Skip to main content
Log in

Fungal transposable elements: Generators of diversity and genetic tools

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Representatives of several classes of transposable elements (TEs) have been characterized in a broad range of fungal species. The studies indicate that these elements are ancient and ubiquitous components of fungal genomes. Some of these elements have been shown to actively affect gene structure and function in several ways: inactivation of gene expression upon insertion, modification of the nucleotide sequence through excision, and probably by inducing extensive chromosomal rearrangements. The ability of TEs to generate a high degree of genetic diversity may therefore be important in the evolution of the fungal genome. TEs also have many potential applications in genetic research, including insertional mutagenesis and population fingerprinting, as well as gene transfer within and between species. All these genetic approaches are important as tools in studies of molecular biology and evolution of fungal species, many of which lack a functional sexual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amutan M., Nyyssönen E., Stubbs J., Diaz-Torres M. R. and Dunn-Coleman N. 1996 Identification and cloning of a mobile transposon fromAspergillus niger var.awamori. Curr. Genet. 29: 468–473

    Article  CAS  Google Scholar 

  • Anaya N. and Roncero M. I. G. 1995skippy, a retro transposon from the fungal plant pathogenFusarium oxysporum.Mol. Gen. Genet. 249: 637–647

    Article  PubMed  CAS  Google Scholar 

  • Avalos J., Mehta B., Obraztsova I., Prados N., Ruiz-Albert J., Holzmann K., Corrochano L. M. and Cerdà-Olmedo E. 1996 Recent advances in the molecular biology ofPhycomyces. Abstract, 3rd European Conference on Fungal Genetics, Münster, Germay, p. 126

    Google Scholar 

  • Balcells L., Swinburne J. and Coupland G. 1991 Transposons as tools for the isolation of plant genes.Trends Biotechnol. 9: 31–37

    Article  Google Scholar 

  • Berg D. E. and Howe M. M. 1989, eds.Mobile DNA (Washington, DC: American Society for Microbiology)

    Google Scholar 

  • Boeke J. D. 1989 Transposable elements inSaccharomyces cerevisiae. InMobile DNA (eds.) D. E. Berg and M. M. Howe (Washington, DC: American Society for Microbiology) pp. 335–374

    Google Scholar 

  • Boeke J. D., Garfinkel D. J., Styles C. A. and Fink G. R. 1985Ty elements transpose through an RNA intermediate.Cell 40: 491–500

    Article  PubMed  CAS  Google Scholar 

  • Bureau T. E. and Wessler S. R. 1994 Mobile inverted-repeat elements of theTourist family are associated with the genes of many cereal grasses.Proc. Natl. Acad. Sci. USA 91: 1411–1415

    Article  PubMed  CAS  Google Scholar 

  • Calvi B. R., Hong T. J., Findley S. D. and Gelbart W. M. 1991 Evidence for a common evolutionary origin of inverted repeat transposons inDrosophila and plants:hobo, Activator, andTam3. Cell 465–471

  • Cambareri E. B., Foss H. M., Rountree M. R., Selker E. U. and Kinsey J. A. 1996 Epigenetic control of a transposon-inactivated gene inNeurospora is dependent on DNA methylation.Proc. Natl. Acad. Sci. USA 143: 137–146

    CAS  Google Scholar 

  • Colot V., Goyon C., Faugeron G. and Rossignol J. L. 1995 Methylation of repeated DNA sequences and genome stability inAscobolus immersus. Can. J. Bot. S221–S225

  • Cove D. J. 1976 Chlorate toxicity inAspergillus nidulans.Heredity 36: 191–203

    Article  PubMed  CAS  Google Scholar 

  • Daboussi M. J. and Langin T. 1994 Transposable elements in the fungal plant pathogenFusarium oxysporum.Genetica 93: 49–59

    Article  CAS  Google Scholar 

  • Daboussi M. J., Langin T. and Brygoo Y. 1992Fot1, a new family of fungal transposable elements.Mol. Gen. Genet. 232: 12–16

    Article  PubMed  CAS  Google Scholar 

  • Dash S. and Peterson P. A. 1994 Frequent loss of theEn transposable element after excision and its relation to chromosome replication in maize (Zea mays L.).Genetics 136: 653–671

