: 2087–2093.

    Article  CAS  Google Scholar 

  • Casacuberta, J.M., Vernhettes, S., and Grandbastien, M.-A. (1995) Sequence variability within the tobacco retrotransposon Tntl population. EMBO J 14: 2670–2678.

    CAS  Google Scholar 

  • Casavant, N.C., Sherman, A.M., and Wichman, H.A. (1996) Two persistent LINE-1 lineages in Peromyuscus have unequal rates of evolution. Genetics 142: 1289–1298.

    PubMed  CAS  Google Scholar 

  • Catalanotto, C., Azzsalin, G., Macino, G., and Cogoni, C. (2000) Gene silencing in worms and fungi. Nature 404: 245.

    Article  PubMed  CAS  Google Scholar 

  • Chaleff, D.T. and Fink, G.R. (1980) Genetic events associated with an insertion mutation in yeast. Cell 21: 227–237.

    Article  PubMed  CAS  Google Scholar 

  • Chalmers, R., Sewitz, S., Lipkow, K., and Crellin, P. (2000) Complete nucleotide sequence of Tn10. J. Bacteriol. 182: 2970–2972.

    Article  PubMed  CAS  Google Scholar 

  • Chalvet, F., Teysset, L., Terzian, C., Prud’homme, N., Santamaria, P., Bucheton, A., and Pelisson, A. (1999) Proviral amplification of the gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline. EMBO J 18: 2659–2669.

    Article  CAS  Google Scholar 

  • Chandler, M. and Mahillon, J. (2002) Insertion sequences revisited. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds) AMS Press, Washington, DC. pp. 305–366.

    Google Scholar 

  • Chandler, V.L. and Hardeman, K.J. (1992) The Mu elements of Zea mays. Adv. Genet. 30: 77–122.

    Article  CAS  Google Scholar 

  • Chandler, V.L. and Walbot, V. (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc. Natl. Acad. Sci. (USA) 83: 1767–1771.

    Article  CAS  Google Scholar 

  • Chen, J.-Y. and Fonzi, W.A. (1992) A temperature-regulated, retrotransposon-like element from Candida albicans. J Bacteriol. 174: 5624–5632.

    CAS  Google Scholar 

  • Cheung, A., Allis, C.D., and Sassone-Corsi, P. (2000) Signaling to chromatin through histone modifications. Cell 103: 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, Y.-L, and Rana, T.M. (2002) RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10: 549–561.

    Article  PubMed  CAS  Google Scholar 

  • Chomet, P., Lisch, D., Hardeman, K.J., Chandler, V.L., and Freeling, M. (1991) Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics 129: 261–270.

    PubMed  CAS  Google Scholar 

  • Chomet, P.S., Wessler, S., and Dellaporta, S.L. (1987) Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. EMBO J. 6: 295–302.

    CAS  Google Scholar 

  • Christensen, S., Pont-Kingdon, G., and Carroll, D. (2000) Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1 L. Mol. Cell. Biol. 20: 119–1226.

    Google Scholar 

  • Chuang, C.-F. and Meyerowitz, E.M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Nat. Acad. Sci. (USA) 97: 4985–4990.

    Article  CAS  Google Scholar 

  • Coen, E.S. and Carpenter, R. (1986) Transposable elements in Antirrhinum majus: generators of genetic diversity. Trends Genet. 2: 292–296.

    Article  CAS  Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E.S., Carpenter, R., and Martin, C. (1986) Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47: 285–296.

    Article  CAS  Google Scholar 

  • Coen, E.S., Robbins, T.P., Almeida, J., Hudson, A., and Carpenter, R. (1989) Consequences and mechanisms of transposition in Antirrhinum majus. In: Mobile DNA. Berg, D.E. and Howe, M.M. (eds). ASM Press, Washington, DC. pp. 413–436.

    Google Scholar 

  • Cogoni, C. and Macino, G. (1999) Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399: 166–169.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, D.E. and Lee, J.T. (2002) X-chromsome inactivation and the search for chromosome-wide silencers. Curr. Opin. Genet. Develop. 12: 219–224.

    Article  CAS  Google Scholar 

  • Comfort, N.C. (2001) The Tangled Field: Barbara McClintock’s Search for the Patterns of Genetic Control. Harvard University Press, Cambridge, MA, 357 p.

    Google Scholar 

  • Corces, V.G. and Geyer, P.K. (1991) Interactions of retrotransposons with the host genome. Trends Genet. 7: 86–90.

    PubMed  CAS  Google Scholar 

  • Coupland, G., Baker, B., Schell, J., and Starlinger, P. (1988) Characterization of the maize transposable element Ac by internal deletions. EMBO J. 7: 3653–3659.

    CAS  Google Scholar 

  • Courage, U., Döring, H.-P., Frommer, W.-B., Kunze, R., Laird, A., Merckelbach, A., Müller-Neumann, M., Riegel, J., Starlinger, P., Tillmann, E., Weck, E., Werr, W., and Yoder, J. (1984) Transposable elements Ac and Ds at the shrunken, waxy, and alcohol dehydrogenase 1 loci in Zea mays L. Cold Spring Harbor Symp. Quant. Biol. 49: 329–338.

    Article  PubMed  CAS  Google Scholar 

  • Courage-Tebbe, U., Döring, H.-P., Fedoroff, N., and Starlinger, P. (1983) The controlling element Ds at the shrunken locus in Zea mays: structure of the unstable shm5933 allele and several revertants. Cell 34: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Courtial, B., Feuerbach, F., Eberhard, S., Rohmer, L., Chiapello, H., Camilleri, C., and Lucas, H. (2001) TntI transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes. Mol. Genet. Genomics 265: 32–42.

    CAS  Google Scholar 

  • Craig, N.L. (1989) Transposon Tn7. In: Mobile DNA. Berg, D.E. and Howe, M.M. (eds) ASM Press, Washington, DC. pp. 211–225.

    Google Scholar 

  • Craig, N.L. (1996) Transposon Tn7. Curr. Topics Microbiol. Immunol. 204: 27–48.

    Article  CAS  Google Scholar 

  • Craig, N.L. (2002) Tn7. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds) ASM Press, Washington, DC. pp. 423–456.

    Google Scholar 

  • D’Ambrosio, E., Waitzkin, S.D., Witney, F.R., Salemme, A., and Furano, A.V. (1986) Structure of the highly repeated, long interspersed DNA family (LINE or Lim) of the rat. Mol. Cell. Biol. 6: 411–424.

    PubMed  Google Scholar 

  • Daboussi, M.J. (1996) Fungal transposable elements: generators of diversity and genetic tools. J Genet. 75: 325–339.

    Article  CAS  Google Scholar 

  • Daboussi, M.J. and Langin, T. (1994) Transposable elements in the fungal plant pathogen Fusarium oxysporum. Genetica 93: 49–59.

    Article  CAS  Google Scholar 

  • Daboussi, M.J., Daviere, J.-M, Graziani, S., and Langin, AT. (2002) Evolution of the Fotl transposons in the genus Fusarium: Discontinuous distribution and epigenetic inactivation. Mol. Biol. Evol. 19: 510–520.

    Article  PubMed  CAS  Google Scholar 

  • Daboussi, M.J., Langin, T., and Brygoo, Y. (1992) Fotl, a new family of fungal transposable elements. Mol. Gen. Genet. 232: 12–16.

    CAS  Google Scholar 

  • Dalle Nogare, D.E., Clark, M.S., Elgar, G., Frame, I.G., and Poulter, R.T.M. (2002) Xena, a full-length basal retroelement from tetradontid fish. Mol. Biol. Evol. 19: 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Dalmay, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D.C. (2000) An RNA-dependent RNA polymerase gene in Aabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101: 543–553.

    Article  PubMed  CAS  Google Scholar 

  • Dalmay, T., Horsefield, R., Braunstein, T.H., and Baulcombe, D.C. (2001) SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J. 20: 2069–2077.

    Article  CAS  Google Scholar 

  • Dangl, J.L. and Jones, J.D.G. (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826–833.

    Article  PubMed  CAS  Google Scholar 

  • Dash, S. and Peterson, P.A. (1994) Frequent loss of the En transposable element after excision and its relation to chromosome replication in maize. Genetics 136: 653–671.

    PubMed  CAS  Google Scholar 

  • Davies, D.R., Braam, L.M., Reznikoff, W.S., and Rayment, I. (1999) The three-dimensional structure of a Tn5 transposase-related protein determined to 2.9-A resolution. J. Biol. Chem. 274: 11904–11913.

    Article  PubMed  CAS  Google Scholar 

  • Davies, D.R., Goryshin, I.Y., Reznikoff, W.S., and Rayment, I. (2000) Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289: 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Day, A., Schirmer-Rahire, M., Kuchka, M.R., Mayfield, S., and Rochaix, J.-D. (1998) A transposon with unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii. EMBO J. 7: 1917–1927.

    Google Scholar 

  • De Keukeleire, P., Maes, T., Sauer, M., Zethof, J., Van Montagu, M., and Gerats, T. (2001) Analysis by transposon display of the behavior of the dTphl element family during ontogeny and inbreeding of Petunia-hybrida. Mol. Genet. Genomics 265: 72–81.

    Article  Google Scholar 

  • Dean, C., Sjodin, C., Page, T., Jones, J., and Lister, C. (1992) Behaviour of the maize transposable element Ac in Arabidopsis thaliana. Plant J. 2: 69–81.

    CAS  Google Scholar 

  • DeBerardinis, R.J., Goodier, J.L., Ostertag, E.M., and Kazazian, Jr. H.H. (1998) Rapid amplification of a retrotransposon subfamily is evolving the morue genome. Nature Genet. 20: 288–290.

    Article  PubMed  CAS  Google Scholar 

  • Deininger, P.L. (1989) SINEs: Short interspersed repeated DNA elements in higher eucaryotes In: Mobile DNA. Berg, D.E. and Howe, M.M. (eds.) ASM Press, Washington, DC. pp. 619–637.

    Google Scholar 

  • Deininger, P.L. and Batzer, M.A. (1999) Alu repeats and human disease. Mol. Genet. Met. 67: 183–193.

    Google Scholar 

  • Dej, K.J., Gerasimova, T., Corces, V.G., and Boeke, J.D. (1998) A hotspot for the Drosophila gypsy retroelement in the ovo locus. Nucl. Acid Res. 26: 4019–4024.

    Article  CAS  Google Scholar 

  • Dhillon, N. and Kamakaka, R.T. (2002) Breaking through to the other side: silencers and barriers. Curr. Opin. Genet. Develop. 12: 188–192.

    Article  CAS  Google Scholar 

  • Di Nocera, P.P. (1988) Close relationship between non-viral retroposons in Drosophila melanogster. Nucl. Acid Res. 16: 4041–4052.

    Article  Google Scholar 

  • Di Nocera, P.P. and Casari, G. (1987) Related polypeptides are encoded by Drosophila F elements, I factors, and mammalian L1 sequences. Proc. Natl. Acad. Sci. (USA) 84: 5843–5847.

    Article  Google Scholar 

  • Dillon, N. and Festenstein, R. (2002) Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet. 18: 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Doak, T.G., Doerder, F.P., Jahn, C.L., and Herrick, G. (1994) A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc. Natl. Acad. Sci. (USA) 91: 942–946.

    Article  CAS  Google Scholar 

  • Dobinson, K.F., Harris, R.E., and Hamer, J.E. (1993) Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol. Plant Microbe Inter. 6: 114–126.

    Article  CAS  Google Scholar 

  • Dombroski, B.A., Mathia, S.L., Nanthakumar, E., Scott, A.F., and Kazazian, Jr. H.H. (1991) Isolation of an active human transposable element. Science 254: 1805–1808.

    Article  PubMed  CAS  Google Scholar 

  • Dooner, H.P. (1989) Tagging genes with maize transposable elements. An overview. Maydica 34: 73–88.

    Google Scholar 

  • Döring, H.-P., Geiser, M., and Starlinger, P. (1981) Transposable element Ds at the shrunken locus in Zea mays. Mol. Gen. Genet. 184: 377–380.

    Article  Google Scholar 

  • Döring, H.-P., Tillmann, E., and Starlinger, P. (1984) DNA sequence of the maize transposable element Dissociation. Nature 307: 127–130.

    Article  Google Scholar 

  • Döring, H.P., Freeling, M., Hake, S., Johns, M.A., Kunze, R., Merckelbach, A., Salamini, F., and Starlinger, P. (1984) A Ds-mutation of the Adhl gene in Zea mays L. Mol. Gen. Genet. 193: 199–204.

    Article  Google Scholar 

  • Duvernell, D.D. and Turner, B.J. (1998) Swimmer 1, a new low-copy-number LINE family in teleost genomes with sequence similarity to mammalian L1. Mol. Biol. Evol. 15: 1791–1793.

    CAS  Google Scholar 

  • Eichinger, D.J. and Boeke, J.D. (1988) The DNA intermediate in yeast Tyl element transposition copurifies with virus-like particles: cell-free Tyl transposition. Cell 54: 955–966.

    Article  PubMed  CAS  Google Scholar 

  • Eickbush, T.H. and Malik, H.S. (2002) Origins and evolution of retrotransposons. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds) ASM Press, Washington, DC. pp. 111–1146.

    Google Scholar 

  • El Amrani, A., Marie, L., Ainouche, A., Nicolas, J., and Couee, I. (2002) Genome-wide distribution and potential regulatory functions of AtATE, a novel family of miniature inverted-repeat transposable elements in Arabidopsis thaliana. Mol. Genet. Genomics 267: 459–471.

    Article  CAS  Google Scholar 

  • Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001b) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.

    Article  PubMed  CAS  Google Scholar 

  • Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001a) RNA interference is mediated by 21-and 22-nucleotide RNAS. Genes Develop. 15: 188–200.

    Article  PubMed  CAS  Google Scholar 

  • Elder, R.T., St. John, T.P., Stinchcomb, D.T., and Davis, R.W. (1980) Studies on the transposable element Tyl of yeast. I. RNA homologous to Tyl. Cold Spring Harbor Symp. Quant. Biol. 45: 581–584.

    Article  Google Scholar 

  • Elgar, G., Sanford, R., Aparicio, S., Macrae, A., Venkatesh, B., and Brenner, S. (1996) Small is beautiful: comparative genomics with pufferfish (Fugu rubripes). Trends Genet. 12: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, R.A. (1914) The inheritance of a recurring somatic variation in variegated ears of maize. Amer. Naturalist 48: 87–115.

    Article  Google Scholar 

  • Emerson, R.A., Beadle, G.W., and Fraser, A.C. (1935) A summary of linkage studies in maize. Memoir 180: 1–83, Cornell University, Agr. Exp. Station, Ithaca, NY.

    Google Scholar 

  • Emmanuel, E. and Levy, A.A. (2002) Tomato mutants as tools for functional genomics. Curr. Opin. Plant Biol. 5: 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Emmons, S.W. and Yesner, L. (1984) High-frequency excision of transposable element Tcl in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 36: 599–605.

    Article  PubMed  CAS  Google Scholar 

  • Emmons, S.W., Rosenzweig, B., and Hirsh, D. (1980) Arrangement of repeated sequences in the DNA of the nematode Caenorhabditis elegans. J. Mol. Biol. 144: 481–500.

    Article  CAS  Google Scholar 

  • Emmons, S.W., Yesner, L., Ruan, K., and Katzenberg, D. (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32: 55–65.

    CAS  Google Scholar 

  • Engels, W.R. (1983) The P family of transposable elements in Drosophila. Ann. Rev. Genet. 17: 315–344.

    Article  CAS  Google Scholar 

  • Engels, W.R. (1989) P elements in Drosophila melanogaster. In: Mobile DNA. Berg, D.E. and Howe, M.M. (eds) ASM Press, Washington, DC. pp. 437–484.

    Google Scholar 

  • Engels, W.R. (1996) P elements in Drosophila. Curr. Topics Microbiol. Immunol. 204: 104–123.

    Google Scholar 

  • Errede, B., Cardillo, T.S., Sherman, E., Dubois, E., Deschamps, J., and Uliame, J.M. (1980a) Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22: 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Errede, B., Cardillo, T.S., Weyer, G., and Sherman, F. (1980b) Studies on transposable elements of yeast. I. ROAM mutations causing increased expression of yeast genes: their activation by signals directed toward conjugation functions and their formation by insertion of Ty1 repetitive elements. Cold Spring Harbor Symp. Quant. Biol. 45: 593–602.

    Article  Google Scholar 

  • Esnault, C., Maestre, J., and Heidmann, T. (2000) Human line retrotransposons generate processed pseudogenes. Nature Genet. 24: 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Essers, L., Adolphs, R.H., and Kunze, R. (2000) A highly conserved domain of the maize activator transposase is involved in dimerization. Plant Cell 12: 211–223.

    PubMed  CAS  Google Scholar 

  • Evgen’ev, M.B., Zelentsova, H., Poluectova, H., Lyosin, G.T., Veleikodonskaja, V., Pyatkov, K.I., Zhirotovsky, L.A., and Kidwell, M.G. (2000) Mobile elements and chromosomal evolution in the group virilis of Drosophila. Proc. Natl. Acad. Sci. (USA) 97: 11337–11342.

    Article  Google Scholar 

  • Evgen’ev, M.B., Zelentsova, H., Shostak, N., Kozitsina, M., Barskyi, V., Lankenau, D.-H., and Croces, V.G. (1997). Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila viridis. Proc. Natl. Acad. Sci. (USA) 94: 196–201.

    Google Scholar 

  • Fanning, T. and Singer, M. (1987b) The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucl. Acid Res. 15: 2251–2260.

    Article  CAS  Google Scholar 

  • Fanning, T.G. (1983) Size and structure of the highly repetitive BAM Hl element in mice. Nucl. Acid Res. 11: 5073–5091.

    Article  CAS  Google Scholar 

  • Fanning, T.G. and Singer, M.F. (1987a) LINE-1: a mammalian transposable element. Biochim. Biophys. Acta 910: 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Farabaugh, F.J. and Fink, G.R. (1980) Insertion of the eukaryotic transposable element Tyl creates a 5-base pair duplication. Nature 286: 352–356.

    Article  PubMed  CAS  Google Scholar 

  • Farman, M.L., Tosa, Y., Nitta, N., and Leong, S.A. (1996) Maggy, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 251: 665–674.

    CAS  Google Scholar 

  • Fawcett, D.H., Lister, C.K., Kellett, E., and Finnegan, D.J. (1986) Transposable elements controlling I-R hybid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47: 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff, N. (1989a) Maize transposable elements. In: Mobile DNA. Berg, D.E. and Howe, M.M. (eds.) ASM Press, Washington DC, pp. 375–411.

    Google Scholar 

  • Fedoroff, N. (1989b) The heritable activation of cryptic suppressor-mutator elements by an active element. Genetics 121: 591–608.

    PubMed  CAS  Google Scholar 

  • Fedoroff, N. (2000) Transposons and genome evolution in plants. Proc. Natl. Acad. Sci. (USA) 97: 7002–7007.

    Article  CAS  Google Scholar 

  • Fedoroff, N. (2002) Control of mobile DNA. In: Mobile DNA II. Craig, N., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds) ASM Press, Washington, DC. pp. 997–1007.

    Google Scholar 

  • Fedoroff, N. and Botstein, D. (1992) The Dynamic Genome — Barbara McClintock’s Ideas in the Century of Genetics. Cold Spring Harbor Laboratory Press, NY. 442 p.

    Google Scholar 

  • Fedoroff, N., Shure, M., Kelly, S., Johns, M., Furtek, D., Schiefelbein, J., and Nelson, O. (1984) Isolation of Spm controlling elements from maize. Cold Spring Harbor Symp. Quant. Biol. 49: 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff, N., Wessler, S., and Shure, M. (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 235–242.

    Article  CAS  Google Scholar 

  • Fedoroff, N.V. (1983) Controlling elements in maize. In: Mobile Genetic Elements. Shapiro, J.A. (ed.) Academic Press, NY. pp. 1–35.

    Google Scholar 

  • Fedoroff, N.V. (1989c) About maize transposable elements and development. Cell 56: 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff, N.V. (1995) DNA methylation and activity of the maize Spm transposable element. Curr. Topics. Microbiol. Immun. 197: 144–164.

    Google Scholar 

  • Fedoroff, N.V., Furtek, D.B., and Nelson, O.E. Jr. (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc. Natl. Acad. Sci. (USA) 81: 3825–3829.

    Article  CAS  Google Scholar 

  • Felder, H., Herzceg, A., de Chastonay, Y., Aeby, P., and Tobler, H. (1994) Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. Gene 149: 219–225.

    CAS  Google Scholar 

  • Feng, Q., Schumann, G., and Boeke, J.D. (1998) Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc. Natl. Acad. Sci. (USA) 95: 2083–2088.

    Article  CAS  Google Scholar 

  • Feschotte, C. and Mouches, C. (2000) Evidence that a family of miniature inverted-repeat transposable elements (MITEs) roam the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol. Biol. Evol. 17: 730–737.

    Article  PubMed  CAS  Google Scholar 

  • Feschotte, C. and Wessler, S.R. (2002) Mariner-like transposases are widespread and diverse in flowering plants. Proc. Natl. Acad. Sci. (USA) 99: 280–285.

    Article  CAS  Google Scholar 

  • Feschotte, C., Jiang, N., and Wessler, S.R. (2002) Plant transposable elements: where genetics meets genomics. Nature Rev. Genetics 3: 329–341.

    Article  CAS  Google Scholar 

  • Fiandt, M., Szybalski, W., and Malamy, M.H. (1972) Polar mutations in lac, gal and Phage ? consist of a few IS-DNA sequences inserted with either orientation. Mol. Gen. Genet. 119: 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Fincham, J.R.S. and Sastry, G.R.K. (1974) Controlling elements in maize. Ann. Rev. Genet. 8: 15–50.

    Article  PubMed  CAS  Google Scholar 

  • Fink, G.R., Farabaugh, P.J., Roeder, G.S., and Chaleff, D. (1980) Transposable elements (Ty) in yeast. Cold Spring Harbor Symp. Quant. Biol. 45: 575–580.

    Article  Google Scholar 

  • Finnegan, D.J., Rubin, G.M., Young, M.W., and Hogness, D.S. (1977) Repeated gene families in Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 42: 1053–1063.

    Article  Google Scholar 

  • Finnegan, E.J., Taylor, B.H., Craig, S., and Dennis, E.S. (1989) Transposable elements can be used to study cell lineages in transgenic plants. Plant Cell 1: 757–764.

    PubMed  CAS  Google Scholar 

  • Fire, A. (1999) RNA triggered gene silencing. Trends Genet. 15: 358–363.

    Article  PubMed  CAS  Google Scholar 

  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.

    Article  CAS  Google Scholar 

  • Fladung, M. and Ahuja, M.R. (1997) Excision of the maize transposable element Ac in periclinal chimeric leaves of 35S-Ac-rolC transgenic aspen-Populus. Plant Mol. Biol. 33: 1097–1103.

    Article  CAS  Google Scholar 

  • Flavell, A.J., Dunbar, E., Anderson, R., Pearce, S.R., Hartley, R., and Kumar, A. (1992a) Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl. Acid Res. 20: 3639–3644.

    CAS  Google Scholar 

  • Flavell, A.J., Pearce, S.R., and Kumar, A. (1994) Plant transposable elements and the genome. Curr. Opin. Genet. Develop. 4: 838–844.

    Article  CAS  Google Scholar 

  • Flavell, A.J., Smith, D.B., and Kumar, A. (1992b) Extreme heterogeneity of Tyl-copia group retrotansposons in plants. Mol. Gen. Genet. 231: 233–242.

    PubMed  CAS  Google Scholar 

  • Fling, M. and Richards, C. (1983) The nucleotide sequence of the trimethoprim-resistant dihydro-date reductase gene harbored by Tn7. Nucl. Acid Res. 11: 5147–5158.

    Article  CAS  Google Scholar 

  • Foster, T.J., Howe, T.G.B., and Richmond, K.M.V. (1975) Translocation of tetracycline resistance determination from R100–1 to the Escherichia coli K-12 chromosome. J. Bacteriol. 124: 1153–1158.

    PubMed  CAS  Google Scholar 

  • Foster, T.M., Lough, T.J., Emerson, S.J., Lee, R.H., Bowman, J.L., Forster, R.L.S., and Lucas, W.J. (2002) A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14: 1497–1508.

    Article  PubMed  CAS  Google Scholar 

  • Frank, M.J., Liu, D., Tsay, Y.-F., Ustach, C., and Crawford, N.M. (1997) Tagl is an autonomous transposable element that shows somatic excision in both Arabidopsis and tobacco. Plant Cell 9: 1745–1756.

    CAS  Google Scholar 

  • Frankel, R. (1956) Graft-induced transmission to progeny of cytoplasmic male sterility in Petunia. Science 124: 684–685.

    Article  CAS  Google Scholar 

  • Franz, G., Loukeris, T.G., Dialektaki, G., Thompson, C.R.L., Savakis, C. (1994) Mobile Minos elements from Drosophila hydei encode a two-exon transposase with similarity to the paired DNA-binding domain. Proc. Natl. Acad. Sci. (USA) 91: 4746–4750.

    Article  CAS  Google Scholar 

  • Freeling, M. (1984) Plant transposable elements and insertion sequences. Ann. Rev. Plant Physiol. 35: 277–298.

    Article  CAS  Google Scholar 

  • Freund, R. and Meselson, M. (1984) Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. Proc. Natl. Acad. Sci. (USA) 81: 4462–4464.

    Article  CAS  Google Scholar 

  • Frey, M., Reinecke, J., Grant, S., Saedler, H., and Gierl, A. (1990) Excision of the En/Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J. 9: 4037–4044.

    CAS  Google Scholar 

  • Froschauer, A., Korting, C., Bernhardt, W., Nanda, I., Schmid, M., Schartl, M., and Volff, J-N. (2001) Genomic plasticity and melanoma formation in the fish Xiphophorus. Mar. Biotechnol. 3: S72 - S80.

    Article  CAS  Google Scholar 

  • Fukuchi, A., Kikuchi, F., and Hirochika, H. (1993) DNA fingerprinting of cultivated rice with rice retrotransposon probes. Jpn. J. Genet. 68: 195–204.

    Article  CAS  Google Scholar 

  • Fusswinkel, H., Schein, S., Courage, U., Starlinger, P., and Kunze, R. (1991) Detection and abundance of mRNA and protein encoded by transposable elements Activator (Ac) in maize. Mol. Gen. Genet. 225: 186–192.

    Article  PubMed  CAS  Google Scholar 

  • Galas, D.J. and Chandler, M. (1981) On the molecular mechanism of transposition. Proc. Natl. Acad. Sci. (USA) 78: 4858–4862.

    Article  CAS  Google Scholar 

  • Galas, D.J. and Chandler, M. (1989) Bacterial insertion sequences. In: Mobile DNA. Berg, D.E. and Howe, M.M. (eds) ASM Press, Washington, DC. pp. 109–162.

    Google Scholar 

  • Galindo, M.I., Bigot, Y., Sanchez, M.D., Periquet, G., and Pascual, L. (2001) Sequences homologous to the hobo transposable element in E strains of Drosophila melanogaster. Mol. Biol. Evol. 18: 1532–1539.

    Google Scholar 

  • Galun, E. (1988) Application of molecular methods to modern Citrus taxonomy. In: Proc. Sixth Intern. Citrus Congress. Goren, R. and Mendel, K. (eds.) Balaban Publishers, Philadelphia/Rehovot, pp. 295–311.

    Google Scholar 

  • Galun, E. and Breiman, A. (1997) Transgenic Plants. Imperial College Press, London, 376

    Book  Google Scholar 

  • Galun, E. and Galun, E. (2001) The Manufacture of Medical and Health Products by Transgenic Plants. Imperial College Press, London, 332 p.

    Book  Google Scholar 

  • Garber, K., Bilic, I., Pusch, O., Tohme, J., Bachmair, A., Schweizer, D., and Jantsch, V. (1999) The Tpv2 family of retrotransposons of Phaseolus vulgaris: structure, integration characteristics and use for genotype classification. Plant Mol. Biol. 39: 797–807.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, J.E. and Carroll, D. (1986) Txl: a transposable element from Xenopus laevis with some unusual properties. Mol. Cell. Biol. 6: 933–941.

    CAS  Google Scholar 

  • Garrett, J.E., Knutzon, D.S., and Carroll, D. (1989) Composite transposable elements in the Xenopus laevis genome. Mol. Cell. Biol. 9: 3018–3027.

    PubMed  CAS  Google Scholar 

  • Geiser, M., Weck, E., Döring, H.P., Werr, W., Courage-Tebbe, U., Tillmann, E., and Starlinger, P. (1982) Genomic clones of a wild-type allele and a transposable element-induced mutant allele of the sucrose synthase gene of Zea mays L. EMBO J. 1: 1455–1460.

    CAS  Google Scholar 

  • George, M. Jr. and Ryder, O.A. (1986) Mitochondrial DNA evolution in the genus Equus. Mol. Biol. Evol. 3: 535–546.

    CAS  Google Scholar 

  • Gerasimova, T., Ilyin, Y., Mizrokhi, L.J., Semjonova, L., and Georgiev, G.P. (1984a) Mobilization of the transposable element moly4 by hybrid dysgenesis generates a family of unstable cut mutations in Drosophila melanogaster. Mol. Gen. Genet. 193: 488–492.

    Article  CAS  Google Scholar 

  • Gerasimova, T.I., Matyunina, L.V., Ilyin, Y.V., and Georgiev, G.P. (1984b) Simultaneous transposition of different mobile elements: relation to multiple mutagenesis in Drosophila melanogaster. Mol. Gen. Genet. 194: 517–522.

    Article  CAS  Google Scholar 

  • Gerasimova, T.I., Mizrokhi, L.J., and Georgiev, G.P. (1984c) Tansposition bursts in genetically unstable Drosophila melanogaster. Nature 309: 714–716.

    Google Scholar 

  • Gerats, A.G.M., Beld, M., Huits, H., and Prescott, A. (1989) Gene tagging in Petunia hybrida using homologous and heterologous transposable elements. Develop. Genet. 10: 561–568.

    Article  CAS  Google Scholar 

  • Gerats, A.G.M., Huits, H., Vrijlandt, E., Marana, C., Souer, E., and Beld, M. (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2: 1121–1128.

    PubMed  CAS  Google Scholar 

  • Gierl, A. (1996) The En/Spm transposable element of maize. Curr. Topics Microbiol. Immunol. 204: 145–159.

    Article  CAS  Google Scholar 

  • Gierl, A. and Saedler, H. (1992) Plant transposable elements and gene tagging. Plant Mol. Biol. 19: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Gierl, A., Lutticke, S., and Saedler, H. (1988) TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J. 7: 4045–4053.

    CAS  Google Scholar 

  • Gierl, A., Saedler, H., and Peterson, P.A. (1989) Maize transposable elements. Ann. Rev. Genet. 23: 71–85.

    Article  CAS  Google Scholar 

  • Gindullis, F., Desel, C., Galasso, I., and Schmidt, T. (2001) The large-scale organization of the centromeric region in Beta species. Genome Res. 11: 253–265.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S.A., Ricke, D., Lan, T.-H. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) Science 296: 92–100.

    PubMed  CAS  Google Scholar 

  • Gonzalez, P. and Lessios, H.A. (1999) Evolution of sea urchin retroviral-like (SURL) elements: evidence from 40 echinoid species. Mol. Biol. Evol. 16: 938–952.

    Article  PubMed  CAS  Google Scholar 

  • Goodier, J.L. and Davidson, W.S. (1994) Tc1 transposon-like sequences are widely distributed in salmonids. J Mol. Biol. 241: 26–34.

    Google Scholar 

  • Goodier, J.L., Ostertag, E.M., Du, K., and Kazazian, Jr. H.H. (2001) A novel active LI retrotransposon subfamily in the mouse. Genome Res. 11: 1677–1685.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, T.J.D. and Poulter, R.T.M. (2001) The DIRSI group of retrotransposons. Mol. Biol. Evol. 18: 2067–2082.

    Article  PubMed  CAS  Google Scholar 

  • Gorbunova, V. and Levy, A.A. (1997a) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucl. Acid Res. 25: 4650–4657.

    Article  CAS  Google Scholar 

  • Gorbunova, V. and Levy, A.A. (1997b) Circularized Ac/Ds transposons: formation, structure and fate. Genetics 145: 1161–1169.

    PubMed  CAS  Google Scholar 

  • Gottgens, B., Barton, L.M., Grafham, D., Vaudin, M., and Green, A.R. (1999) Tdr2, a new zebrafish transposon of the Tcl family. Gene 239: 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien, M.A. (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3: 181–187.

    Article  Google Scholar 

  • Grandbastien, M.A., Spielmann, A., and Coboche, M. (1989) Tntl, a mobile retoviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien, M.A., Spielmann, A., Pouteau, S., Huttner, E., Lonquest, M., Kunert, K., Meyer, C., Rouze, P., and Caboche, M. (1991) Characterization of mobile endogenous copia-like transposable elements in the geome of Solanaceae. In: Plant Molecular Biology 2. Hermann, R.G. and Larkins, B. (eds.) Plenum Press, New York, pp. 333–343.

    Chapter  Google Scholar 

  • Green, M.M. (1977) The case for DNA insert mutations in Drosophila. In: DNA Insertion Elements, Plasmids and Episomes. Bukhari, A.I., Shapiro, J.A., and Adhya, A.B. (eds) Cold Spring Harbor Lab. Press, pp. 437–445.

    Google Scholar 

  • Greenblatt, I.M. (1974) Movement of modulator in maize: a test of an hypothesis. Genetics 77: 671–678.

    PubMed  CAS  Google Scholar 

  • Greenwald, I. (1985) lin-12, a nematode homeoticagene, is homologans to a set of mammalian proteins that includes epidermal growth factor. Cell 43: 583–590.

    Google Scholar 

  • Gregory, P.D. (2001) Transcription and chromatin converge: lessons from yeast genetics. Curr. Opin. Genet. Develop. 11: 142–147.

    Article  CAS  Google Scholar 

  • Grewal, S.I.S. and Elgin, S.C.R. (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Develop. 12: 178–187.

    Article  CAS  Google Scholar 

  • Grimaldi, G. and Singer, M.F. (1983) Members of the KpnI family of long interspersed repeated sequences join and interrupt a-satellite in the monkey genome. Nucl. Acid Res. 11: 321–339.

    Article  CAS  Google Scholar 

  • Grimaldi, G., Queen, C., and Singer, M.F. (1981) Interspersed repeated sequences in the African green monkey genome that are homologous to the human Alu family. Nucl. Acid Res. 9: 5553–5569.

    Article  CAS  Google Scholar 

  • Grimaldi, G., Skowronski, J., and Singer, M.F. (1984) Defining the beginning and end of KpnI family segments. EMBO J. 3: 1753–1759.

    CAS  Google Scholar 

  • Grindley, N.D.F. (2002) The movement of Tn3-like elements: transposition and cointegrate resolution. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 272–303.

    Google Scholar 

  • Grishok, A., Tabara, H., and Mello, C.C. (2000) Genetic requirements for inheritance of RNAi in C. elegans. Science 287: 2494–2497.