    PubMed  CAS  Google Scholar 

  • Daviere J. M., Langin T., Gerlinger C. and Daboussi M. J. 1996 Chromosomal rearrangements and dispersed repetitive sequences inFusarium oxysporum. Abstract, 3rd European Conference on Fungal Genetics, Miinster, Germany, p. 141

    Google Scholar 

  • Decaris B., Francou F., Lefort C. and Rizet G. 1978 Unstable ascospore color mutants ofAscobolus immersus.Mol. Gen. Genet. 162: 69–81

    Article  Google Scholar 

  • Deschamps F., Langin T., Maurer P., Gerlinger C., Felenbok B. and Daboussi M. J. Functional analysis of theFusarium Fot1 transposable element: characterization of a specific transcript and effects on target gene expression (submitted toMolecular Microbiology)

  • Diolez A., Marchez F., Fortini D. and Brygoo Y. 1995Boty, a long-terminal-repeat retroelement in the phytopathogenic fungusBotrytis cinerea.Appl. Environ. Microbiol. 61: 103–108

    PubMed  CAS  Google Scholar 

  • Dobinson K. F. and Hamer J. E. 1993 The ebb and flow of a fungal genome.Trends Microbiol. 1: 348–352

    Article  PubMed  CAS  Google Scholar 

  • Dobinson K. F., Harris R. E. and Hamer J. E. 1993Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungusMagnaporthe grisea.Mol. Plant-Microbe Interact. 6: 114–126

    PubMed  CAS  Google Scholar 

  • Engels W. R., Johnson-Schlitz D. M., Eggleston W. B. and Sved J. 1990 High-frequencyP element loss inDrosophila is homolog dependent.Cell 62: 515–525

    Article  PubMed  CAS  Google Scholar 

  • Farman M. L., Tosa Y., Nitta N. and Leong S. A. 1996aMaggy, a retrotransposon in the genome of the rice blast fungusMagnaporthe grisea.Mol. Gen. Genet. 251: 665–674

    PubMed  CAS  Google Scholar 

  • Farman M. L., Taura S. and Leong S. A. 1996b TheMagnaporthe grisea DNA fingerprinting probe, MGR586, contains the 3’ end of an inverted repeat transposon.Mol. Gen. Genet. 251: 675–681

    PubMed  CAS  Google Scholar 

  • Fedoroff N. V. 1989 Maize transposable elements. InMobile DNA (eds.) D. E. Berg and M. M. Howe (Washington, DC: American Society for Microbiology) pp. 375–411

    Google Scholar 

  • Finnegan D. J. 1989 Eukaryotic transposable elements and genome evolution.Trends Genet. 5: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Flavell A. J. 1992TyI-copia group retrotransposons and the evolution of retroelements in the eukaryotes.Genetica 86: 203–214

    Article  PubMed  CAS  Google Scholar 

  • Gaskell J., Wymelenberg A. V. and Cullen D. 1995 Structure, inheritance, and transcriptional effects ofPcel, an insertional element withinPhanerochaete chrysosporium lignin peroxidase gene.lipl. Proc. Natl. Acad. Sci. USA 92: 7465–7469

    Article  CAS  Google Scholar 

  • Glayzer D. C., Roberts I. N., Archer D. B. and Oliver R. P. 1995 The isolation ofAnt1, a transposable element fromAspergillus niger.Mol. Gen. Genet. 249: 432–438

    Article  PubMed  CAS  Google Scholar 

  • Goyon C. and Faugeron G. 1989 Targeted transformation ofAscobolus immersus andde novo methylation of the resulting duplicated sequences.Mol. Cell. Biol. 9: 2818–2827

    PubMed  CAS  Google Scholar 

  • Goyon C., Rossignol J. L. and Faugeron G. 1996 Native DNA repeats and methylation inAscobolus.Nucl. Acids Res. 24: 3348–3356

    Article  PubMed  CAS  Google Scholar 

  • Hamer J. E., Farall L., Orbach M. J., Valent B. and Chumley F. G. 1989 Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen.Proc. Natl. Acad. Sci. USA 86: 9981–9985

    Article  PubMed  CAS  Google Scholar 

  • He C., Nourse J. P., Kelemu S., Irwin J. A. G. and Manners J. M. 1996 CgT1: a non-LTR retrotransposon with restricted distribution in the fungal phytopathogenColletotrichum gloeosporioides.Mol. Gen. Genet. 252: 320–331