    CAS  Google Scholar 

  • Grotewold, E., Athma, P., and Peterson, T. (1991) A possible hot spot for Ac insertion in the maize P gene. Mol. Gen. Genet. 230: 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Gueiros-Filho, F.J. and Beverley, S.M. (1997) Trans-kingdom transposition of the Drosophila element Mariner within the protozoan leishmania. Science 276: 1716–1719.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, M., Bertram, I., Shepherd, N.S., and Saedler, H. (1983) Cinl, a family of dispersed repetitive elements in Zea mays. Mol. Gen. Genet. 192: 373–377.

    CAS  Google Scholar 

  • Gupta, R., He, Z., and Luan, S. (2002a) Functional relationship of cytochrome c(6) and plastocyanin in Arabidopsis. Nature 417: 567–571.

    Article  CAS  Google Scholar 

  • Gupta, R., Ting, J.T.L., Sokolov, L.N., Johnson, S.A., and Luan, S. (2002b). A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14: 2496–2507.

    Google Scholar 

  • Hamer, L., DeZwaan, T.M., Montenegro-Chamorro, M.V., Frank, S.A., and Hamer, J.E. (2001) Recent advances in large-scale transposon mutagenesis. Curr. Opin. Chem. Biol. 5: 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, A.J. and Baulcombe, D.C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–952.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J. (2000) An RNA-directed nuclese mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Han, Y. and Grierson, D. (2002) The influence of inverted repeats on the production of small antisense RNAs involved in gene silencing. Mol. Genet. Genomics 267: 629–635.

    Article  PubMed  CAS  Google Scholar 

  • Haniford, D.B. (2002) Transposon Tn10. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 457–483.

    Google Scholar 

  • Hannon, G.J. (2002) RNA interference. Nature 418: 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Haren, L., Polard, P., Ton-Hoang, B., and Chandler, M. (1998) Multiple oligomerisation domains in the IS911 transposase: A leucine zipper motif is essential for activity. J. Mol. Biol. 283: 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Haring, M.A., Rommens, C.M.T., Nijkamp, J.J., and Hille, J. (1991) The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Mol. Biol. 16: 449–461.

    Article  PubMed  CAS  Google Scholar 

  • Harris, L.J., Baillie, D.L., and Rose, A.M. (1988) Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis. Nucl. Acid Res. 16: 5991–5998.

    Article  CAS  Google Scholar 

  • Harrison, B.J. and Carpenter, R. (1973) A comparison of the instability at the nivea and pallida loci of Antirrhinum majus. Heredity 31: 309–323.

    Article  Google Scholar 

  • Harrison, B.J. and Fincham, J.R.S. (1964) Instability at the Pal locus in Antirrhinum majus. Heredity 19: 237–258.

    Article  Google Scholar 

  • Hartl, D.L. (1989) Transposable element Mariner in Drosophila species. In: Mobile DNA.

    Google Scholar 

  • Berg, D.E. and Howe, M.M. (eds.) ASM Press, Washington, DC. pp. 531–536.

    Google Scholar 

  • Hartl, D.L. (2001) Discovery of the transposable element Mariner. Genetics 157: 471–476.

    CAS  Google Scholar 

  • Hartl, D.L., Lohe, A.R., and Lozovskaya, E.R. (1997) Modern thoughts on an ancient marinere: Function, evolution, regulation. Annu. Rev. Genet. 31: 337–358.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, C., Fusswinkel, H., Li, J., Oellig, C., Kunze, R., Muller-Neumann, M., Heinlein, M., Starlinger, P., and Doerfler, W. (1988) Overproduction of the protein encoded by the maize transposable element Ac in insect cells by a baculovirus vector. Mol. Gen. Genet. 214: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Hedges, R.W. and Jacob, A.E. (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol. Gen. Genet. 132: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Heffron, F., McCarthy, B.J., Ohtsubo, H., and Ohtsubo, E. (1979b) DNA sequence analysis of the transposon Tn3: three genes and three sites involved in transposition. Cell 18: 1153–1163.

    Article  PubMed  CAS  Google Scholar 

  • Heffron, F., Rubens, C., and Falkow, S. (1975b). Translocation of a plasmid DNA sequence which mediates ampicillin resistance: molecular nature and specificity of insertion. Proc. Nat. Acad. Sci. (USA) 72: 3623–3627.

    Article  CAS  Google Scholar 

  • Heffron, F., So, M., and McCarthy, B.J. (1979a). Insertion mutations affecting transposition of Tn3 and replication of a ColE1 derivative. Cold Spring Harbor Symp. Quant. Biol. 43: 1279–1285.

    Article  PubMed  CAS  Google Scholar 

  • Heffron, F., Sublett, R., Hedges, R.W., Jacob, A., and Falkow, S. (1975a) Origin of the TEM beta-lactamase gene found on plasmids. J. Bacteriol. 122: 250–256.

    PubMed  CAS  Google Scholar 

  • Heierhorst, J., Lederis, K., and Richter, D. (1992) Presence of a member of the Tel-like transposon family from nematodes and Drosophila within the vasotoc in gene of a primitive vertebrate, the Pacific hagfish Eptatretus stouti. Proc. Natl. Acad. Sci. ( USA ) 89: 6798–6802.

    Google Scholar 

  • Heinlein, M. (1996) Excision patterns of activator (Ac) and dissociation (Ds) elements in Zea mays L.: Implications for the regulation of transposition. Genetics 144: 1851–1869.

    Google Scholar 

  • Heinlein, M., Brattig, T., and Kunze, R. (1994) In vivo aggregation of maize Activator ( Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant J. 5: 705–714.

    Google Scholar 

  • Henig, R.M. (2000) The Monk in the Garden. Houghton Mifflin Co. Boston, 292 p. Henikoff, S. (1992) Detection of Caenorhabditis transposon homologs in diverse organisms. New Biol. 4: 382–388.

    Google Scholar 

  • Henikoff, S. and Plasterk, R.H.A. (1988) Related transposons in C. elegans and D. melanogaster. Nucl. Acid Res. 16: 6234.

    Article  CAS  Google Scholar 

  • Hershberger, R.J., Benito, M.-I., Hardeman, K.J., Warren, C., Chandler, V.L., and Walbot, V. (1995) Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics 140: 1087–1098.

    PubMed  CAS  Google Scholar 

  • Hershberger, R.J., Warren, C.A., and Walbot, V. (1991) Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc. Natl. Acad. Sci. (USA) 88: 10198–10202.

    Article  CAS  Google Scholar 

  • Heslop-Harrison, J.S., Schwartzacher, T., Anamthawat-Jonsson, K., Leitch, A.R., Shi, M., and Leitch, I.J. (1991) In situ hybridization with automated chromosome denaturation. J. Met. Cell. Mol. Biol. 3: 109–116.

    Google Scholar 

  • Higashiyama, T., Noutoshi, Y., Fujie, M., and Yamada, T. (1997) Zepp, a line-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 16: 3715–3723.

    Article  CAS  Google Scholar 

  • Hiraizumi, Y. (1971) Spontaneous recombination in Drosophila melanogaster males. Proc. Natl. Acad. Sci. (USA) 68: 268–270.

    Article  CAS  Google Scholar 

  • Hirochika, H. (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521–2528.

    CAS  Google Scholar 

  • Hirochika, H. (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr. Opin. Plant Biol. 4: 118–122.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika, H., Fukuchi, A., and Kikuchi, F. (1992) Retrotransposon families in rice. Mol. Gen. Genet. 233: 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika, H., Okamoto, H., and Kakutami, T. (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddml mutation. Plant Cell 12: 357–368.

    PubMed  CAS  Google Scholar 

  • Hirochika, H., Otsuki, H., Yoshikawa, M., Otsuki, Y., Sugimoto, K., and Takeda, S. (1996b) Autonomous transposition of the tobacco retrotransposon Ttol in rice. Plant Cell 8: 725–734.

    PubMed  CAS  Google Scholar 

  • Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H., and Kanda, M. (1996a) Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. (USA) 93: 7783–7788.

    Article  CAS  Google Scholar 

  • Hirsch, H.-J., Starlinger, P., and Brachet, P. (1972) Two kinds of insertions in bacterial genes. Mol. Gen. Genet. 119: 191–206.

    Article  CAS  Google Scholar 

  • Holmes, S.E., Xombroski, B.A., Krebs, C.M., Boehm, C.D., and Kazazian, Jr. H.H. (1994) A new retrotransposable human L1 element from the LRE2 locus on chromosome lq produces a chimaeric insertion. Nature Genet. 7: 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Houck, C.M., Rinehart, F.P., and Schmid, C.W. (1979) A ubiquitous family of repeated DNA sequences in the human genome. J. Mol. Biol. 132: 289–306.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, C.-L. (2000) Dynamics of DNA methylation pattern. Curr. Opin. Genet. Devel. 10: 224–228.

    Article  CAS  Google Scholar 

  • Hu, W., Das, O.P., and Messing, J. (1995) Zeon-1 a member of a new maize retrotransposon family. Mol. Gen. Genet. 248: 471–480.

    Article  PubMed  CAS  Google Scholar 

  • Hua-Van, A., Langin, T., and Daboussi, M.-J. (2001a) Evolutionary history of the impala transposon in Fusarium oxysporum. Mol. Biol. Evol. 19: 1959–1969.

    Article  Google Scholar 

  • Hua-Van, A., Pamphile, J.A., Langin, T., and Daboussi, M.-J. (2001b) Transposition of autonomous and engineered impala transposons in Fusarium oxysporum and a related species. Mol. Gen. Genomics 264: 724–731.

    Article  CAS  Google Scholar 

  • Huang, R.-C. and Bonner, J. (1962) Histone, a repressor of chromosomal RNA synthesis. Proc. Natl. Acad. Sci. (USA) 48: 1216–1222.

    Article  CAS  Google Scholar 

  • Huang, R.-C., Maheshwari, N., and Bonner, J. (1960) Enzymatic synthesis of RNA. Biochem. Biophys. Res. Comm. 3: 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Hull, M.W., Erickson, J., Johnston, M., and Engelke, D.R. (1994) tRNA genes as transcriptional repressor elements. Mol. Cell Biol. 14: 1266–1277.

    Google Scholar 

  • Hutvagner, G. and Zamore, P.D. (2002) RNAi: nature abhors a double-strand. Curr. Opin. Genet. Devel. 12: 225–232.

    Article  CAS  Google Scholar 

  • Ikeda, K., Nakayashiki, H., Takagi, M., Tosa, Y., and Mayama, S. (2001) Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Mol. Genet. Genomics 266: 318–325.

    Article  CAS  Google Scholar 

  • Ilyin, Y.V., Chmeliauskaite, V.G., Ananiev, E.V., Lyubomirskaya, N.V., Kulguskin, V.V., Bayev, A.A. Jr., and Georgiev, G.P. (1980b) Mobile dispersed genetic element MDG1 of Drosophila melanogaster: structural organization. Nucl. Acid Res. 8: 5333–5346.

    Article  CAS  Google Scholar 

  • Ilyin, Y.V., Chmeliauskaite, V.G., Kulguskin, V.V., and Georgiev, G.P. (1980c) Mobile dispersed genetic element MDG1 of Drosophila melanogaster: transcription pattern. Nucl. Acid Res. 8: 5347–5361

    Article  CAS  Google Scholar 

  • Ilyin, Y.V., Chmeliauskaite,V.G., Ananiev, E.V., and Georgiev, G.P. (1980a) Isolation and characterization of a new family of mobile dispersed genetic elements, mdg3, in Drosophila melanogaster. Chromosoma 81: 27–53.

    Google Scholar 

  • Inouye, S., Yuki, S., and Saigo, K. (1986) Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur. J. Biochem. 154: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Ising, G. and Ramel, C. (1973) The behavior of a transposing element in Drosophila melanogaster. Genetics 73: s123.

    Google Scholar 

  • Ivics, Z., Hackett, P.B., Plasterk, R.H., and Izsvak, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tcl-like transposon from fish, and its transposition in human cells. Cell 91: 501–510.

    Article  PubMed  CAS  Google Scholar 

  • Ivics, Z., Izsvak, Z., Minter, A., and Hackett, P.B. (1996) Identification of functional domains and evolution of Tel-like transposable elements. Proc. Natl. Acad. Sci. (USA) 93: 5008–5013.

    Article  CAS  Google Scholar 

  • Izsvak, Z., Ivics, Z., and Hackett, P.B. (1995) Characterization of a Tcl-like transposable element in zebrafish (Danio rerio). Mol. Gen. Genet. 247: 312–322.

    Article  PubMed  CAS  Google Scholar 

  • Izsvak, Z., Ivies, Z., and Plasterk, R.H. (2000) Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 302: 93–102.

    CAS  Google Scholar 

  • Jackson, J.P., Lindroth, A.M., Caom X., and Jacobsen, S.E. (2002) Control of CpNpG DNA methylation by KRYPTONITE histone 43 methyltransferase. Nature 416: 556–560.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F. and Monod, J. (1959) Genes de structure et genes de regulation dans la biosynthese de proteins. Comp. Rend. 249: 1282–1284.

    CAS  Google Scholar 

  • Jacobson, J.W., Medhora, M.M., and Hartl, D.L. (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. (USA) 83: 8684–8688.

    Article  CAS  Google Scholar 

  • Jagadeeswaran, P., Forget, B.G., and Weissman, S.M. (1981) Short interspersed repetitive DNA elements in eucaryotes: transposable DNA elements generated by reverse transcription of RNA pol III transcripts? Cell 26: 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Jahn, C.L., Doktor, S.Z., Frels, J.S., Jaraczewski, J.W., and Krikau, M.F. (1993) Structures of the Euplotes crassus Teel and Text elements: identification of putative transposase coding regions. Gene 133: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Jakubczak, J.L., Burke, W.D., and Eickbush, T.H. (1991) Retrotransposable elements Rl and R2 interrupt the rRNA genes of most insects. Proc. Natl. Acad. Sci. (USA) 88: 3295–3299.

    Article  CAS  Google Scholar 

  • Jakubczak, J.L., Xiong, Y., and Eickbush, T.H. (1990) Type I (R1) and Type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. J. Mol. Biol. 212: 37–52.

    Article  CAS  Google Scholar 

  • Jeddeloch, J.A., Stokes, T.L., and Richards, E.J. (1999) Maintenance of genomic methylation requires a SW12/SNF2 like protein. Nature Genet. 22: 94–97.

    Article  CAS  Google Scholar 

  • Jelinek, W.R., Toomey, T.P., Leinwand, L., Duncan, C.H., Biro, P.A., Choudary, P.V., Weissman, S.M., Rubin, C.M., Houck, C.M., Deininger, P.L., and Schmid, C.W. (1980) Ubiquitous, interspersed repeated sequences in mammalian genomes. Proc. Natl. Acad. Sci. (USA) 77: 1308–1402.

    Article  Google Scholar 

  • Jensen, S., Gassama, M.-P., and Heidmann, T. (1999) Taming of transposable elements by homology-dependent gene silencing. Nature Genet. 21: 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein, T. (2001) Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 11: 266–273.

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science 293: 10741080.

    Google Scholar 

  • Johns, M.A., Mottinger, J., and Freeling, M. (1985) A low copy number copia-like transposon in maize. EMBO J. 4: 1093–1102.

    CAS  Google Scholar 

  • Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J., and Jones, J.D.G. (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J.D.G., Carland, F., Lim, E., Ralston, E., and Dooner, H.K. (1990) Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707.

    PubMed  CAS  Google Scholar 

  • Jones, J.D.G., Carland, F.M., Maliga, P., and Dooner, H.K. (1989) Visual detection of transposition of the maize element activator (Ac) in tobacco seedlings. Science 244: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, E., Saedler, H., and Starlinger, P. (1968) 00 and strong-polar mutations in the gal operon are insertions. Mol. Gen. Genet. 102: 353–363.

    Google Scholar 

  • Judelson, H.S. (2002) Sequence variation and genomic amplification of a family of Gypsy-like elements in the oomycete genus Phytophthora. Mol. Biol. Evol. 19: 1313–1322.

    Article  CAS  Google Scholar 

  • Kapitonov, C. and Jurka, J. (1996) The age of alu subfamilies. J. Mol. Evol. 42: 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Karran, P. (2000) DNA double strand break repair in mammalian cells. Curr. Opin. Genet. Develop. 10: 144–150.

    Google Scholar 

  • Katziotis, A., Schmidt, T., and Heslop-Harrison, S. (1996) Chromosomal and genomic organization of Tyl-copia-like retrotransposon sequences in the genus Avena. Genome 39: 410–417.

    Article  Google Scholar 

  • Katzir, N., Rechavi, G., Cohen, J.B., Unger, T., Simoni, F., Segal, S., Cohen, D., and Givol, D. (1985) Retroposon insertion into the cellular oncogene c-myc in canine transmissible venereal tumor. Proc. Natl. Acad. Sci. (USA) 82: 1054–1058.

    Article  CAS  Google Scholar 

  • Kaufman, P.D. and Rio, D.C. (1992) P element tranposition in vitro proceeds by a cutand-paste mechanism and uses GTP as a cofactor. Cell 69: 27–39.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian, H.H., Wong, C., Youssoufian, H., Scott, A.F., Phillips, D.G., and Antonarakis, S.E. (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian, Jr. H.H. (2000) L1 retrotransposons shape the mammalian genome. Science 289: 1152–1153.

    Article  PubMed  CAS  Google Scholar 

  • Keller, E.F. (1983) A Feeling for the Organism — The Life and Work of Barbara McClintock. W.H. Freeman and Co., NY. 235 p.

    Google Scholar 

  • Keller, J., Jones, J.D.G., Harper, E., Lim, E., Carland, F., Ralston, E.J., and Dooner, H.K. (1993) Effects of gene dosage and sequence modification on the frequency and timing of transposition maize element Activator (Ac) in tobacco. Plant Mol. Biol. 21: 157–170.

    Article  PubMed  CAS  Google Scholar 

  • Kempken, F. and Kuck, U. (1998) Transposons in filamentous fungi — facts and perspectives. BioEssays 20: 652–659.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, A.K., Haniford, D.B., and Mizuuchi, K. (2000) Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell 101: 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Ketting, R.F. and Plasterk, R.H.A. (2000) A genetic link between co-suppression and RNA interference in C. elegans. Nature 404: 296–298.

    CAS  Google Scholar 

  • Ketting, R.F., Haverkamp, T.H.A., Van Luenen, H.G.A.M., and Plasterk, R.H.A. (1999) mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99: 133–144.

    Google Scholar 

  • Kidwell, M.G., Kidwell, J.F., and Sved, J.A. (1977) Hybrid dysgenesis in Drosophila melanogaster: A syndrome of aberrant traits including mutations, sterility and male recombination. Genetics 86: 813–833.

    PubMed  CAS  Google Scholar 

  • Kim, A., Terzian, C., Santamaria, P., Pelisson, A., Prud’homme, N., and Bucheton, A. (1994) Retroviruses in invertebrates: The gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. (USA) 91: 1285–1289

    Article  CAS  Google Scholar 

  • Kim, J.M., Vanguri, S., Boeke, J.D., Gabriel, A., and Voytas, D.F. (1998) Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8: 464–478.

    PubMed  CAS  Google Scholar 

  • Kimberland, M.L., Divoky, V., Prchal, J., Schwahn, U., Berger, W., and Kazazian, Jr. H.H. (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Human Mol. Genet. 8: 1557–1560.

    Article  CAS  Google Scholar 

  • Kimmel, B.E., Ole-Moiyoi, O.K., and Young, J.R. (1987) Ingi, a 5.2 kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINES. Mol. Cell. Biol. 7: 1465–1475.

    PubMed  CAS  Google Scholar 

  • Kinsey, J.A. and Helber, J. (1989) Isolation of a transposable element from Neurospora crassa. Proc. Natl. Acad. Sci. (USA) 86: 1929–1933.

    Article  CAS  Google Scholar 

  • Kishima, Y., Yamashita, S., and Mikami, T. (1997) Immobilized copies with a nearly intact structure of the transposon Tam3 in Antirrhinum majus: implications for the cis-element related to the transposition. Theor. Appl. Genet. 95: 1246–1251.

    Article  CAS  Google Scholar 

  • Kishima, Y., Yamashita, S., Martin, C., and Mikami, T. (1999) Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose. Plant Mol. Biol. 39: 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner, N. (1989) Tn 10. In: Mobile DNA. Berg, D.H. and Howe, M.M. (eds) ASM Press, Washington, DC. pp. 227–268.

    Google Scholar 

  • Kleckner, N., Chalmers, R.M., Dwon, D., Sakai, J., and Bolland, S. (1996) Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro. Curr. Topics Microbiol. Immunol. 204: 50–82.

    Google Scholar 

  • Kleckner, N., Reichardt, K., and Botstein, D. (1975) Mutagenesis by insertion of a dragresistance element carrying an inverted repetition. J. Mol. Biol. 97: 561–575.

    Article  PubMed  CAS  Google Scholar 

  • Klobutcher, L.A. and Jahn, C.L. (1991). Developmentally controlled genomic rearrangements in ciliated protozoa. Curr. Opin. Genet. Devel. 1: 397–403.

    Article  CAS  Google Scholar 

  • Knapp, S., Coupland, G., Uhrig, H., Starlinger, P., and Salamini, F. (1988) Transposition of the maize transposable element Ac in Solanum tuberosum. Mol. Gen. Genet. 213: 285–290.

    Article  CAS  Google Scholar 

  • Knoop, V., Unseld, M., Marienfeld, J., Brandt, P., Sunkel, S., Ullrich, H., and Brennicke, A. (1996) Copia, gypsy-and line-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142: 579–585.

    CAS  Google Scholar 

  • Koes, R., Souer, E., Van Houwelingen, A. Mur, L., Spelt, C., Quattrocchio, F., Wing, J., Oppedijk, Ahmed, S., Maes, T., Gerats, T., Hoogeveen, P., Meesters, M., Kloos, D., and Mol, J.N.M. (1995) Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc. Natl. Acad. Sci. (USA) 92: 8149–8153.

    Article  CAS  Google Scholar 

  • Koga, A., Suzuki, M., Inagaki, 14., Bessho, Y., and Hori, H. (1996) Transposable element in fish. Nature 383: 30.

    CAS  Google Scholar 

  • Koncz, C., Martini, N., Mayer, Hoffer, R.D., Koncz-Kalman, Z., Korber, H., Redei, G.P., and Schell, J. (1989) High frequency T-DNA mediated gene tagging in plants. Proc. Natl. Acad. Sci. (USA) 86: 8467–8471.

    Article  CAS  Google Scholar 

  • Konieczny, A., Voytas, D.F., Cummings, M.P., and Ausubel, F.M. (1991) A superfamily of Arabidopsis thaliana retrotranspons. Genetics 127: 801–809.

    PubMed  CAS  Google Scholar 

  • Kornberg, R.D. (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184: 868–871.

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, R.D. and Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98: 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides, T. (2002) Histone methylation in transcriptional control. Curr. Opin. Genet. Devel. 12: 198–209.

    Article  CAS  Google Scholar 

  • Kulguskin, V.V., Ilyin, Y.V., and Georgiev, G.P. (1981) Mobile dispersed genetic element MDG1 of Drosophila melanogaster: nucleotide sequence of long terminal repeats. Nucl. Acid Res. 9: 3451–3465.

    Article  CAS  Google Scholar 

  • Kumar, A. and Bennetzen, J.L. (1999) Plant retrotransposons. Ann. Rev. Genet. 33: 479–532.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, R. (1996) The maize transposable element activator (Ac). Curr. Topics Microbiol. Immun. 204: 162–194.

    Google Scholar 

  • Kunze, R. and Starlinger, P. (1989) The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 8: 3177–3185.

    CAS  Google Scholar 

  • Kunze, R., Behrens, U.Y., Courage-Franzkowiak, U., Feldmar, S., Kuhn, S., and Lutticke, R. (1993) Dominant transposition-deficient mutants of maize Activator (Ac) transposase. Proc. Natl. Acad. Sci. (USA) 90: 7094–7098.

    Article  CAS  Google Scholar 

  • Kunze, R., Stochaj, U., Laufs, J., and Starlinger, P. (1987) Transcription of transposable element Activator (Ac) of Zea mays L. EMBO J. 6: 1555–1563.

    CAS  Google Scholar 

  • Laha, T., Loukas, A., Verity, C.K., McManus, D.P., and Brindley, P.J. (2001) Gulliver, a long terminal repeat retrotransposon from the genome of the oriental blood fluke Schistosoma japonicum. Gene 264: 59–68.

    CAS  Google Scholar 

  • Lam, W.L., Lee, T.-Sh., and Gilbert, W. (1996b) Active transposition in zebrafish. Proc. Natl. Acad. Sci. (USA) 93: 10870–10875.

    Article  CAS  Google Scholar 

  • Lam, W.L., Seo, P., Robison, K., Samant, V., and Gilbert, W. (1996a) Discovery of amphibian Tcl-like transposon families. J. Mol. Biol. 257: 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Lampe, D.J., Grant, T.E., and Robertson, H.M. (1998) Factors affecting transposition of the Himarl Mariner transposon in vitro. Genetics 149: 179–187.

    CAS  Google Scholar 

  • Lampe, D.J., Walden, K.K.O., and Robertson, H.M. (2001) Loss of transposase-DNA interaction may underlie the divergence of Mariner family transposable elements and the ability of more than one Mariner to occupy the same genome. Mol. Biol. Evol. 18: 954–961.

    Article  PubMed  CAS  Google Scholar 

  • Langin, T., Capy, P., and Daboussi, M.-J. (1995) The transposable element impala, a fungal member of the Tcl-mariner superfamily. Mol. Gen. Genet. 246: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Laten, H.M. and Morris, R.O. (1993) SIRE-1, a long interspaced repetitive DNA element from soybean with weak sequence similarity to retrotransposons: initial characterization and partial sequence. Gene 134: 153–159.

    CAS  Google Scholar 

  • Laten, H.M., Majumdar, A., and Gaucher, E.A. (1998) SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc. Natl. Acad. Sci. (USA) 95: 6897–6902.

    CAS  Google Scholar 

  • Le, Q.-H., Wright, S., Yu, Z., and Bureau, T. (2000) Transposon diversity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. (USA) 97: 7376–7381.

    Article  CAS  Google Scholar 

  • Leeton, P.R.J. and Smyth, D.R. (1993) An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol. Gen. Genet. 237: 97–104.

    CAS  Google Scholar 

  • Lenoir, A., Cournoyer, B., Warwick, S., Picard, G., and Deragon, J.-M. (1997) Evolution of SINE S 1 retroposons in Cruciferae plant species. Mol. Biol. Evol. 14: 934–941.

    Article  PubMed  CAS  Google Scholar 

  • Lenoir, A., Lavie, L., Prieto, J.-L., Goubely, C., Cote, J.-C., Pelissier, T., and Deragou, J.-M. (2001) The evolutionary origin and genomic organization of SINEs in Arabidopsis. Mol. Biol. Evol. 18: 2315–2322.

    Article  PubMed  CAS  Google Scholar 

  • Lerman, M.I., Thayer, R.E., and Singer, M.F. (1983) Kpn I family of long interspersed repeated DNA sequences in primates: polymorphism of family members and evidence for transcription. Proc. Natl. Acad. Sci. (USA) 80: 3966–3970.

    Article  CAS  Google Scholar 

  • Levin, H.L. (2002) Newly identified retrotransposons of the gypsylTy3 class in fungi, plants and vertebrates. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 684–704.

    Google Scholar 

  • Levin, H.L., Weaver, D.C., and Boeke, J.D. (1990) Two related families of retrotransposons from Schizosaccharomyces pombe. Mol. Cell Biol. 10: 6791–6798.

    CAS  Google Scholar 

  • Levis, R.W., Ganesan, R., Houtchens, K., Tolar, L.A., and Shee, F.-M. (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  • Levy, A.A. and Walbot, V. (1990) Regulation of the timing of transposable element excision during maize development. Science 248: 1534–1537.

    Article  PubMed  CAS  Google Scholar 

  • Levy, A.A., Britt, A.B., Luehrsen, K.R., Chandler, V.L., Warren, C., and Walbot, V. (1989) Developmental and genetic aspects of mutator excision in maize. Devel. Genet. 10: 520–531.

    Article  CAS  Google Scholar 

  • Li Destri Nicosia, M.G., Brocard-Masson, C., Demals, S., Hua Van, A., Daboussi, M.J., and Scazzocchio, C. (2001) Heterologous transposition in Aspergillus nidulans. Mol. Microbiol. 39: 1330–1344.

    Article  CAS  Google Scholar 

  • Li, E. (2002) Chromatin modification and epigenetic programming in mammalian development. Nature Rev. Genet. 3: 662–673.

    Article  PubMed  CAS  Google Scholar 

  • Li, H.-W., Lucy, A.P., Guo, H.-S., Li, W.-X., Ji, L.-H., Wong, S.-M., and Ding, S.-W. (1999) Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO 1 18: 2683–2691.

    Google Scholar 

  • Liao, L.W., Rosenzweig, B., and Hirsh, D. (1983) Analysis of a transposable element in Caenorhabditis elegans. Proc. Natl. Acad. Sci. (USA) 80: 3585–3589.

    Article  CAS  Google Scholar 

  • Lichten, M. (2001) Meiotic recombination: Breaking the genome to save it. Curr. Biol. 11: R253 - R256.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, C. and Brenner, S. (1981) Site-specific properties of Tn7 transpostion into the E. coli chromosome. Mol. Gen. Genet. 183: 380–387.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, C. and Brenner, S. (1982) Unique insertion site of Tn7 in the E. coli chromosome. Nature 297: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Lifschytz, E. and Falk, R. (1968) Fine structure analysis of a chromosome segment in Drosophila melanogaster analysis of X-ray induced lethals. Mutation Res. 6: 235 244.

    Google Scholar 

  • Lim, J.K. (1988) Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. (USA) 85: 9153–9157.

    Article  CAS  Google Scholar 

  • Linares, C., Irigoyen, M.L., and Fominaya, A. (2000) Identification of C-genome chromosomes involved in intergenomic translocations in Avena saliva L., using cloned repetitive DNA sequences. Theor. Appl. Genet. 100: 353–360.

    Article  CAS  Google Scholar 

  • Linares, C., Loarce, Y., Sema, A., and Fominaya, A. (2001) Isolation and characterization of two novel retrotransposons of the Ty1 copia group in oat genomes. Chromosoma 110: 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Linares, C., Serna, A., and Fominaya, A. (1999) Chromosomal organization of a sequence related to LTR-like elements of Tyl-copia retrotransposons in Avena species. Genome 42: 706–713.

    PubMed  CAS  Google Scholar 

  • Lindauer, A., Fraser, D., Brüderlein, M., and Schmitt, R. (1993) Reverse transcriptase families and a copia-like retrotransposon, Osser, in the green alga Volvox carteri. FEBS Lett. 319: 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M., and Gougherty, W.G. (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749–1759.

    PubMed  CAS  Google Scholar 

  • Linder-Basso, D., Foglia, R., Zhu, P., and Hillman, B.I. (2001) Cryptl, an active Ac-like transposon from the chestnut blight fungus, Cryphonectria parasitica. Mol. Genet. Genomics 265: 730–738.

    Article  PubMed  CAS  Google Scholar 

  • Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T.R. (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.

    Article  PubMed  CAS  Google Scholar 

  • Lisch, D., Carey, C.C., Dorweiler, J.E., and Chandler, V.L. (2002) A mutation that prevents paramutation in maize also reverses Mutator transposon methylation and silencing. Proc. Natl. Acad. Sci. (USA) 99: 6130–6135.

    Article  CAS  Google Scholar 

  • Liu, D. and Crawford, N.M. (1997) Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tagl. Genetics 148: 445–456.

    Google Scholar 

  • Liu, D. and Crawford, N.M. (1998) Characterization of the putative transposase mRNA of Tagl, which is ubiquitously expressed in Arabidopsis and can be induced by Agrobacterium-mediated transformation with dTagl DNA. Genetics 149: 693–701.

    PubMed  CAS  Google Scholar 

  • Liu, D., Wang, R., Galli, M., and Crawford, N.M. (2001) Somatic and germinal excision activities of the Arabidopsis transposon Tagl are controlled by distinct regulatory sequences within Tag]. Plant Cell 13: 1851–1863.

    PubMed  CAS  Google Scholar 

  • Liu, D., Zhang, S., Fauquet, C., and Crawford, N.M. (1999) The Arabidopsis transposon Tag] is active in rice, undergoing germinal transposition and restricted, late somatic excision. Mol. Gen. Genet. 262: 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Long, D., Swinburne, J., Martin, M., Wilson, K., Sundberg, E., Lee, K., and Coupland, G. (1993) Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol. Gen. Genet. 241: 627–636.

    Article  PubMed  CAS  Google Scholar 

  • Lönning, W.-E. and Saedler, H. (2002) Chromosome rearrangements and transposable elements. Ann. Rev. Genet. 36: 389–410.

    Article  CAS  Google Scholar 

  • Luan, D.D., Korman, M.H., Jakubczak, J.L., and Eickbush, T.H. (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell 72: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, H., Moore, G., Murphy, G., and Flavell, R.B. (1992) Inverted repeats in the long terminal repeats of the wheat transposon Wis2–1A. Mol. Biol. Evol. 9: 716–728.

    CAS  Google Scholar 

  • Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 389: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Luo, G., Ivies, Z., Izsvak, Z., and Bradley, A. (1998) Chromosomal transposition of a Tcl/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. (USA) 95: 10769–10773.

    Article  CAS  Google Scholar 

  • Lyubomirskaya, N.V., Smirnova, J.B., Razorenova, O.V., Karpova, N.N., Surkob, S.A., Avedisov, S.N., Kim, A.I., and Ilyin, Y.V. (2001) Two variants of the Drosophila melanogaster retrotransposon gypsy (mdg4): structural and functional differences, and distribution in fly stocks. Mol. Genet. Genomics 265: 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Mack, A.M. and Crawford, N.M. (2001) The Arabidopsis TAGI transposase has an N-terminal zinc finger DNA binding domain that recognizes distinct subterminal motifs. Plant Cell 13: 2319–2331.

    PubMed  CAS  Google Scholar 

  • Mahillon, J. and Chandler, M. (1998) Insertion Sequences. Microbiol. Mol. Biol. Rev. 62: 725–774.

    PubMed  CAS  Google Scholar 

  • Malamy, M.H. (1966) Frameshift mutations in the lactose operon of E. coli. Cold Spring Harbor Symp. Quant. Biol. 31: 189–201.

    Article  CAS  Google Scholar 

  • Malamy, M.H., Fiandt, M., and Szybalski, W. (1972) Electron microscopy of polar insertions in the lac operon of Escherichia coli. Mol. Gen. Genet. 119: 207–222.

    Article  CAS  Google Scholar 

  • Malik, H.G.S. and Eickbush, T.H. (1998) The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol. Biol. Evol. 15: 1123–1134.

    Article  PubMed  CAS  Google Scholar 

  • Malik, H.S. and Eickbush, T.H. (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J. Virology 73: 5186–5190.