    PubMed  CAS  Google Scholar 

  • Iwaguchi S., Homma M., Chibana H. and Tanaka K. 1992 Isolation and characterization of a repeated sequence (RSP1) ofCandida albicans.J. Gen. Microbiol. 138: 1893–1900

    PubMed  CAS  Google Scholar 

  • Julien J., Poirier-Hamon S. and Brygoo Y. 1992Foret l, a reverse transcriptase-like sequence in the filamentous fungusFusarium oxysporum.Nucl. Acids Res. 20: 3933–3937

    Article  PubMed  CAS  Google Scholar 

  • Kachroo P., Leong S.A. and Chattoo B. B. 1994 Pot2, an inverted repeat transposon from the rice blast fungusMagnaporthe grisea.Mol. Gen. Genet. 245: 339–348

    Article  PubMed  CAS  Google Scholar 

  • Kachroo P., Leong S. A. and Chattoo B. B. 1995 Mg- SINE: a short interspersed nuclear element from the rice blast fungus,Magnaporthe grisea.Proc. Natl. Acad. Sci. USA 92: 11125–11129

    Article  PubMed  CAS  Google Scholar 

  • Kempken F. and Kück U. 1996Restless, an active Ac-like transposon from the fungusTolypocladium inflatum: structure, expression, and alternative splicing.Mol. Cell. Biol. 16 (in press)

  • Kim H. G., Meinhart L. W., Benny U. and Kistler H. C. 1995Nrsl, a repetitive element linked to pisatin demethylase genes on a dispensable chromosome ofNectria haematococca.Mol. Plant-Microbe Interact. 4: 524–531

    Google Scholar 

  • Kinsey J. A. 1990 Restricted distribution of theTad transposon in strains ofNeurospora.Curr. Genet. 15: 271–275

    Article  Google Scholar 

  • Kinsey J. A. 1993 Transnuclear transposition of theTad element ofNeurospora.Proc. Natl. Acad. Sci. USA 90: 9384–9387

    Article  PubMed  CAS  Google Scholar 

  • Kinsey J. A. and Helber J. 1989 Isolation of a transposable element fromNeurospora crassa.Proc. Natl. Acad. Sci. USA 86: 1929–1933

    Article  PubMed  CAS  Google Scholar 

  • Kinsey J. A., Garrett-Engele P. W., Cambareri E. B. and Selker E. U. 1994 The Neurospora transposon Tad is sensitive to repeat-induced point mutation (RIP).Proc. Natl. Acad. Sci. USA 138: 657–664

    CAS  Google Scholar 

  • Kistler H. C. and Miao V. P. W. 1992 New modes of genetic change in filamentous fungi.Annu. Rev. Phytopathol. 30: 131–152

    Article  PubMed  CAS  Google Scholar 

  • Kistler H. C., Momol E. A. and Benny U. 1991 Repetitive genomic sequences for determining relatedness among strains ofFusarium oxysporum.Phytopathology 81: 331–336

    Article  CAS  Google Scholar 

  • Kistler H. C., Benny U., Boehm E. W. A. and Katan T. 1996 Genetic duplication inFusarium oxysporum.Curr. Genet. 28: 173–176

    Article  Google Scholar 

  • Kricker M. C., Drake J. W. and Radman M. 1992 Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes.Proc. Natl. Acad. Sci. USA 89: 1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Langin T., Capy P. and Daboussi M. J. 1995 The transposable elementimpala, a fungal member of theTc1-rnariner superfamily.Mol. Gen. Genet. 246: 19–28

    Article  PubMed  CAS  Google Scholar 

  • Levis C., Fortini D. and Brygoo Y. 1996 Flipper, a bacterial-like transposable element inBotrytis cinevea. Mol. Gen. Genet. (in press)

  • Lohe A. R., Moriyama E. N., Lidholm D. and Hartl D. L. 1995 Horizontal transmission, vertical inactivation and stochastic loss ofmariner-like transposable elements.Mol. Biol. Evol. 12: 62–72

    PubMed  CAS  Google Scholar 

  • McDonald J. F. 1993 Evolution and consequences of transposable elements.Curr. Opin. Genet. Dev. 3: 855–864

    Article  PubMed  CAS  Google Scholar 

  • McHale M. T., Roberts I. N., Talbot N. and Oliver R. P. 1989 Expression of reverse transcriptase inFulvia fulva.Mol. Plant-Microbe Interact. 2: 165–168

    PubMed  CAS  Google Scholar 

  • McHale M. T., Roberts I. N., Noble S. M., Beaumont C., Whitehead M. P., Seth D. and Oliver R. P. 1992 CfT-1: an LTR-retrotransposon inCladosporium fulvum, a fungal pathogen of tomato.Mol. Gen. Genet. 233: 337–347

    Article  PubMed  CAS  Google Scholar 

  • Magee P. T. 1993 Variations in chromosome size and organization inCandida albicans andCandida stellatoidea.Trends Microbiol. 1: 338–342

    Article  PubMed  CAS  Google Scholar 

  • Margolin B. 1995Punt, a RIPED Fot-like transposon ofNeurospora crassa. Oral communication, Workshop ‘Fungal transposable elements’, Asilomar, USA, 1994

    Google Scholar 

  • Migheli Q., Daboussi M. J., Gerlinger C., Langin T. and Lauge R. 1996 Identification of autonomous copies of theFusarium oxysporum Fotl transposable element. Abstract, 3rd European Conference on Fungal Genetics, Münster, Germany, p. 131

    Google Scholar 

  • Montgomery E. A., Huang S. M., Langley C. H. and Judd B. H. 1991 Chromosome rearrangement by ectopic recombination inDrosophila melanogaster: genome structure and evolution.Genetics 129: 1085–1098

    PubMed  CAS  Google Scholar 

  • Mouyna I., Renard J. L. and Brygoo Y. 1996 DNA polymorphism amongFusarium oxysporum f. sp.elaeidis populations from oil palm, using a repeated and dispersed sequence “palm”.Curr. Genet. 30: 174–180

    Google Scholar 

  • Neuvéglise C., Sarfati J., Latgé J. P. and Paris S. 1996aAfutl. a retrotransposon-like element fromAspergillus fumigatus.Nucl. Acids Res. 34: 1428–1434

    Article  Google Scholar 

  • Neuvéglise C., Sarfati J., Debeaupuis J. P., Latgé J. P. and Paris S. 1996b Molecular epidemiology ofAspergillus fumigatus withAfutl, a retrotransposon-like element. Abstract, 3rd European Conference on Fungal Genetics, Münster, Germany, p. 132

    Google Scholar 

  • Nyyssönen E., Amutan M. and Dunn-Coleman N. 1996Tan andVader-transposable elements found fromA. niger var.awamori. Abstract, 3rd European Conference on Fungal Genetics, Münster, Germany, p. 133

    Google Scholar 

  • Oliver R. P. 1992 Transposons in filamentous fungi. InMolecular biology of filamentous fungi (eds.) U. Stahl and P. Tudzynski (Proceedings of the EMBO Workshop, Berlin 1991) (Berlin: VCH)

    Google Scholar 

  • Plasterk R. H. 1991 The origin of footprints of theTc1 transposon ofCaenorhabditis elegans.EMBO J. 10: 1919–1925

    PubMed  CAS  Google Scholar 

  • Plasterk R. H. and Groenen J. T. 1992 Targeted alterations of theCaenorhabditis elegans genome by transgene instructed DNA double strand break repair followingTe1 excision.EMBO J. 11: 287–90

    PubMed  CAS  Google Scholar 

  • Radice A. D., Bugaj B., Fitch D. H. A. and Emmons S. 1994 Widespread occurrence of theTe1 transposon family:Tc1-like transposons from teleost fish.Mol. Gen. Genet. 244: 606–612

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen M., Rossen L. and Giese H. 1993 SINE-like properties of a highly repetitive element in the genome of the obligate parasitic fungusErysiphe graminis f. sp.hordei. Mol. Gen. Genet. 239: 298–303

    CAS  Google Scholar 

  • Rhounim L., Rossignol J. L. and Faugeron G. 1992 Epimutation of repeated genes inAscobolus immersus.EMBO J. 11: 4451–4457

    PubMed  CAS  Google Scholar 

  • Robertson H. M. 1995 TheTe1-mariner superfamily of transposons in animals.J. Insect Physiol. 41: 99–105