    PubMed  CAS  Google Scholar 

  • Mallory, A.C., Ely, L., Smith, T.H., Marathe, R., Anandalakshmi, R., Fagard, M., Vaucheret, H., Pruss, G., Bowman, L., and Vance, V.B. (2001) HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13: 571–583.

    PubMed  CAS  Google Scholar 

  • Manuelidis, L. (1982) Nucleotide sequence definition of a major human repeated DNA, the Hind III 1.9 kb family. Nucl. Acid Res. 10: 3211–3219.

    Article  CAS  Google Scholar 

  • Marion-Poll, A., Marin, E., Bonnefoy, N., and Pautot, V. (1993) Transposition of the maize autonomous element Activator in transgenic Nicotiana plumbaginifolia plants. Mol. Gen. Genet. 238: 209–217.

    PubMed  CAS  Google Scholar 

  • Marlor, R.L., Parkhurst, S.M., and Corces, V.G. (1986) The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol. Cell. Biol. 6: 1129–1134.

    PubMed  CAS  Google Scholar 

  • Marmorstein, R. and Roth, S.Y. (2001) Histone acetyltransferases: function, structure and catalysis. Curr. Opin. Genet. Devel. 11: 155–161.

    Article  CAS  Google Scholar 

  • Marracci, S., Batistoni, R., Pesole, G., Citti, L., and Nardi, I. (1996) Gypsy/Ty3-like elements in the genome of the terrestrial salamander hydromantes (Amphibia, Urodela). J. Mol. Evol. 43: 584–593.

    Article  PubMed  CAS  Google Scholar 

  • Martienssen, R.A. (1998) Functional genomics: probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. (USA) 95: 2021–2026.

    Article  CAS  Google Scholar 

  • Martin, C.R., Carpenter, R., Sommer, H., Saedler, H., and Goen, E.S. (1985) Molecular analysis of instability in the flower pigmentation of Antirrhinum mains following isolation of the pallida locus by transposon tagging. EMBO J 4: 1625–1630.

    CAS  Google Scholar 

  • Martin, F., Maranon, C., Olivares, M., Alonso, C., and Lopez, M.C. (1995) Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: Homology of the first ORF with the ape family of DNA repair enzymes. J. Mol. Biol. 247: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002) Single- stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110: 563–574.

    Article  PubMed  CAS  Google Scholar 

  • Masson, P., Strem, M., and Fedoroff, N. (1991) The tnpA and tnpD gene products of the Spm element are required for transposition in tobacco. Plant Cell 3: 73–85.

    PubMed  CAS  Google Scholar 

  • Masson, P., Surosky, R., Kingsbury, J.A., and Fedoroff, N.V. (1987) Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 117: 117–137.

    PubMed  CAS  Google Scholar 

  • Mathias, S.L., Scott, A.F., Kazazian, Jr. H.H., Boeke, J.D., and Gabriel, A. (1991) Reverse transriptase encoded by a human transposable element. Science 254: 1808–1810.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, Y. and Tsunewaki, K. (1996) Wheat retrotransposon families identified by reverse transcriptase domain analysis. Mol. Biol. Evol. 13: 1384–1392.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, Y. and Tsunewaki, K. (1999) Evolutionary dynamics of Tyl-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Mol. Biol. Evol. 16: 208–217.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, G.D., Goodwin, T.J.D., Butler, M.I., Berryman, T.A., and Poulter, R.T.M. (1997) PCa1, a highly unusual Tyllcopia retrotransposon from the pathogenic yeast Candida albicans. J. Bacteriol. 179: 7118–7128.

    CAS  Google Scholar 

  • Matzke, M.A., Matzke, A.J.M., Pruss, G.J., and Vance, V.B. (2001) RNA-based silencing strategies in plants. Curr. Opin. Genet. Devel. 11: 221–227.

    Article  CAS  Google Scholar 

  • Maxam, A.M. and Gilbert, W. (1977) A new method for sequencing DNA. Proc. Natl. Acad. Sci. (USA) 74: 560–564.

    Article  CAS  Google Scholar 

  • May, E.W. and Craig, N.L. (1996) Switching from cut-and-paste to replicative Tn7 transposition. Science 272: 401–404.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1938) The fusion of broken ends of sister half chromatids following chromatid breakage at meiotic anaphases. Miss. Agric. Exp. Stn. Res. Bull. 190: 1–48.

    Google Scholar 

  • McClintock, B. (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282.

    CAS  Google Scholar 

  • McClintock, B. (1942a) Maize genetics. Carnegie Institute of Washington, Year Book 41: 181–186.

    Google Scholar 

  • McClintock, B. (1942b) The fusion of broken ends of chromosomes following nuclear fusion. Proc. Natl. Acad. Sci. (USA) 28: 458–463.

    Article  CAS  Google Scholar 

  • McClintock, B. (1943) Maize genetics. Carnegie Institute of Washington, Year Book 42: 148–152.

    Google Scholar 

  • McClintock, B. (1945a) Cytogenetic studies of maize and neurospora. Carnegie Institute of Washington, Year Book 44: 108–112.

    Google Scholar 

  • McClintock, B. (1945b) Presidents Report. Carnegie Institute of Washington, Year Book 44: 60–61.

    Google Scholar 

  • McClintock, B. (1946) Maize genetics. Carnegie Institute of Washington, Year Book 45: 176–188.

    CAS  Google Scholar 

  • McClintock, B. (1947) Cytogenetic studies of maize and neurospora. Carnegie Institute of Washington, Year Book 46: 146–152.

    Google Scholar 

  • McClintock, B. (1948) Mutable loci in maize. Carnegie Institute of Washington, Year Book 47: 155–169.

    Google Scholar 

  • McClintock, B. (1951) Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16: 13–47.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1952) Mutable loci in maize. Carnegie Institute of Washington, Year Book 51: 212–219.

    Google Scholar 

  • McClintock, B. (1953a) Induction of instability at selected loci in maize. Genetics 38: 579–599.

    PubMed  CAS  Google Scholar 

  • McClintock, B. (1953b) Mutation in maize Carnegie Institute of Washington, Year Book 52: 227–237.

    Google Scholar 

  • McClintock, B. (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Institute of Washington, Year Book 53: 254–260.

    Google Scholar 

  • McClintock, B. (1956) Controlling elements and the gene. Cold Spring Harbor Symp. Quan. Biol. 21: 197–216.

    Article  CAS  Google Scholar 

  • McClintock, B. (1961a) Some parallels between gene control systems in maize and in bacteria. Amer. Naturalist. 95: 265–277.

    Article  Google Scholar 

  • McClintock, B. (1961b) Further studies of the suppressor-mutator system of control of gene action in maize. Carnegie Institute of Washington, Year Book 60: 469–476.

    Google Scholar 

  • McClintock, B. (1968) The states of a gene locus in maize. Carnegie Institute of Washington, Year Book 66: 664–672.

    Google Scholar 

  • McClintock, B. (1978) Mechanisms that rapidly reorganize the genome. Stadler Genetic Symp. 10: 25–48.

    Google Scholar 

  • McClintock, B. (1984) The significance of responses of the genome to challenge. Science 226: 792–801.

    Article  PubMed  CAS  Google Scholar 

  • McElroy, D., Louwerse, J.D., McElroy, S.M., and Lemaux, P.G. (1997) Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. Plant J. 11: 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, R., Chague, V., Hu, Q., Emmanuel, E., Elkind, Y., and Levy, A.A. (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J. 22: 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y., and Levy, A. (1997) A new model system for tomato genetics. Plant J. 12: 1465–1472.

    Article  CAS  Google Scholar 

  • Melayah, D., Bonnivard, E., Chalhoub, B., Audeon, C., and Grandbastien, M.-A. (2001) The mobility of the tobacco Tntl retrotransposon correlates with its transcriptional activation by fungal factors. Plant J. 28: 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Mhiri, C., Morel, J.-B., Vernhettes, S., Casacuberta, J.M., Lucas, H., and Grandbastien, M.A. (1997) The promoter of the tobacco Tntl retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol. 33: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Miesfeld, R., Krystal, M., and Arnheim, N. (1981) A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human S and ß globin genes. Nucl. Acid Res. 9: 5931–5947.

    Article  CAS  Google Scholar 

  • Miki, Y., Nishisho, I., Horii, A., Miyoshi, Y., Utsumomiya J., Kinzler, K.W., Vogelstein, B., and Nakamura, Y. (1992) Distruption of the APC gene by a retrotransposal insertion of L 1 sequence in a colon cancer. Cancer Res. 52: 643–645.

    PubMed  CAS  Google Scholar 

  • Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., and Kakutani, T. (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411: 212–214.

    Article  CAS  Google Scholar 

  • Mizrokhi, L.J., Obolenkova, L.A., Priimagi, A.F., Ilyin, Y.V., Gerasimova, T.I., and Georgiev, G.P. (1985) The nature of unstable insertion mutations and reversions in the locus cut of Drosophila melanogaster: molecular mechanism of transposition memory. EMBO J. 4: 3781–3787.

    CAS  Google Scholar 

  • Mizuuchi, M. and Baker, T.A. (2002) Chemical mechanisms for mobilizing DNA. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds) ASM Press, Washington, DC. pp. 12–23.

    Google Scholar 

  • Moazed, D. (2001) Common themes in mechanisms of gene silencing. Mol. Cell 8: 489498.

    Google Scholar 

  • Modolell, J., Bender, W., and Meselson, M. (1983) Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc. Natl. Acad. Sci. (USA) 80: 1678–1682.

    CAS  Google Scholar 

  • Moerman, D.G., Benian, G.M., and Waterston, R.H. (1986) Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tcl transposon tagging. Proc. Natl. Acad. Sci. (USA) 83: 2579–2583.

    Article  CAS  Google Scholar 

  • Monte, J.V., Flavell, R.B., and Gustafson, J.P. (1995) WIS.2-IA: an ancient retrotransposon in the Triticeae tribe. Theor. Appl. Genet. 91: 367–372.

    Article  CAS  Google Scholar 

  • Moore, G., Cheung, W., Schwarzacher, T., and Flavell, R. (1991) BIS 1 a major component of the cereal genome and a tool for studying genomic organization. Genomics 10: 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G.A. (2001) Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends Genet. 17: 536–540.

    Article  PubMed  CAS  Google Scholar 

  • Moran, J.V., Holmes, S.E., Naas, T.P., DeBerardinis, R.J., Boeke, J.D., and Kazazian, Jr. H.H. (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87: 917–927.

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Mhiri, C., Morel, J.B., Audeon, C., Ferault, M., Grandbastien, M.A., and Lucas, H. (1996) Regulation of expression of the tobacco Tntl retrotransposon in heterologous species, following pathogen related stress. Plant J. 9: 409–419.

    Article  CAS  Google Scholar 

  • Morgan, G.T. (1995) Identification in the human genome of mobile elements spread by DNA-mediated transposition. J Mol. Biol. 254: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Mouches, C., Bensaadi, N., and Salvado, J.-C. (1992) Characterization of a LINE retroposon dispersed in the genome of three non-sibling Aedes mosquito species. Gene 120: 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Jouette, D., Lacombe, A.-M., Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, T.-A., and Vaucheret, H. (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101: 533–542.

    CAS  Google Scholar 

  • Muller-Neumann, M., Yoder, J.I., and Starlinger, P. (1984) The DNA sequence of the transposable element Ac of Zea mays L. Mol. Gen. Genet. 198: 19–24.

    Article  Google Scholar 

  • Murphy, N.B., Pays, A., Tebabi, P., Coquelet, H., Guyaux, M., Steinert, G.M., and Pays, E. (1987) Trypanosoma brucei repeated element with unusual structural and transcriptional properties. J Mol. Biol. 195: 855–871.

    CAS  Google Scholar 

  • Muszynski, M.G., Gierl, A., and Peterson, P.A. (1993). Genetic and molecular analysis of a three-component transposable-element system in maize. Mol. Gen. Genet. 237: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M. Fasulo, D.P., et al. (2000) A wholegenome assembly of Drosophila. Science 287: 2196–2204.

    CAS  Google Scholar 

  • Nakagawa, Y., Machida, C., Machida, Y., and Toriyama, K. (2000) Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Phys i ol. 4: 733–742.

    Article  Google Scholar 

  • Nakamura, T.M., Morin, G.B., Chapman, K.B., Weinrich, S.L., Andrews, W.H., Lingner, J., Harley, C.B., and Cech, T.R. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955–959.

    Article  PubMed  CAS  Google Scholar 

  • Nakaya, R., Nakamura, A., and Murata, T. (1960) Resistance transfer agents in Shigella. Biochem. Biophys. Res. Comm. 3: 654–659.

    Article  PubMed  CAS  Google Scholar 

  • Narlikar, G.J., Fen, H.-Y., and Kingston, R.E., (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. (USA) 95: 14687–14692.

    Article  CAS  Google Scholar 

  • Nikaido, M., Rooney, A.P., and Okada, N. (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. (USA) 96: 10261–10266.

    Article  CAS  Google Scholar 

  • Noma, K., Ohtsubo, E., and Ohtsubo, H. (1999) Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol. Gen. Genet. 261: 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Noutoshi, Y., Ito, Y., Kanetani, S., Fujie, M., Usami, S., and Yamada, T. (1998) Molecular anatomy of a small chromosome in the green alga Chlorella vulgaris. Nucl. Acid Res. 26: 3900–3907.

    Article  CAS  Google Scholar 

  • Nowak, S.J. and Corces, V.G. (2000) Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Develop. 14: 3003–3013.

    Article  PubMed  CAS  Google Scholar 

  • O’Hare, K. and Rubin, G.M. (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35.

    Article  PubMed  Google Scholar 

  • O’Kane, C.J. and Gehring, W.J. (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. (USA) 84: 9123–9127.

    Article  Google Scholar 

  • Ogh, K., Hardeman, K., Ivanchenko, M.G., Ellard-Ivey, M., Nebenfuhr, A., White, T.J., and Lomax, T.L. (2002) Fine mapping in tomato using microsynteny with the Arabidopsis genome: the Diageotropica (Dgt) locus. Genome Biol. 3: 1–11.

    Google Scholar 

  • Ogiwara, I., Miya, M., Ohshima, K., and Okada, N. (2002) V-SINES: A new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res. 12: 316–324.

    Article  PubMed  CAS  Google Scholar 

  • Ohki, I., Shimotake, N., Fujita, N., Jee, J.-G., and Ikegami, T. (2001) Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 105: 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo, H., Ohmori, H., and Ohtsubo, E. (1979) Nucleotide-sequence analysis of Tn3 (Ap): implications for insertion and deletion. Cold Spring Harbor Symp. Quant. Biol. 43: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  • Ohtzubo, E. and Sekine, Y. (1996) Bacterial insertion sequences. Curr. Topics Microbiol. Immunol. 204: 1–26.

    Article  Google Scholar 

  • Okada, N. (1991) SINEs. Curr. Opin. Genet. Devel. 1: 498–504.

    Article  CAS  Google Scholar 

  • Okamoto, H. and Hirochika, H. (2000) Efficient insertion mutagenesis of Arabidopsis by tissue culture-induced activation of the tobacco retrotransposon Ttol. Plant J. 23: 291–304.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, H. and Hirochika, H. (2001) Silencing of transposable elements in plants. Trends Plant Sci. 6: 527–534.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, C., Chew, J.S.K., Porto-Foresti, F., Dobson, M.J., and Wright, J.M. (1999) A LINE2 repetitive DNA sequence from the cichlid fish, Oreochromis niloticus: sequence analysis and chromosomal distribution. Chromosoma 108: 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Oosumi, T., Belknap, W.R., and Garlick, B. (1995) Mariner transposons in humans. Nature 378: 672–672.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, B.I. and Baker, B. (1995) Movers and shakers: maize transposons as tools for analyzing other plant genomes. Curr. Opin. Cell Biol. 7: 406–413.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, B.I., Corr, C.A., Prince, J.P., Hehl, R., Tanksley, S.D., McCormick, S., and Baker, B. (1991) Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome. Genetics 129: 833–844.

    CAS  Google Scholar 

  • Ostertag, E.M. and Kazazian, H.H. Jr (2001) Biology of mammalian Li retrotransposons. Ann. Rev. Genet. 35: 501–538.

    Article  PubMed  CAS  Google Scholar 

  • Palauqui, J.-C., Elmayan, T., Pollien, J.-M., and Vaucheret, H. (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16: 4738–4745.

    Article  CAS  Google Scholar 

  • Pardue, M.-L. and DeBaryshe, P.G. (2002) Telomeres and transposable elements. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds). ASM Press, Washington, DC. pp. 870–890.

    Google Scholar 

  • Parinov, S., Sevugan, M., Ye, D., Yang, W.-C., Kumaran, M., and Sunaresan, V. (1999) Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 2263–2270.

    CAS  Google Scholar 

  • Parkhurs, S.M. and Corces, V.G. (1985) Forked, Gypsys, and suppressors in Drosophila. Cell 41: 429–437.

    Article  Google Scholar 

  • Pearce, S.R., Harrison, G., Heslop-Harrison, P.J.S., Flavell, A.J., and Kumar, A. (1997) Characterization and genomic organization of Tyl-copia group retrotransposons in rye (Secale cereale). Genome 40: 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, S.R., Harrison, G., Li, D., Heslop-Harrison, J.S., Kumar, A., and Flavell, A.J. (1996) The Tyl-copia group of retotransposons in Vicia species: copy number, seuqene heterogeneity and chromosomal location. Mol. Gen. Genet. 250: 305–315.

    PubMed  CAS  Google Scholar 

  • Peleman, J., Cottyn, B., Van Camp, W., Van Montagu, M., and Inze, D. (1991) Transient occurrence of extrachromosomal DNA of an Arabidopsis thaliana transposon-like element, Tatl. Proc. Natl. Acad. Sci. (USA) 88: 3618–3622.

    Article  CAS  Google Scholar 

  • Pelissier, T., Tutois, S., Deragon, J.M., Tourmente, S., Genestier, S., and Picard, G. (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol. Biol. 29: 441–452.

    CAS  Google Scholar 

  • Pelissier, T., Tutois, S., Tourmente, S., Dergon, J.M., and Picard, G. (1996) DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetics 97: 141–151.

    CAS  Google Scholar 

  • Pereira, A., Cuypers, H., Gierl, A., Schwarz-Sommer, Z., and Saedler, H. (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J. 5: 835–841.

    CAS  Google Scholar 

  • Pereira, A., Schwarz-Sommer, Z., Gierl, A., Bertram, I., Peterson, P.A., and Saedler, H. (1985) Genetic and molecular analysis of the enhancer (En) transposable element system of Zea mays. EMBO J. 4: 17–23.

    CAS  Google Scholar 

  • Peterson, P.A. (1953) A mutable pale green locus in maize. Genetics 38: 682–683.

    Google Scholar 

  • Peterson, P.A. (1960) The pale green mutable system in maize. Genetics 45:115–133.

    PubMed  CAS  Google Scholar 

  • Peterson, P.A. (1961) Mutable al of the En system in maize. Genetics 46: 759–771.

    PubMed  CAS  Google Scholar 

  • Peterson, P.A. (1965) A relationship between the Spm and En control systems in maize. Amer. Naturalist 99: 391–398.

    Article  Google Scholar 

  • Peterson, P.A. (1970) The En mutable system in maize. Theor. Appl. Genet. 40: 367–377.

    Article  Google Scholar 

  • Peterson, P.A. (1987) Mobile elements in plants. Crit. Rev. Plant Sci. 6: 105–208.

    Article  Google Scholar 

  • Peterson, P.A. and Bianchi, A. (1999) Maize Genetics and Breeding in the 20th Century. World Scientific Publ., Singapore, 379 p.

    Book  Google Scholar 

  • Peterson, T. (1990) Intragenic transposition of Ac generates a new allele of the maize P gene. Genetics 126: 469–476.

    PubMed  CAS  Google Scholar 

  • Picard, G.J., Lavige, M., Bucheton, A., and Bregliano, J.C. (1977) Non-mendelian female sterility in Drosophila melanogaster: physiological pattern of embryo/lethality. Biol. Cell. 29: 89–98.

    Google Scholar 

  • Pickeral, O.K., Makalowski, W., Boguski, M.S., and Boeke, J.D. (2000) Frequent human genomic DNA transduction driven by LINE! retrotransposition. Genet. Res. 10: 411–415.

    Article  CAS  Google Scholar 

  • Plasterk, R.H.A. (1996) The Tcl/mariner transposon family. Curr. Topics Microbiol. Immunol. 204: 125–143.

    Article  CAS  Google Scholar 

  • Plasterk, R.H.A. (2002) RNA silencing: The genome°s immune system. Science 296: 1263–1265.

    Article  PubMed  CAS  Google Scholar 

  • Plasterk, R.H.A. and Ketting, R.F. (2000) The silence of the genes. Curr. Opin. Genet. Devel. 10: 562–567.

    Article  CAS  Google Scholar 

  • Plasterk, R.H.A. and van Luenen, H.G.A.M. (2002) The Tcl/mariner family of transposable elements. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds). ASM Press, Washington, DC. pp. 519–532.

    Google Scholar 

  • Plasterk, R.H.A., Izsvak, Z., and Ivies, Z. (1999) Resident aliens. Trends Genet. 15: 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Pohlman, R.F., Fedoroff, N.V., and Messing, J. (1984) The nucleotide sequence of the maize controlling element activator. Cell 37: 635–643.

    Article  PubMed  CAS  Google Scholar 

  • Polard, P. and Chandler, M. (1995a) An in vivo transposase-catalyzed, single-stranded DNA circularization reaction. Genes Devel. 9: 2846–2858.

    Article  PubMed  CAS  Google Scholar 

  • Polard, P. and Chandler, M. (1995b) Bacterial transposases and retrovral integrases. Mol. Microbiol. 15: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Polard, P., Prere, M.F., Fayet, O., and Chandler, M. (1992) Transposase-induced excision and circularization of the bacterial insertion sequence IS911. EMBO J. 11: 50795090.

    Google Scholar 

  • Polard, P., Ton-Hoang, B., Haren, M.L., Betermier, M., Walczak, R., and Chandler, M. (1996) IS911-mediated transpositional recombination in vitro. J. Mol. Biol. 264: 6881.

    Google Scholar 

  • Pontecorvo, G., De Felice, B., and Carfagna, M. (2000) A novel repeated sequence DNA originated from a Tcl-like transposon in water green frog Rana esculenta. Gene 261: 205–210.

    CAS  Google Scholar 

  • Pontecorvo, G., Roper, J.A., Hemmons, L.M., Macdonald, R.D., and Bulton, A.W. J. (1953) The genetics of Aspergillus nidulans. Advan. Genet. 5: 141–238.

    Article  CAS  Google Scholar 

  • Potter, S.S. (1982) DNA sequence of a foldback transposable element in Drosophila. Nature 297: 201–204.

    Article  CAS  Google Scholar 

  • Poulter, R.T.M. and Butler, M. (1998) A retrotransposon family from the pufferfish (fugu) Fugu rubripes. Gene 215: 241–249.

    Article  CAS  Google Scholar 

  • Poulter, R.T.M., Butler, M.I., and Ormandy, J. (1999) A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CRI family of non-LTR retrotransposons. Gene 227: 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Pouteau, S., Grandbastien, M.A., and Boccara, M. (1994) Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J. 5: 535–542.

    Article  CAS  Google Scholar 

  • Pouteau, S., Huttner, E., Grandbastien, M.A., and Caboche, M. (1991) Specific expression of the tobacco Tntl retrotransposon in protoplasts. EMBO J. 10: 1911–1918.

    CAS  Google Scholar 

  • Pozueta-Romero, J., Houlne, G., and Schantz, R. (1996) Nonautonomous inverted repeat Alien transposable elements are associated with genes of both monocotyledonous and dicotyledonous plants. Gene 171: 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Pozueta-Romero, J., Klein, M., Houlne, G., Schantz, M.-L., Meyer, B., and Schantz, R. (1995) Characterizaton of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. Plant Mol. Biol. 28: 1011–1025.

    Article  PubMed  CAS  Google Scholar 

  • Presting, G.G., Malysheva, L., Fuchs, J., and Schubert, I. (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16: 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Priimagi, A.F., Mizrokhi, L.J., and Ilyin, Y.V. (1988) The Drosophila mobile element jockey belongs to LINEs and contains coding sequences homologous to some retroviral proteins. Gene 70: 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Prud’homme, N., Gans, M., Masson, M., Terziun, C., and Bucheton, A. (1995) Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139: 697–711.

    Google Scholar 

  • Purugganan, M.D. and Wessler, S.R. (1994) Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc. Natl. Acad. Sci. (USA) 91: 11674–11678.

    Article  CAS  Google Scholar 

  • Qin, M., Robertson, D.S., and Ellingboe, A.H. (1991) Cloning of the Mutator transposable element MuA2, a putative regulator of somatic mutability of the al-Mum2 allele in maize. Genetics 129: 845–854.

    PubMed  CAS  Google Scholar 

  • Radice, A.D., Bugaj, B., Fitch, D.H.A., and Emmons, S.W. (1994) Widespread occurrence of the Tc1 transposon family: Tc/-like transposons from teleost fish. Mol. Gen. Genet. 244: 606–612.

    Article  PubMed  CAS  Google Scholar 

  • Raina, R., Cook, D., and Fedoroff, N. (1993) Maize Spm transposable element has an enhancer-insensitive promoter. Proc. Natl. Acad. Sci. (USA) 90: 6355–6359.

    Article  CAS  Google Scholar 

  • Raina, S., Mahalingan, R., Chen, F., and Fedoroff, N. (2002) A collection of sequences and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Mol. Biol. 50: 93–110.

    CAS  Google Scholar 

  • Raizada, M.N. and Walbot, V. (2000) The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S-driven MURA cDNA in transgenic maize. Plant Cell 12: 5–21.

    PubMed  CAS  Google Scholar 

  • Raizada, M.N., Nan, G.-L., and Walbot, V. (2001) Somatic and germinal mobility of the rescueMu transposon in transgenic maize. Plant Cell 13: 1587–1608.

    PubMed  CAS  Google Scholar 

  • Ramachandran, S. and Sundaresan, V. (2001) Transposons as tools for functional genomics. Plant Physiol. Biochem. 39: 243–252.

    Article  CAS  Google Scholar 

  • Randolph, L.F. and McClintock, B. (1926) Polyploidy in Zea mays. Amer. Naturalist 60: 99–102.

    Article  Google Scholar 

  • Redei, G.P. (1998) Genetic Manual. World Scientific Publ., Singapore, 1142 p.

    Google Scholar 

  • Reinhart, B.J., Weinstein, E.G., Rhodes, M.W., Bartel, B., and Bartel, D.P. (2002) MicroRNAs in plants. Genes Devel. 16: 1616–1626.

    Article  PubMed  CAS  Google Scholar 

  • Renckens, S., De Greve, H., Beltran-Herrera, J., Toong, L.T., Deboeck, F., De Rycke, R., Van Montagu, M., and Hernalsteens, J.-P. (1996) Insertion mutagenesis and study of transposable elements using a new unstable virescent seedling allele for isolation of haploid petunia lines. Plant J. 10: 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Reznikoff, W.S. (2002) Tn5 transposition. In: Mobile DNA II. Craig, N.L., Craigie, R. Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 403–422.

    Google Scholar 

  • Reznikoff, W.S., Bhasin, A., Davies, D.R., Goryshin, I.Y., Mahnke, L.A., Naumann, T., Rayment, I., Steiniger-White, M., and Twining, S.S. (1999) Tn5: A molecular window on transposition. Biochem. Biophys. Res. Commun. 266: 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, M.M. (1984) The early years of maize genetics. Ann. Rev. Genet. 18: 1–29. Rhoades, M.M. and McClintock, B. (1935) The cytogenetics of maize. Bot. Rev. 1: 292–325.

    Article  Google Scholar 

  • Rhodes, P.R. and Vodkin, L.O. (1988) Organization of the Tgm family of transposable elements in soybean. Genetics 120: 597–604.

    PubMed  CAS  Google Scholar 

  • Richards, E.J. (1997) DNA methylation and plant development. Trends Genet. 13: 319–323

    Article  PubMed  CAS  Google Scholar 

  • Richards, E.J. and Elgin, S.C.R. (2002) Epigmetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108: 489–500.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, T.J., Finch, J.T., Rushton, B., Rhodes, D., and Klug, A. (1984) Structure of the nucleosome core particle at 7A resolution. Nature 311: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Ringrose, L. and Paro, R. (2001) Cycling silence. Nature 412: 493–494.

    Article  PubMed  CAS  Google Scholar 

  • Rio, D.C. (1991) Regulation of Drosophila P element transposition. Trends Genet. 7: 282–287.

    PubMed  CAS  Google Scholar 

  • Rio, D.C. (2002) P transposable elements in Drosophila melanogaster. In: Mobile DNA II. Craig, N.L., Criagie, R., Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 484–518.

    Google Scholar 

  • Robert, V., Prud’homme, N., Kim, A., Bucheton, A., and Pelisson, A. (2001) Characterization of the flamenco region of the Drosophila melanogaster genome. Genetics 158: 701–713.

    PubMed  CAS  Google Scholar 

  • Robertson, D.S. (1978) Characterization of a mutator system in maize. Mutation Res. 51: 21–28.

    Article  Google Scholar 

  • Robertson, D.S. (1980) The timing of Mu activity in maize. Genetics 94: 969–978.

    Google Scholar 

  • Robertson, D.S. (1981) Mutator activity in maize: timing of its activation in ontogeny. Science 213: 1515–1517.

    Google Scholar 

  • Robertson, D.S. (1983) A possible dose-dependent inactivation of Mutator (Mu) in maize. Mol. Gen. Genet. 191: 86–90.

    Article  Google Scholar 

  • Robertson, D.S. (1985) Differential activity of the maize mutator Mu at different loci and in different cell lineages. Mol. Gen. Genet. 200: 9–13.

    Article  Google Scholar 

  • Robertson, D.S. and Mascia, P.N. (1981) Tests of 4 controlling-element systems of maize for mutator activity and their interaction with Mu mutator. Mutation Res. 84: 283–289.

    Article  CAS  Google Scholar 

  • Robertson, D.S. and Stinard, P.S. (1987) Genetic evidence of Mutator-induced deletions in the short arm of chromosome 9 of maize. Genetics 115: 353–361.

    Google Scholar 

  • Robertson, D.S. and Stinard, P.S. (1989) Genetic analyses of putative two-element systems regulating somatic mutability in Mutator-induced aleurone mutants of maize. Dev. Genet. 10: 482–506.

    Article  Google Scholar 

  • Robertson, H.M. (1993) The mariner transposable element is widespread in insects. Nature 362: 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M. (1996) Members of the pogo superfamily of DNA-mediated transposons in the human genome. Mol. Gen. Genet. 252: 761–766.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M. (1997) Multiple Mariner transposons in flatworms and hydras are related to those of insects. J Heredity 88: 195–201.

    Article  CAS  Google Scholar 

  • Roeder, G.S. and Fink, G.R. (1980) DNA rearrangements associated with a transposable element in yeast. Cell 21: 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Roeder, G.S. and Fink, G.R. (1983) Transposable elements in yeast. In: Mobile Genetic Elements. Shapiro, J.A. (ed.). Academic Press, NY. pp. 299–328.

    Google Scholar 

  • Roeder, G.S., Farabaugh, P.J., Chaleff, D.T., and Fink, G.R. (1980) The origin of gene instability in yeast. Science 209: 1375–1380.

    Article  PubMed  CAS  Google Scholar 

  • Rohr, C.J.B., Ranson, H., Wang, X., and Besansky, N.J. (2002) Structure and evolution of mtanga, a retrotransposon actively expressed on the Y chromosome of the African malaria vector Anopheles gambiae. Biol. Mol. Evol. 19: 149–162.

    Article  CAS  Google Scholar 

  • Rommens, C.M.T., Rudenko, G.N., Dijkwel, P.P., Van Haaren, M.J.J., Ouwerkerk, B.P.F., Blok, K.M., Nijkamp, J.J., and Hille, J. (1992) Characterization of the Ac/Ds behaviour in transgenic tomato plants using plasmid rescue. Plant Mol. Biol. 20: 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Rommens, C.M.T., Van der Biezen, A., Ouserkerk, P.B.E., Nijkamp, H.J.J., and Hille, J. (1991) Ac-induced disruption of the double Ds structure in tomato. Mol. Gen. Genet. 228: 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Ros, F. and Kunze, R. (2001) Regulation of Activator/Dissociation transposition by replication and DNA methylation. Genetics 157: 1723–1733.

    PubMed  CAS  Google Scholar 

  • Rose, A.M. and Snutch, T.P. (1984) Isolation of the closed circular form of the transposable element Tcl in Caenorhabditis elegans. Nature 311: 485–487.

    Article  CAS  Google Scholar 

  • Rosenzweig, B., Liao, L.W., and Hirsch, D. (1983) Sequence of the transposable element Tcl. Nucl. Acid. Res. 12: 4201–4209.

    Article  Google Scholar 

  • Rousseau, P., Normand, C., Loot, C., Turlan, C., Alazard, R., Duval-Valentin, G., and Chandler, M. (2002). Transposition of TS 911. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 367–383.

    Google Scholar 

  • Royo, J., Nass, N., Matton, D.P., Okamotot, S., Clarke, A.E., and Newbigin (1996) A retrotransposon-like sequence linked to the S-locus of Nicotiana alata is expressed in styles in response to touch. Mol. Gen. Genet. 250: 180–188.

    PubMed  CAS  Google Scholar 

  • Ruan, K. and Emmons, S.W. (1984) Extrachromosomal copies of transposon Tcl in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. (USA) 81: 4018–4022.

    Article  CAS  Google Scholar 

  • Rubin, E. and Levy, A.A. (1997) Abortive gap repair: underlying mechanism for Ds element formation. Mol. Cell. Biol. 17: 6294–6302.

    PubMed  CAS  Google Scholar 

  • Rubin, G.M. (1983) Dispersed repetitive dNAs in Drosophila. In: Mobile Genetic Elements. Shapiro, J.A. (ed.) Academic Press, NY. pp. 329–361.

    Google Scholar 

  • Rubin, G.M., Kidwell, M.G., and Bingham, P.M. (1982) The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations. Cell 29: 987–994.

    Article  PubMed  CAS  Google Scholar 

  • Saedler, H. and Starlinger, P. (1967) O° mutations in the galactose operon in E. coli. I. Genetic characterization. Mol. Gen. Genet. 100: 178–189.

    Article  PubMed  CAS  Google Scholar 

  • Sandmeyer, S. (1998) Targeting transposition: At home in the genome. Genome Res. 8: 416–418.

    PubMed  CAS  Google Scholar 

  • Sandmeyer, S.B. and Menees, T.M. (1996) Morphogenesis at the retrotransposonretrovirus interface: Gypsy and Copia families in yeast and Drosophila. Curr. Topics Microbiol. Immun. 214: 261–296.

    Article  CAS  Google Scholar 

  • Sandmeyer, S.B., Aye, M., and Menees, T. (2002) Ty3: A position specific, gypsy-like element in Saccaromyces cerevisiae. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds). ASM Press, Washington, DC. pp. 663–683.