    Article  CAS  Google Scholar 

  • Rossignol J. L. and Faugeron G. 1994 Gene inactivation triggered by recognition between DNA repeats.Experientia 50: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Rossignol J. L. and Faugeron G. 1995 MIP: an epigenetic gene silencing inAscobolus immersus. InGene silencing in higher plants and related phenomena in other eukaryotes (ed.) P. Meyer (Berlin: Springer) 197: 179–191

    Google Scholar 

  • Rouyer F., Simmler M. C., Page D. and Weissenbach J. 1987 A sex rearrangement in a human XX male caused byAlu-Alu recombination.Cell 51: 417–425

    Article  PubMed  CAS  Google Scholar 

  • Selker E. U. and Stevens J. N. 1985 DNA methylation at asymmetric sites is associated with numerous transition mutations.Proc. Natl. Acad. Sci. USA 82: 8114–8118

    Article  PubMed  CAS  Google Scholar 

  • Selker E. U., Fritz D. Y. and Singer M. J. 1993 Dense nonsymmetrical DNA methylation resulting from repeat-induced point mutation (RIP) inNeurospora.Science 262: 1724–1728

    Article  PubMed  CAS  Google Scholar 

  • Sheen F., Lim J. K. and Simmons M. J. 1993 Genetic instability inDrosophila melanogaster mediated byhobo transposable elements.Genetics 133: 315–334

    PubMed  CAS  Google Scholar 

  • Shull V. and Hamer J. E. 1996 Genetic differentiation in the rice blast fungus revealed by the distribution ofthe fosbury retrotransposon.Fungal Genet. Biol. 20: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Springer M. S. and Britten R. J. 1993 Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in thegypsy group of retrotransposons.Mol. Biol. Evol. 10: 1370–1379

    PubMed  CAS  Google Scholar 

  • Skinner D. Z., Budde A. D. and Leong S. A. 1991 Molecular karyotype analysis of fungi. In.More gene manipulations in fungi (eds.) J. W. Bennett and L. L. Lasure (London Academic Press) pp. 86–103

  • Sone T., Suto M. and Tomita F. 1993 Host species-specific repetitive DNA sequence in the genome ofMagnaporthe grisea, the rice blast fungus.Biosci. Biotech. Biochem. 57: 1228–1230

    Article  CAS  Google Scholar 

  • Talbot N. J., Salch Y. P., Ma M. and Hamer J. E. 1993 Karyotype variation within clonal lineages of the rice blast fungus,Magnaporthe grisea.Appl. Environ. Microbiol. 59: 585–593

    PubMed  CAS  Google Scholar 

  • TzengT., Lyngholm L. K., Ford C. F. and Bronson C. R. 1992 A restriction fragment polymorphism map and electrophoretic karyotype of the fungal maize pathogenCochliobolus heterostrophus.Genetics 130: 81–96

    Google Scholar 

  • Valent B. and Chumley F. G. 1994 A virulence genes and mechanisms of genetic instability in the rice blast fungus. InRice blast disease (eds.) R. S. Zeigler, S. A. Leong and P. S. Teng (Cambridge: CAB international) pp. 111–134

    Google Scholar 

  • Walbot V. 1992 Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA mutagenesis.Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 49–82

    Article  CAS  Google Scholar 

  • Wei Y. D., Collinge D. B., Smedegaard-Petersen V. and Thordal-Christensen H. 1996 Characterization of the transcript of a new class of retroposon-type repetitive element cloned from the powdery mildew fungus,Erysiphe graminis.Mol. Gen. Genet. 250: 477–482

    PubMed  CAS  Google Scholar 

  • Xiong Y. and Eickbush T. H. 1990 Origin and evolution of retroelements based upon their reverse transcriptase sequences.EMBO J. 9: 3353–3362

    PubMed  CAS  Google Scholar 

  • Yeadon P. J. and Catcheside D. E. A. 1995Guest: a 98 bp inverted repeat transposable element inNeurospora crassa.Mol. Gen. Genet. 247: 105–109

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daboussi, M.J. Fungal transposable elements: Generators of diversity and genetic tools. J. Genet. 75, 325–339 (1996). https://doi.org/10.1007/BF02966312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02966312

Keywords

Navigation