    Google Scholar 

  • Sanger, F., Nicklen, S.M., and Coulson, A.R. (1977) Sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. (USA) 44: 5463–5467.

    Article  Google Scholar 

  • SanMiguel, P. and Bennetzen, J.L. (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82: 37–44.

    Article  CAS  Google Scholar 

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y., and Bennetzen, J.L. (1998) The paleontology of intergene retrotransposons of maize. Nature Genet. 20: 43–45.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.-K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z., and Bennetzen, J.L. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, N. and Jeffery, W.R. (1995) Chasing tails in ascidians: developmental insights into the origin and evolution of chordates. Trends Genet. 11: 354–359.

    Article  PubMed  CAS  Google Scholar 

  • Scadden, A.D.J. and Smith, C.W.J. (2001) RNAi is antagonized by A>I hyper-editing. EMBO Reports 2: 1107–1111.

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein, J.W., Furtek, D.B., Dooner, H.K., and Nelson, O.E. (1988) Two mutations in a maize bronze-1 allele caused by transposable elements of the Ac-Ds family alter the quantity and quality of the gene product. Genetics 120: 767–777.

    PubMed  CAS  Google Scholar 

  • Schläppi, M., Raina, R., and Fedoroff, N. (1996) A highly sensitive plant hybrid protein assay system based on the Spm promoter and TnpA protein for detection and analysis of transcription activation domains. Plant Mol. Biol. 32: 717–725.

    Article  PubMed  Google Scholar 

  • Schmid, C.W. (1996) Alu: Structure, origin, evolution, significance, and function of one-tenth of human DNA. Nucl. Acid Res. 53: 283–319.

    CAS  Google Scholar 

  • Schmidt, R. and Willmitzer, L. (1989) The maize autonomous element Activator (Ac) shows a minimal germinal excision frequency of 0.2%-0.5% in transgenic Arabidopsis thaliana plants. Mol. Gen. Genet. 220: 17–24.

    Article  CAS  Google Scholar 

  • Schmidt, T. (1999) Lines, Sines and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol. Biol. 40: 903–910.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, T., Kubis, S., and Heslop-Harrison, J.S. (1995) Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Tylcopia-like elements as major components of the genome. Chromosome Res. 3: 335345.

    Google Scholar 

  • Schmitz, J., Ohme, M., and Zischler, H. (2001) SINE insertions in Cladistic analyses and the phylogenetic affiliations of Tarsius bancamus to other primates. Genetics 157: 777–784.

    PubMed  CAS  Google Scholar 

  • Schnable, P.S., Peterson, P.A., and Saedler, H. (1989) The bz-rcy allele of the Cy transposable element system of Zea mays contains a Mu-like element insertion. Mol. Gen. Genet. 217: 459–463.

    Article  PubMed  CAS  Google Scholar 

  • Schnable, P.S. and Peterson, P.A. (1988) The Mutator-related cy transposable element of Zea mays L. behaves as a near-Mendelian factor. Genetics 120: 587–596.

    PubMed  CAS  Google Scholar 

  • Scholz, S., Lörz, H., and Lütticke, S. (2001) Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.). Mol. Genet. Genomics 274: 653–661.

    Google Scholar 

  • Schwartz, D. and Dennis, E. (1986) Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation. Mol. Gen. Genet. 205: 476–482.

    Article  CAS  Google Scholar 

  • Schwartz, D.S., Hutvagner, G., Haley, B., and Zamore, P.D. (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell. 10: 537–548.

    Article  Google Scholar 

  • Schwarz-Sommer, Z., Gierl, A., Cuypers, H., Peterson, P.A., and Saedler, H. (1985) Plant transposable elements generate the DNA sequence diversity needed in evolution. EMBO J. 4: 591–597.

    CAS  Google Scholar 

  • Schwarz-Sommer, Z., Gierl, A., Klosgen, R.B., Wieland, U., Peterson, P.A., and Saedler, H. (1984) The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wxm8 allele of Zea mays. EMBO J. 3: 1021–1028.

    CAS  Google Scholar 

  • Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936.

    CAS  Google Scholar 

  • Schwarz-Sommer, Z., Leclercq, L., Gobel, E., and Saedler, H. (1987) Cino, an insert altering the structure of the Al gene in Zea mays, exhibits properties of nonviral retrotransposons. EMBO J. 6: 3873–3880.

    CAS  Google Scholar 

  • Scofield, S.R., English, J.J., and Jones, J.D.G. (1993) High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell 75: 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, S.R., Harrison, K., Nurrish, S.J., and Jones, J.D.G. (1992) Promoter fusion to the Activator transposase gene cause distinct patterns of Dissociation excision in tobacco cotyledons. Plant Cell 4: 573–582.

    PubMed  CAS  Google Scholar 

  • Searles, L.L., Jokerst, R.S., Bingham, P.M., Voelker, R.A., and Greanleaf, A.L. (1982) Molecular cloning of sequences from Drosophila RNA polymerase II locus by P element transposon tagging. Cell 31: 585–592.

    Article  PubMed  CAS  Google Scholar 

  • Segal, Y., Peissel, B., Renieri, A., de Marchi, M., Ballabio, A., Pei, Y., and Zhou, J. (1999) LINE-1 elements at the sites of molecular rearrangements in alport syndrome-diffuse leiomyomatosis. Am. J. Hum. Genet. 64: 62–69.

    Article  PubMed  CAS  Google Scholar 

  • Sekine, Y., Aihara, K., and Ohtsubo, E. (1999) Linearization and transposition of circular molecules of insertion sequence IS3. J. Mol. Biol. 294: 21–34.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J.A. (1969) Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J. Mol. Biol. 40: 93–105.

    Article  CAS  Google Scholar 

  • Shapiro, J.A. (1979) Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. (USA) 76: 1933–1937.

    Article  CAS  Google Scholar 

  • Sharp, P.A. and Zamore, P.D. (2000) RNA interference. Science 297: 2431–2433.

    Article  Google Scholar 

  • Sharp, P.A., Cohen, S.N., and Davidson, N. (1973) Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. II. Structure of drug resistance (R) factors and F. factors. J. Mol. Biol. 75: 235–255.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, N.S., Schwarz-Sommer, Z., Blumberg Vel Spalve, J., Gupta, M., Wienand, U., and Saedler, H. (1984) Similarity of the Cinl repetitive family of Zea mays to eukaryotic transposable elements. Nature 307: 185–187.

    Google Scholar 

  • Shepherd, N.S., Schwarz-Sommer, Z., Wienand, U., Sommer, H., Deumling, B., Peterson, P.A., and Saedler, H. (1982) Cloning of a genomic fragment carrying the insertion element Cinl of Zea mays. Mol. Gen. Genet. 188: 266–271.

    Article  CAS  Google Scholar 

  • Sherratt, D. (1989) Tn3 and related transposable elements: site-specific recombination and transposition. In: Mobile DNA. Berg, D.E. and Howe, M.M. (eds.) ASM Press, Washington, DC. pp. 163–184.

    Google Scholar 

  • Shimamoto, K., Miyazaki, C., Hashimoto, H., Izwa, T., Itoh, K., Terada, R., Inagaki, Y., and Lida, S. (1993) Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Mol. Gen. Genet. 239: 354–360.

    Article  PubMed  CAS  Google Scholar 

  • Shore, D. (2001) Telomeric chromatin: replicating and wrapping up chromosome ends. Curr. Opin. Genet. Devel. 11: 189–198.

    Article  CAS  Google Scholar 

  • Shure, M., Wessler, S., and Fedoroff, N. (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35: 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Simmen, M.W. and Bird, A. (2000) Sequence analysis of transposable elements in the sea squirt Ciona intestinalis. Mol. Biol. Evol. 17: 1685–1694.

    Article  CAS  Google Scholar 

  • Simmen, M.W., Leitgeb, S., Charlton, J., Jones, S.J.M., Harris, B.R., Clark, V.H., and Bird, A. (1999) Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283: 1164–1167.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, M.J., Haley, K.J., and Tompson, S.J. (2002) Maternal transmission of P element transposase activity in Drosophila melanogaster depends on the last P intron. Proc. Natl. Acad. Sci. (USA) 14: 9306–9309.

    Article  CAS  Google Scholar 

  • Singer, M. and Berg, P. (1991) Genes and Genomes — A Changing Perspective. University Science Books, Mill Valley, CA, 929 p.

    Google Scholar 

  • Singer, M.F. (1982a) Highly repeated sequences in mammalian genomes. Intl. Rev. Cytol. 76: 67–112.

    Article  CAS  Google Scholar 

  • Singer, M.F. (1982b) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28: 433–434.

    Article  PubMed  CAS  Google Scholar 

  • Singer, M.F. and Skowronski, J. (1985) Making sense out of LINES: long interspersed repeat sequences in mammalian genomes. Trends Biochem. Sci. 10: 119–122.

    Article  CAS  Google Scholar 

  • Singer, T., Yordan, C., and Martienssen, R.A. (2001) Robertson’s mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1). Genes Devel. 15: 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Skowronski, J. and Singer, M.F. (1984) Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. Proc. Natl. Acad. Sci. (USA) 82: 6050–6054.

    Article  Google Scholar 

  • Smit, A.F.A. (1996) The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Devel. 6: 743–748.

    Article  CAS  Google Scholar 

  • Smit, A.F.A. and Riggs, A.D. (1996) Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. (USA) 93: 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.W. and Valcarcel, J. (2002) Alternative pre-mRNA splicing: the logic of combinational control. Trends Biochem. Sci. 25: 381–388.

    Article  Google Scholar 

  • Smith, P.A. and Corces, V.G. (1995) The suppressor of hairy-wing protein regulates the tissue-specific expression of the Drosophila gypsy retrotransposon. Genetics 139: 215–228.

    PubMed  CAS  Google Scholar 

  • Sommer, H., Beltran, J.-P., Huijser, P., Pape, H., Lonnig, W.-E., Saedler, H., and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605–613.

    CAS  Google Scholar 

  • Sommer, H., Carpenter, R., Harrison, B.J., and Saedler, H. (1985) The transposable element Tama of Antirrhinum majus generates a novel type of sequence alteration upon excision. Mol. Gen. Genet. 199: 225–231.

    Article  CAS  Google Scholar 

  • Soriano, P., Meunier-Rotival, M., and Bernardi, G. (1983) The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. Proc. Natl. Acad. Sci. (USA) 80: 1816–1820.

    Article  CAS  Google Scholar 

  • Souer, E., Quattrocchio, F., de Vetten, N., Mol, J., and Koes, R. (1995) A general method to isolate genes tagged by a high copy number transposable element. Plant J. 7: 677685.

    Google Scholar 

  • Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol. Biol. 98: 503–517.

    Article  PubMed  CAS  Google Scholar 

  • Speulman, E., Metz, P.L., van Arkel, G., te Lintel Hekkert, B., Stiekema, W.J., and Pereira, A. (1999) A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11: 1853–1866.

    PubMed  CAS  Google Scholar 

  • Springer, M.S., Tusneem, N.A., Davidson, E.H., and Britten, R.J. (1995) Phylogeny, rates of evolution and patterns of codon usage among sea urchin retroviral-like elements, with implications for the recognition of horizontal transfer. Mol. Biol. Evol. 12: 219–230.

    PubMed  CAS  Google Scholar 

  • Springer, P.S., Edwards, K.J., and Bennetzen, J.L. (1994) DNA class organization on maize Adhl yeast artificial chromosomes. Proc. Natl. Acad. Sci. (USA) 91: 863–867.

    Article  CAS  Google Scholar 

  • Springer, P.S., McCombie, W.R., Sundaresan, V., and Martienssen, R.A. (1995) Gene trap tagging of Prolifera, an essential MCM2–3–5–like gene in Arabidopsis. Science 268: 877 – 880.

    CAS  Google Scholar 

  • Starlinger, P. and Saedler, H. (1972) Insertion mutations in microorganisms. Biochimie 54: 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Starlinger, P. and Saedler, H. (1976) IS elements in microorganisms. Curr. Topics. Microbiol. Immun. 75: 111–152.

    CAS  Google Scholar 

  • Steinemann, M. and Steinemann, S. (1997) The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. Genetics 145: 261–266.

    CAS  Google Scholar 

  • Strahl, B.D. and Allis, C.D. (2000) The language of covalent histone modifications. Nature 403: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Strommer, J.N., Hake, S., Bennetzen, J., Taylor, W.C., and Freeling, M. (1982) Regulatory mutants of the Adhl gene caused by DNA insertion. Nature 300: 542–544.

    Article  CAS  Google Scholar 

  • Struhl, K. (1999) Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant, A.H. and Beadle, G. (1939) An Introduction to Genetics. Sanders, Philadelphia, PA.

    Google Scholar 

  • Stuurman, J., Nijkamp, H.J.J., and Van Haaren, M.M.M. (1998) Molecular insertion-site selectivity of Ds in tomato. Plant J. 14: 215–223.

    CAS  Google Scholar 

  • Sullivan, K.F. (2001) A solid foundation: functional specialization of centromeric chromatin. Curr. Opin. Genet. Devel. 11: 182–188.

    Article  CAS  Google Scholar 

  • Sulston, J.E. and Brenner, S. (1974) The DNA of Caenorhabditis elegans. Genetics 77: 95–104.

    CAS  Google Scholar 

  • Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D.G., Dean, C., Ma, H., and Martienssen, R. (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Devel. 9: 1797–1810.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, W.D., Gerlach, W.L., Schwatz, D., and Peacock, W.J. (1984) Molecular analysis of Ds controlling element mutations at the Adhl locus of maize. Science 223: 1265. Svejstrup, J.Q. (2002) Chromatin elongation factors. Curr. Opin. Genet. Devel. 12: 156–161

    Google Scholar 

  • Swinburne, J., Balcells, L., Scofield, S.R., Jones, J.D.G., and Coupland, G. (1992) Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell 4: 583–595.

    CAS  Google Scholar 

  • Syomin, B.V., Kandror, K.V. Semakin, A.B., Tsuprun, V.L., and Stepanov, A.S. (1993) Presence of the gypsy (MDG4) retrotransposon in extracellular virus-like particles. FEBS Lett. 323: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Tabara, H., Grishok, A., and Mello, C.C. (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282: 430–431.

    Article  PubMed  CAS  Google Scholar 

  • Tabara, H., Sarkissian, M., Kellyt, W.G., Fleenor, J., Grishok, A., Timmons, L., Fire, A., and Mello, C.C. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99: 123–132.

    Article  CAS  Google Scholar 

  • Tabara, H., Yigit, E., Siomi, H., and Mello, C.C. (2002) The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DexH-Box helicase to direct rNAi in C. elegans. Cell 109: 861–871.

    Article  CAS  Google Scholar 

  • Takeda, S., Sugimoto, K., Otsuki, H., and Hirochika, H. (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Takken, F.L.W., Schipper, D., Nijkamp, H.J.J., and Hille, J. (1998) Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J. 14: 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Takumi, S. (1996) Hygromycin-resistant calli generated by activation and excision of maize Ac/Ds transposable elements in diploid and hexaploid wheat cultured cell lines. Genome 39: 1169–1175.

    Article  PubMed  CAS  Google Scholar 

  • Tamaru, H. and Selker, E.U. (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277–283.

    Article  CAS  Google Scholar 

  • Tanda, S., Mullor, J.L., and Corces, V.G. (1994) The Drosophila tom retrotransposon encodes an envelope protein. Mol. Cell. Biol. 14: 5392–5401.

    PubMed  CAS  Google Scholar 

  • Taylor, L.P. and Walbot, V. (1985) A deletion adjacent to the maize transposable element Mu-1 accompanies loss of Adhl expression. EMBO J 4: 869–876.

    CAS  Google Scholar 

  • Temin, H.M. and Mizutani, S. (1970) RNA-dependent DNA polymerase in various of Rous Sarcoma virus. Nature 226: 1211–1213.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C.L., Jones, L., Baulcombe, D.C., and Maule, A.J. (2001) Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. Plant J. 25: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Thykjaer, T., Stiller, J., Handberg, K., Jones, J., and Stougaard, J. (1995) The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Mol. Biol. 27: 981–993.

    Article  CAS  Google Scholar 

  • Timmons, L. and Fire, A. (1998) Specific interference by ingested dsRNA. Nature 395: 854.

    Article  PubMed  CAS  Google Scholar 

  • Tissier, A.F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M.A., Murphy, G., and Jones, J.D.G. (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: A tool for functional genomics. Plant Cell 11: 18411852.

    Google Scholar 

  • Ton-Hoang, B., Betermier, M., Polard, P., and Chandler, M. (1997) Assembly of a strong promoter following IS911 circularization and the role of circles in transposition. EMBO J. 16: 3357–3371.

    Article  CAS  Google Scholar 

  • Ton-Hoang, B., Polard, P., and Chandler, M. (1998) Efficient transposition of IS911 circles in vitro. EMBO J. 17: 1169–1181.

    Article  CAS  Google Scholar 

  • Ton-Hoang, B., Polard, P., Haren, L., Turlan, C., and Chandler, M. (1999) IS911 transposon circles give rise to linear forms that can undergo integration in vitro. Mol. Microbiol. 32: 617–627.

    Article  CAS  Google Scholar 

  • Trentmann, S.M., Saedler, H., and Gierl, A. (1993) The transposable element En/Spm encoded TNPA protein contains a DNA binding and a dimerization domain. Mol. Gen. Genet. 238: 201–208.

    PubMed  CAS  Google Scholar 

  • Tristem, M., Kabat, P., Herniou, E.H., Karpas, A., and Hill, F. (1995) Easel, a Gypsy LTR retrotransposon in the salmonidae. Mol. Gen. Genet. 249: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Tsay, Y.-F., Frank, M.J., Page, T., Dean, C., and Crawford, N.M. (1993) Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science 260: 342–344.

    CAS  Google Scholar 

  • Tu, Z. (1997) Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. (USA) 94: 7475–7480.

    Article  CAS  Google Scholar 

  • Tu, Z. (2000) Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol. Biol. Evol. 17: 1313–1325.

    Article  CAS  Google Scholar 

  • Tu, Z., Isoe, J., and Guzova, J.A. (1998) Structural, genomic and phylogenetic analysis of Lan, a novel family of non-LTR retrotransposons in the yellow fever mosquito, Aedes aegypti. Mol. Biol. Evol. 15: 837–853.

    Article  CAS  Google Scholar 

  • Tudor, M., Lobocka, M., Goodell, M., Pettitt, J., and O’Hare, K. (1992) The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232: 126–134.

    Article  CAS  Google Scholar 

  • Turchich, M.P., Bokhari-Riza, A., Hamilton, D.A., He, C., Messier, W., Stewart, G.B., and Mascarenhas, J. (1996) Prem-2, a copia type retroelement in maize is expressed preferentially in early microscopes. Sex. Plant Reprod. 9: 65–74.

    Google Scholar 

  • Turcich, M.P. and Mascarenhas, J.P. (1994) PREM-1, a putative maize retroelement has LTR (long terminal repeat) sequences that are preferentially transcribed in pollen. Sex Plant Reprod. 7: 2–11.

    Google Scholar 

  • Turcotte, K., Srinivasan, S., and Bureau, T. (2001) Survey of transposable elements from rice genomic sequences. Plant J. 25: 169–179.

    CAS  Google Scholar 

  • Tuschl, T. (2001) RNA interference and small interfering RNAS. Chembiochem. 2: 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya, K.C., Sommer, H., Krebbers, E., and Saedler, H. (1985) The paramutagenic line niv-44 has a 5kb insert, Tam2, in the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 199: 201–207.

    Article  CAS  Google Scholar 

  • Vaistij, F.E., Jones, L., and Baulcombe, D.C. (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14: 857–867.

    Article  PubMed  CAS  Google Scholar 

  • Van den Broeck, D., Maes, T., Sauer, M., Zethof, J., De Keukeleire, P., D’Hauw, M., Van Montagu, M., and Gerats, T. (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J. 13: 121–129.

    PubMed  Google Scholar 

  • Van Luenen, H.G.A.M., Colloms, S.A., and Plasterk, R.H.A. (1994) The mechanism of transposition of Tc3 in C. elegans. Cell 79: 293–301.

    Google Scholar 

  • Van Sluys, M.A., Tempe, J., and Fedoroff, N. (1987) Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J. 6: 3881–3889.

    Google Scholar 

  • Van West, P. and Kamoun, S. (1999) Intranuclear gene silencing in Phytophthora infestans. Mol. Cell 3: 339–348.

    Article  Google Scholar 

  • Varagona, M.J., Purugganan, M., and Wessler, S.R. (1992) Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4: 811–820.

    PubMed  CAS  Google Scholar 

  • Vodkin, L., Rhodes, P.R., and Goldberg, R.B. (1983). CA lectin gene insertion has the structural features of a transposable element. Cell 34: 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  • Vogelauer, M., Wu, J., Suka, N., and Grunstein, M. (2000) Global histone acetylation and deacetylation in yeast. Nature 408: 495–498.

    Article  PubMed  CAS  Google Scholar 

  • Voinnet, O. (2001) RNA silencing as a plant immune system against viruses. Trends Genet. 17: 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Voinnet, O., Pinto, Y.M., and Baulcombe, D.C. (1999) Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. (USA) 96: 14147–14152.

    Article  CAS  Google Scholar 

  • Voinnet, O., Vain, P., Angell, S., and Baulcombe, D.C. (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95: 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Volff, J.-N., Körting, C., and Schartl, M. (2001b) Ty3/gypsy retrotransposon fossils in mammalin genomes: did they evolve into new cellular functions. Mol. Biol. Evol. 18: 266–270.

    CAS  Google Scholar 

  • Volff, J.-N., Körting, C., Meyer, A., and Schartl, M. (2001c) Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol. Biol. Evol. 18: 427–431.

    Article  PubMed  CAS  Google Scholar 

  • Volff, J.-N., Körting, C., Sweeney, K., and Schartl, M. (1999) The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among telosts. Mol. Biol. Evol. 16: 1427–1438.

    Article  PubMed  CAS  Google Scholar 

  • Volff, J.-N., Körting, G., Altschmied, J., Duschl, J., Sweeney, K., Wiehert, K., Froschauer, A., and Schartl, M. (2001a) Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag Family. Mol. Biol. Evol. 18: 101111.

    Google Scholar 

  • Volff, J.-N., Körting, G., and Schartl, M. (2000) Multiple lineages of the non-LTR retrotransposon Rexl with varying success in invading fish genomes. Mol. Biol. Evol. 17: 1673–1684.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I.S., and Martienssen, R.A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297: 1833–1837.

    Article  PubMed  CAS  Google Scholar 

  • Vongs, A., Kakutani, T., Martienssen, R.A., and Richards, E.J. (1993) Arabidopsis thaliana DNA methylation mutants. Science 260: 1926–1928.

    CAS  Google Scholar 

  • Vos, J.C., van Luenen, H.G.A.M., and Plasterk, R.H.A. (1993) Characterization of the Caenorhabditis elegans Tcl transposase in vivo and in vitro. Genes Devel. 7: 1244–1253.

    Article  CAS  Google Scholar 

  • Voytas, D.F. and Ausubel, F.M. (1988) A copia-like transposable element family in Arabidopsis thaliana. Nature 336: 242–244.

    Article  CAS  Google Scholar 

  • Voytas, D.F. and Boeke, J.D. (2002) Tyl and Ty5 of Saccharomyces cerevisiae. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 631–662.

    Google Scholar 

  • Voytas, D.F., Cummings, M.P., Konieczny, A., Ausubel, F.M., and Rodermel, S.R. (1992) Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. (USA) 89: 7124–7128.

    Article  CAS  Google Scholar 

  • Voytas, D.F., Konieczny, A., Cummings, M.P., and Ausubel, F.M. (1990) The structure, distribution and evolution of the Tal retrotransposable element family of Arabidopsis thaliana. Genetics 126: 713–721.

    CAS  Google Scholar 

  • Waincoast, J. (1987) Out of the garden of Eden. Nature 325: 13.

    Article  Google Scholar 

  • Walbot, V. (1986) Inheritance of mutator activity in Zea mays as assayed by somatic instability of the bz2-mul allele. Genetics 114: 1293–1312.

    PubMed  CAS  Google Scholar 

  • Walbot, V. (1991) The mutator transposable element family of maize. Genetic Eng. 13: 137.

    Google Scholar 

  • Walbot, V. (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 49–82.

    Article  CAS  Google Scholar 

  • Walbot, V. (2000) Saturation mutagenesis using maize transposons. Curr. Opin. Plant Biol. 3: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Walbot, V. and Rudenko, G.N. (2002) MuDR/Mu transposable elements in maize. In: Mobile DNA II. Craig, N.L., Craigie, R., Gellert, M., and Lambowitz, A.M. (eds.) ASM Press, Washington, DC. pp. 533–564.

    Google Scholar 

  • Wang, L. and Kunze, R. (1998) Transposase binding site methylation in the epigenetically inactivated Ac derivative Ds-cy. Plant J. 13: 577–582.

    Article  CAS  Google Scholar 

  • Wang, M.-B. and Waterhouse, P.M. (2001) Application of gene silencing in plants. Curr. Opin. Plant Biol. 5: 146–150.

    Article  Google Scholar 

  • Wang, S., Zhang, Q., Maughan, P.J., and Maroof, M.A.S. (1997) Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal locations. Plant Mol. Biol. 33: 1051–1058.

    CAS  Google Scholar 

  • Wassenegger, M. (2000) RNA-directed DNA methylation. Plant Mol. Biol. 43: 203–220.

    Article  PubMed  CAS  Google Scholar 

  • Watanaba, T. and Fukasawa, T. (1961) Episome-mediated transfer of drug resistance in Enterobacteriaceae. III. Transduction of resistance factor. J. Bacteriol. 82: 202–209.

    Google Scholar 

  • Waterhouse, P.M., Graham, M.W., and Wang, M.-B. (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. (USA) 95: 13959–13964.

    Article  CAS  Google Scholar 

  • Waterhouse, P.M., Wang, M.-B., and Lough, T. (2001) Gene silencing as an adaptive defence against viruses. Nature 411: 834–842.

    Article  PubMed  CAS  Google Scholar 

  • Weck, E., Courage, U., Döring, H.-P., Fedoroff, N., and Starlinger, P. (1984) Analysis of shm6233, a mutation induced by the transposable element Ds in the sucrose synthase gene of Zea mays. EMBO J. 3: 1713–1716.

    CAS  Google Scholar 

  • Weil, C.F. and Wessler, S.R. (1990) The effects of plant transposable element insertion on transcription initiation and RNA processing. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41: 527–552.

    Article  CAS  Google Scholar 

  • Weinand, Y., Sommer, H., Schwarz, Z., Shepherd, H., Seadler, H., Kreuzaler, F., Ragg, H., Fautz, E., Hahlbrock, H., Harrison, B.J., and Peterson, P. (1982) A general method to identify plant structural genes among genomic DNA. DNA clones using transposable elements induced mutations. Mol. Gen. Genet. 187: 195–201.

    Article  Google Scholar 

  • Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G., and Waterhouse, P.M. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27: 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Wessler, S.R. (1988) Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science 242: 399–404.

    CAS  Google Scholar 

  • Wianny, F. and Zernicka-Goetz, M. (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2: 70–75.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, W. and Wilhelm, D.-X. (2001) Reverse transcription of retroviruses and LTR retrotransposons. Cell. Mol. Life Sci. 58: 1246–1262.

    Article  PubMed  CAS  Google Scholar 

  • Will, B.M.; Bayev, A.A., and Finnegan, D.J. (1981) Nucleotide sequence of terminal repeats of 412 transposable elements of Drosophila melanogaster. J. Mol. Biol. 153: 897–915.

    Article  CAS  Google Scholar 

  • Wilson, K., Long, D., Swinburne, J., and Coupland, G. (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related APETALAI. Plant Cell 8: 659–671.

    Google Scholar 

  • Wilson, M.R., Marcuz, A., Van Ginkel, F., Miller, N.W., Clem, L.W., Middleton, D., and Warr, G.W. (1990) The immunoglobulin M heavy chain constant region gene of the channel catfish, lctalurus punctatus an unusual mRNA splice pattern produces the membrane form of the molecule. Nucl. Acid Res. 18: 5227–5233.

    Article  CAS  Google Scholar 

  • Wisman, E., Cardon, G.H., Fransz, P., and Saedler, H. (1998) The behavior of the autonomous maize transposable element En/Spm in Arabidopsis thaliana allows efficient mutagenesis. Plant Mol. Biol. 37: 989–999.

    Article  PubMed  CAS  Google Scholar 

  • Woods-Samuels, P., Wong, C., Mathias, S.L., Scott, A.F., Kazazian, H.H., and Antonarakis, S.E. (1989) Characterization of a nondeleterious L1 insertion in an intron of the human factor VIII gene and further evidence of open reading frames in functional Ll elements. Genomics 4: 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D.A. and Voytas, D.F. (1998) Potential retroviruses in plants: Tati is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149: 703–715.

    PubMed  CAS  Google Scholar 

  • Wright, D.A. and Voytas, D.F. (2001) Athila of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12: 122–131.

    Google Scholar 

  • Wright, D.A., Ke, N., Smalle, J., Hauge, B.M., Goodman, H.M., and Voytas, D.F. (1996) Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142: 569–578.

    CAS  Google Scholar 

  • Wright, S.I., Le, Q.H., Schoen, D.J., and Bureau, T.E. (2001) Population dynamics of an Ac-like transposable element in self-and cross-pollinating Arabidopsis. Genetics 158: 1279–1288.

    CAS  Google Scholar 

  • Wu-Scharf, D., Jeong, B.-R., Zhang, C., and Cerutti, H. (2000) Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 290: 1159–1162.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y.-L. and Peterson, T. (2000) Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon. Mol. Gen. Genet. 263: 22–29.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y.-L. and Peterson, T. (2002) Ac transposition is impaired by a small terminal deletion. Mol. Genet. Gen. 266: 720–731.

    Google Scholar 

  • Xiao, Y.-L., Li, X., and Peterson, T. (2000) Ac inserted site affects the frequency of transposon-induced homologous recombination at the maize p1 locus. Genetics 156: 2007–2017.

    CAS  Google Scholar 

  • Xiong, Y. and Eickbush, T.H. (1988) The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal repeat retrotransposons. Mol. Cell Biol. 8: 114–123.

    PubMed  CAS  Google Scholar 

  • Xiong, Y. and Eickbush, T.H. (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 10: 3353–3362.

    Google Scholar 

  • Xiong, Y., Burke, W.D., and Eickbush, T.H. (1993) Pao, a highly divergent retrotransposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. Nucl. Acid Res. 21: 2117–2123.

    CAS  Google Scholar 

  • Yamashita, S., Takano-Shimizu, T., Kitamura, K., Mikami, T., and Kishima, Y. (1999) Resistance to gap repair of the transposon Tama in Antirrhinum majus: A role of the end regions. Genetics 153: 1899–1908.

    PubMed  CAS  Google Scholar 

  • Yamazaki, M., Tsugawa, H., Miyeo, A., Yano, M., Wu, J., Yamamoto, S., Matsumoto, T., Sasaki, T., and Hirochika, H. (2001) The rice retrotransposon Tos17 prefers low-copynumber sequences as integration targets. Mol. Genet. Genomics 265: 336–344.

    Article  PubMed  CAS  Google Scholar 

  • Yanez, M., Verdugo, I., Rodriguez, M., Prat, S., and Ruiz-Lara, S. (1998) Highly heterogeneous families of Tyl/copia retrotransposons in the Lycopersicon chilense genome. Gene 222: 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Yang, G., Dong, J., Chandrasekaran, M.B., and Hall, T.C. (2001) Kiddo a new transposable element family closely associated with rice genes. Mol. Genet. Genomics 266: 417–434.

    Google Scholar 

  • Yang, J., Malik, H.S., and Eickbush, T.H. (1999) Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl. Acad. Sci. (USA) 96: 7847–7852.

    Article  CAS  Google Scholar 

  • Yant, S.R., Ehrhardt, A., Mikkelsen, J.G., Meuse, L., Pham, T., and Kay, M.A. (2002) Transposition from a gutless adenotransposon vector stabilizes transgene expression in vivo. Nature Biotechnol. 20: 999–1005.

    Article  CAS  Google Scholar 

  • Yoder, J.I. (1990) Rapid proliferation of the maize transposable element activator in transgenic tomato. Plant Cell 2: 723–730.

    PubMed  CAS  Google Scholar 

  • Yoder, J.I., Payls, J., Alpert, K., and Lassner, M. (1988) Ac transposition in transgenic tomato plants. Mol. Gen. Genet. 213: 291–296.

    Article  CAS  Google Scholar 

  • Yoshioka, Y., Matsumoto, S., Kojima, S., Ohshima, K., Okada, N., and Machida, Y. (1993) Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc. Natl. Acad. Sci. (USA) 90: 6562–6566.

    Article  CAS  Google Scholar 

  • Yoshiyama, M., Tu, Z., Kainoh, Y., Honda, H., Shono, T., and Kimura, K. (2001) Possible horizontal transfer of a transposable element from host to parasitoid. Mol. Biol. Evol. 19: 1952–1958.

    Article  Google Scholar 

  • Youngman, S., van Luenen, G.A., and Plasterk, R.H.A. (1996) Rte-1, a retrotransposon-like element in C. elegans. FEBS Lett. 380: 1–7.

    Article  CAS  Google Scholar 

  • Yu, J., Hu, S., Wang, J., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79–92.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z., Wright, S.I., and Bureau, T.E. (2000) Mutator-like elements in Arabidopsis thaliana: Structure, diversity and evolution. Genetics 156: 2019–2031.

    PubMed  CAS  Google Scholar 

  • Zakian, V.A. (1995) Telomeres: beginning to understand the end. Science 270: 160–1607.

    Article  Google Scholar 

  • Zamore, P.D. (2002) Ancient pathways programmed by small RNAs. Science 296: 1265–81269.

    Article  PubMed  CAS  Google Scholar 

  • Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. (2000) RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Zelentsova, H., Poluectova, H., Mnjoian, L., Lyozin, G., Veleikodvorskaja, V., Zhivotovsky, L., Kidwell, M.G., and Evgen, M.B. (1999) Distribution and evolution of mobile elements in the virilis species group of Drosophila. Chromosoma 108: 443–456.

    Article  CAS  Google Scholar 

  • Zhang, J. and Peterson, T. (1999) Genome rearrangements by nonlinear transposons in maize. Genetics 153: 1403–1410.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., Arbuckle, J., and Wessler, S.R. (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc. Natl. Acad. Sci. (USA) 97: 1160–1165.

    Article  CAS  Google Scholar 

  • Zhang, Y. and Reinberg, D. (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Devel. 15: 2343–2360.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J.H. and Atherly, A.G. (1990) In situ detection of transposition of the maize controlling element (Ac) in transgenic soybean tissues. Plant Cell Rep. 8: 542–545.

    CAS  Google Scholar 

  • Zietkiewicz, E., Richer, C., Sinnett, D., and Labuda, D. (1998) Monophyletic origin of Alu elements in primates. J. Mol. Evol. 47: 172–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Galun, E. (2003). References. In: Transposable Elements. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3582-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3582-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6357-1

  • Online ISBN: 978-94-017-3582-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics