Skip to main content

Involvement of Plasma Membrane Redox Systems in Growth Control of Animal and Plant Cells

  • Chapter
Plasma Membrane Redox Systems and their Role in Biological Stress and Disease

Abstract

Plasma membrane electron transport systems are involved in different cellular functions, including the regulation of growth and development. Two components are essential to understand these systems in plasma membrane: the electron donors and acceptors. It is widely accepted that pyridine nucleotides are the electron donors for the different redox systems described up to now. NADH is specific for the universal animal and plant cell plasma membrane electron transport, which reduces a wide range of oxidants including oxygen, iron compounds and free radicals (Rubinstein and Luster, 1993; Lüthje et al., 1997; Asard et al., 1998; Bérczi et al., 1998). NADPH is, however, specific for the plant turbo system, equivalent to the ferric reductase complex in yeast (Dancis et al., 1992; Askwith and Kaplan, 1998) and for the respiratory burst oxidase in macrophages (Segal, 1987; Segal et al., 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcain, F.J., Buron, M.I., Rodriguez-Aguilera, J.C., Villalba, J.M. and Navas, P. (1990) Ascorbate free radical stimulates the growth of human promyelocytic leukemia cell line, Cancer. Res. 50, 5887–5891.

    PubMed  CAS  Google Scholar 

  • Alcain, F.J., Buron, M.I., Villalba, J.M. and Navas, P. (199la) Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system, Biochim. Biophys. Acta 1073, 38–385.

    Google Scholar 

  • Alcain, F.J., Löw, H. and Crane, F.L. (1991b) Ceruloplasmin stimulates thymidine incorporation by CCL-39 cells in the absence of serum or growth factors, Biochem. Biophys. Res. Commun. 180, 790–796.

    Article  PubMed  CAS  Google Scholar 

  • Alcain, F.J., Villalba, J.M., Löw, H., Crane, F.L. and Navas, P. (1992) Ceruloplasmin stimulates NADH oxidation of pig liver plasma membrane, Biochem. Biophys. Res. Commun. 186, 951–955.

    Article  PubMed  CAS  Google Scholar 

  • Alcain, F.J., Löw, H. and Crane, F.L. (1994a) Iron at the cell surface controls DNA synthesis in CCL-39 cells. Biochem. Biophys. Res. Commun. 203, 16–21.

    Article  PubMed  CAS  Google Scholar 

  • Alcain F.J., Löw, H. and Crane, F.L. (1994b) Iron reverses impermeable chelator inhibition of DNA synthesis in CCL- 39 cells, Proc. Natl. Acad. Sci. USA 91, 7903–7906.

    Article  PubMed  CAS  Google Scholar 

  • Alcain, F.J., Löw, H. and Crane, F.L. (1997) Inhibition of DNA synthesis in CCL 39 cells by impermeable iron chelators, Biochem. Mol. Biol. Int. 41, 303–310.

    PubMed  CAS  Google Scholar 

  • Arrigoni, 0. (1994) Ascorbate system in plant development, J. Bioenerg. Biomembr. 26, 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Asard, H., Horemans, N. and Caubergs, R.J. (1995) Involvement of ascorbic acid and a b-typecytochrome in plant plasma membrane redox reaction, Protoplasma 184, 36–41.

    Article  CAS  Google Scholar 

  • Asard, H., Horemans, N., Preger, V. and Trost, P. (1998) Plasma membrane b-type cytochromes, in H. Asard, A. Bérczi and R.J. Caubergs (eds.), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Kluwer Academic Publishers, Dordrecht, pp. 1–31.

    Google Scholar 

  • Askerlund, P., Larsson, C., Widell, S. and Moller, I.M. (1987) NAD(P)H oxidase and peroxidaseactivities in purified plasma membranes from cauliflower inflorescences, Physiol. Plant. 71, 9–19.

    Article  CAS  Google Scholar 

  • Askwith, C. and Kaplan, J. (1998) Iron transport in yeast: The involvement of an iron reductase and oxidase, in H. Asard, A. Bérczi and R.J. Caubergs (eds.), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Kluwer Academic Publishers, Dordrecht, pp. 157–177.

    Google Scholar 

  • Barroso, M.P., Gomez-Diaz,C., Villalba, J.M., Buron, M.I., LOpez-Lluch, G. and Navas, P. (1997) Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal, J. Bioenerg. Biomembr. 29, 259–267.

    Article  PubMed  CAS  Google Scholar 

  • Beemster, G.T. and Baskin, T.I. (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana, Plant Physiol. 116, 15151526.

    Google Scholar 

  • Bérczi, A. and Moller, I.M. (1998) NADH-Monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes, Plant Physiol. 116, 1029–103.

    Article  Google Scholar 

  • Bérczi, A., Van Gestelen, P. and Pupillo, P. (1998) NAD(P)H-utilizing flavo-enzymes in the plant plasma membranes, in H. Asard, A. Bérczi and R.J. Caubergs (eds.), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Kluwer Academic Publishers, Dordrecht, pp. 33–67.

    Google Scholar 

  • Borracino, G.S., Dipierro, S. and Arrigoni, O. (1986) Purification and properties of ascorbate free-radical reductase from potato tubers, Planta 167, 521–526.

    Article  Google Scholar 

  • Böttger, M. and Lüthen, H. (1986) Possible linkage between NADH-oxidation and proton secretion in Zea mays L. root, J. Exp. Bot. 37, 666–675.

    Article  Google Scholar 

  • Boveris, (1977) Mitochondrial production of superoxide radical and hydrogen peroxide, Adv. Exp. Biol. Med. 78, 67–82.

    Article  CAS  Google Scholar 

  • Brightman, A.O., Wang, J., Miu, R.K., Sun, I.L., Barr, R., Crane, F.L. and Morré, D.J. (1992) A growth factor-and hormone-stimulated NADH oxidase from rat liver plasma membrane, Biochim. Biophys. Acta 1105, 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Buron, M.I., Villalba, J.M. and Navas, P. (1987) NADH-ascorbate free radical reductase of rat liver plasma membranes: kinetics and lectin inhibition, Epithelia 1, 295–306.

    Google Scholar 

  • Carmona, M.J. and Cuadrado, A. (1986) Analysis of growth components in Allium roots, Planta 168, 183–189.

    CAS  Google Scholar 

  • Carpita, N.C. (1984) Cell wall development in maize coleoptiles, Plant Physiol. 76, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Carrasco-Luna, J., Calatayud. A., Gonzalez-Daros, F. and del Valle-Tascon, S. (1995) Hexacyanoferrate (III) stimulation of elongation in coleoptile segments from Zea mays L, Protoplasma 184, 63–71.

    CAS  Google Scholar 

  • Castillo, F.J. and Greppin, H. (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure, Environ. Exp. Bot. 28, 231–238.

    Article  CAS  Google Scholar 

  • Cerutti, P.A. (1989) Mechanisms of action of oxidant carcinogens, Cancer Detect. Prey. 14, 281284.

    Google Scholar 

  • Cerutti, P.A. (1991) Oxidant stress and carcinogenesis, Eur. J. Clin. Invest. 21, 1–5. Cerutti, P.A. (1994) Oxy-radicals and cancer, Lancet 344, 862–863.

    Article  Google Scholar 

  • Cerutti, P.A., Krupitza, G., Larsson, R., Muchlematter, D., Crawford, D. and Amstad, P. (1988) Physiological and pathologic effects of oxidants in mouse epidermal cells, Ann. N.Y. Acad. Sci. 551, 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Citterio, S., Sgorbati, S., Scippa, S. and Sparvoli, E. (1994) Ascorbic acid effect on the onset of cell proliferation in pea root, Physiol. Plant. 92, 601–607.

    Article  CAS  Google Scholar 

  • Cordoba, F. and Gonzalez-Reyes, J.A. (1994) Ascorbate and plant cell growth, J. Bioenerg. Biomembr. 26, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Cordoba-Pedregosa, M.C, González-Reyes, J.A., Canadillas, M.S., Navas, P. and Cordoba, F. (1996) Role of apoplastic peroxidases and cell-wall peroxidases on the stimulation of root elongation by ascorbate, Plant Physiol. 112, 1119–1125.

    PubMed  CAS  Google Scholar 

  • Cordoba-Pedregosa, M.C., González-Reyes, J.A., Serrano, A., Villalba, J.M., Navas, P. and Cordoba, F. (in press) Plasmalemma-associated malate dehydrogenase activity in onion root cells, Protoplasma.

    Google Scholar 

  • Cosgrove, D.J. (1997a) Assembly and enlargement of the primary cell wall in plants, Annu. Rev. Cell Dev. Biol. 13, 171–201.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, D.J. (1997b) Relaxation in a high-stress environment, the molecular bases of extensible cell walls and cell enlargement, Plant Cell 9, 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, D.J. and Li, Z.-C. (1993) Role of expansin in developmental and light control of growth and wall extension in oat coleoptiles, Plant Physiol. 103, 1321–1328.

    PubMed  CAS  Google Scholar 

  • Crane, F.L., Barr, R., Craig, T.A. and Misra, P.C. (1984) Growth control by proton pumping plasma membrane redox, Proc. Plant Growth Regul. Soc. Am. 11, 87–95.

    Google Scholar 

  • Crane, F.L., Löw, H., Sun, I.L. and Isaksson, M. (1990a) Transmembrane electron transport and growth of transformed cells, in F.L. Crane, D.J. Morré and H.E. Löw (eds.), Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport. Vol. I, CRC Press, Boca Raton, pp. 141–170.

    Google Scholar 

  • Crane, F.L., Löw, H., Sun, I.L., Morré, D.J. and Faulks, W.P. (1990b), Interaction between oxidoreductase, transferrin receptor and channels in the plasma membrane, in V.R. Sara, K. Hall and H. Löw (eds.), Growth Factors: from Genes to Clinical Applications, Raven, New York, pp. 129–139.

    Google Scholar 

  • Crane, F.L., Sun, I.L. and Sun, E.E. (1993) The essential functions of coenzyme Q, Clin. Invest. 71, 55–59.

    Article  Google Scholar 

  • Crane, F.L., Sun, I.L., Crowe, R., Alcaln, F.J. and Löw, H. (1994) Coenzyme Qio plasma membrane oxidase and growth control, Molec. Aspects. Med. 15 (supplement), sl-s12.

    Google Scholar 

  • Crane, F.L. and Navas, P. (1997) The diversity of coenzyme Q function, Molec. Aspects Med. 18 (supplement), sl-s6.

    Google Scholar 

  • Crowe, R.A., Taparorowski, E.J. and Crane, F.L. (1993) Ha-ras stimulates the transplasma membrane oxidoreductase activity of C3H10T1/2 cells, Biochem. Biophys. Res. Commun. 196, 844–850.

    Article  PubMed  CAS  Google Scholar 

  • Dancis, A., Roman, D.G., Anderson, G.J., Hinnebusch, A.G. and Klausner, R.D. (1992) Ferric reduction of Saccharomyces cerevisiae. Molecular characterization, role in iron uptake, and transcription control by iron, Proc. Natl. Acad. Sci. USA 89, 3869–3873.

    Article  PubMed  CAS  Google Scholar 

  • De Cabo, R., González-Reyes, J.A. and Navas, P. (1993) The onset of cell proliferation is stimulated by ascorbate free radical in onion root primordia, Biol Cell 77, 231–233.

    Article  Google Scholar 

  • De Cabo, R., González-Reyes, J.A., C6rdoba, F. and Navas, P. (1995) Rooting hastened in onions by ascorbate and ascorbate free radical, J. Plant Growth Regul. 15, 53–56.

    Article  Google Scholar 

  • De Gara, L., Paciolla, C., Tommasi, F. Liso, R. and Arrigoni, O. (1994) In vivo inhibition of galactono-Lii-lactone conversion to ascorbate by lycorine, J. Plant Physiol. 144, 649–653.

    Google Scholar 

  • Ding, J. and Badwey, J.A. (1993) Stimulation of neutrophils with a chemoattractant activates several novel protein kinases that can catalyze the phosphorylation of peptides derived from the 47-kDa protein component of the phagocyte oxidase and myristoylated alanine-rich C kinase substrate, J. Biol. Chem. 268, 17326–17333.

    PubMed  CAS  Google Scholar 

  • Döring, O. and Lüthje, S. (1996) Molecular components and biochemistry of electron transport in plant plasma membranes (review), Mol. Membr. Biol. 13, 127–142.

    Article  PubMed  Google Scholar 

  • Döring, O., Lüthje, S. and Böttger, M (1998) To be or not to be. A question of plasma membrane redox?, Prog. Bot. 59, 328–354.

    Article  Google Scholar 

  • Ellem, K.A.O. and Kay, G.F. (1983) Ferricyanide can replace pyruvate to stimulate growth and attachment of serum restricted human melanoma cells, Biochem. Biophys. Res. Commun. 112, 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Faulk, W.P., Harats, H., McIntyre, J.A., Bérczi, A., Sun, IL. and Crane, F.L. (1989) Recent advances in cancer research: drug targeting without the use of monoclonal antibodies, Amer. J. Reprod. Inmunol. 21, 151–154.

    CAS  Google Scholar 

  • Faulk, W.P., Barabas, K., Sun, I.L. and Crane, F.L. (1991) Transferrin-adriamycin conjugates which inhibit tumor cell proliferation without interaction with DNA inhibit plasma membrane oxidoreductase and proton release in K562 cells, Biochem. Int. 25, 815–822.

    PubMed  CAS  Google Scholar 

  • Fehlau, R., Grygarczk, R., Fuhrmann, G.F. and Schwarz, I.W. (1989) Modulation of the Cat+- or Pb2+-activated K+-selective channels in human red cells. II. Parallelisms to modulation of the activity of a membrane-bound oxidoreductase, Biochim. Biophys. Acta 978, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Fialkow, L., Chan, C.K., Grinstein, S. and Downey, G.P. (1993) Regulation of tyrosine phosphorylation in neutrophils by the NADPH oxidase. Role of reactive oxygen intermediates, J. Biol. Chem. 268, 17131–17137.

    PubMed  CAS  Google Scholar 

  • Fry, S.C. (1986) Cross-linking of matrix polymers in the growing cell wall of angiosperms, Annu. Rev. Plant Physiol. 37, 165–186.

    Article  CAS  Google Scholar 

  • Fuhrmann, G.F., Fehlau, R., Schneider, H. and Knauf, P.A. (1989) The effect of ferricyanide with iodoacetate in calcium-free solution on passive cation permeability in human red blood cells: comparison with the Gardos-effect and with the influence of PCMBS on passive cation permeability, Biochim. Biophys. Acta 983, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Carrero, R. (1988) Possible role of transplasma membrane ferricyanide reductase activity in mitogenic activation of rat liver cells, in F.L. Crane, D.J. Morré and H. Löw (eds.), Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth, Plenum, New York, pp. 27–36.

    Chapter  Google Scholar 

  • Gerard, V., Rouzaire-Dubois, B. and Dubois, J.M. (1994) Regulation of tyrosine phosphorylation in neutrophils by the NADPH oxidase. Role of reactive oxygen intermediates, J. Membr. Biol. 137, 119–125.

    PubMed  CAS  Google Scholar 

  • Goldberg, R (1984) Changes in the properties of cell wall pectin methylesterase along the Vigna radiata hypocotyl, Plant Physiol. 61, 58–63.

    Article  CAS  Google Scholar 

  • Goldberg, R., Liberman, M., Mathieu, C., Pierron, M. and Catesson, A.M. (1987) Development of epidermal cell wall peroxidases along the mung bean hypocotyl: Possible involvement in the cell wall stiffening process, J. Exp. Bot. 38, 1378–1390.

    Article  CAS  Google Scholar 

  • Gomez-Diaz, C., Rodriguez-Aguilera, J.C., Barroso, M.P., Villalba, J.M., Navarro, F., Crane, F.L. and Navas, P. (1997a) Antioxidant ascorbate is stabilized by NADH-coenzyme Q03 reductase in the plasma membrane, J. Bioenerg. Biomembr. 29, 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Diaz, C., Villalba, J.M., Pérez-Vicente, R., Crane, F.L. and Navas, P. (1997b) Ascorbate stabilization is stimulated in rho(0) HL-60 cells by CoQ10 increase at the plasma membrane, Biochem. Biophys. Res. Commun. 234, 79–81.

    Google Scholar 

  • Gonzalez-Reyes, J.A., Döring, O., Navas, P., Obst, G. and Böttger, M. (1992) The effect of ascorbate free radical on the energy state of the plasma membrane of onion (Allium cepa L.) root cells: alteration of K+ efflux by ascorbate?, Biochim. Biophys. Acta. 1098, 177–183.

    Article  CAS  Google Scholar 

  • Gonzalez-Reyes, J.A., Alcain, F., Caler, J.A., Serrano, A., Cordoba, F. and Navas, P. (1994a) Relationship between apoplastic ascorbate regeneration and the stimulation of root growth in Allium cepa L, Plant Sci. 100, 23–29.

    Article  CAS  Google Scholar 

  • Gonzalez-Reyes, J.A., Hidalgo, A., Caler, J.A., Palos, R. and Navas, P. (1994b) Nutrient uptake changes in ascorbate free radical-stimulated onion roots, Plant Physiol. 104, 271–276.

    PubMed  CAS  Google Scholar 

  • Gorin, Y., Ohayon, R., Carvaho, D.P., Deme, D., Leseney, A.M., Haye. B., Kaniewski, J., Pommier, J., Virion, A. and Dupuy, C. (1996) Solubilization and characterization of a thyroid Cat+-dependent and NADPH-dependent K3Fe(CN)6 reductase. Relationhip with the NADPHdependent H202-generating system, Eur. J. Biochem. 15, 807–814.

    Google Scholar 

  • Gross, G.G. (1977) Cell wall-bound malate dehydrogenase from horseradish, Phytochemistry 16, 319–321..

    Google Scholar 

  • Hashizume, S., Kuroda, K. and Murakami, H. (1983) Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium, Biochim. Biophys. Acta 763, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Hashizume, S., Kuroda, K. and Murakami, H. (1987) Cell culture assay of biological activity of lactoferrin and transferrin, Methods Enzymol. 147, 302–314.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo, A., Gonzalez-Reyes, J.A. and Navas, P. (1989) Ascorbate free radical enhances vacuolization in onion root meristems, Plant Cell Environ. 12, 455–460.

    Article  CAS  Google Scholar 

  • Hidalgo, A., Garcia-Herdugo, G., Gonzalez-Reyes, J.A., Morré, D.J. and Navas, P. (1991) Ascorbate free radical stimultes onion root growth by increasing cell elongation, Bot. Gaz. 152, 282–288.

    Article  CAS  Google Scholar 

  • Horemans, N., Asard, H. and Caubergs, R.J. (1994) The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants, Plant Physiol. 104, 1455–1458.

    PubMed  CAS  Google Scholar 

  • Horemans, N., Asard, H. and Caubergs, R.J. (1997) The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule, Plant Physiol. 114, 1247–1253.

    PubMed  CAS  Google Scholar 

  • Horemans, N., Asard, H. and Caubergs, R.J. (1998) Carrier mediated uptake of dehydroascorbate into higher plant plasma membrane vesicles shows trans-stimulation, FEBS Lett. 421, 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Hossain, M.A., Nakano, I. and Asada, K. (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide, Plant Cell Physiol. 25, 385–395.

    CAS  Google Scholar 

  • Kagan, V.E., Nohl, H. and Quinn, P.J. (1996) Coenzyme Q: its role in scavenging and generation of radicals in membranes, in E. Cadenas and L. Packer (eds.), Handbook of Antioxidants, Marcel Deker, New York, pp. 157–201.

    Google Scholar 

  • Kay, G.F. and Ellem, K.A.O. (1986) Nonhaem complexes of FeIII stimulate cell attachment and growth by a mechanism different from that of serum, 2-oxocarboxylates, and haemoproteins, J. Cell Physiol. 126, 275–285.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Hashimoto, K. and Yoshikawa, K. (1993) Growth inhibition of human keratinocytes by 1,25-dihydroxyvitamin D3 is linked to dephosphorylation of retinoblastoma gene product, Biochem. Biophys. Res. Commun. 196, 487–493.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Hashimoto, K. and Yoshikawa, K. (1998a) Growth inhibition of human keratinocytes by a new vitamin D3 analogue in vitro, J. Dermatol. Sci. 16, 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Okumura, H., Hashimoto, K., Asada, H., Inui, S. and Yoshikawa, K. (1998b) Synchronyzation of normal human keratinocyte in culture: its application to the analysis of 1,25-dihydroxyvitamin D3 effects on cell cycle, J Dermatol. Sci. 17, 108–114.

    Article  PubMed  CAS  Google Scholar 

  • Larm, J.A., Vaillant, F., Linnane, A.W. and Lawen, A. (1994) Up-regulation of the plasma membrane oxidoreductase as a prerequisite for the viability of human p° Namalwa cells, J. Biol. Chem. 269, 30097–30100.

    PubMed  CAS  Google Scholar 

  • Larsson, R. and Cerutti, P.A. (1988) Oxidants induce phosphorilation of ribosomal protein S6, J. Biol. Chem. 263, 17452–17458.

    PubMed  CAS  Google Scholar 

  • Lautier, D., Poirier, D., Boudreau, A., Alaoui-Jamali, M.A., Castonguay, A. and Poirier, G. (1990) Stimulation of poly(ADP-ribose) synthesis by free radicals in C3H10T1/2 cells: relationship with NAD metabolism and DNA breakage, Biochem. Cell Biol. 68, 602–608.

    Article  PubMed  CAS  Google Scholar 

  • Lautier, D., Hoflack, J.L., Kirkland, J.B., Poirier, D. and Poirier, G. (1994) The role of poly(ADPribose) metabolism in response to active oxygen cytotoxicity, Biochim. Biophys. Acta 1221, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S.Q., Ito, Y. and Imanishi, Y. (1993) Cell growth on immobilized cell growth factor. 9. Covalent immobilization of insulin, transferrin, and collagen to enhance growth of bovine endothelial cells, J. Biomed. Mater. Res. 27, 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Löw, H., Crane, F.L., Partick, E.J. and Clark, M.G. (1985) Alpha-Adrenergic stimulation of transsarcolemma electron efflux in perfused rat heart. Possible regulation of Ca2’-channels by a sarcolemma redox system, Biochim. Biophys. Acta 844, 142–148.

    Article  PubMed  Google Scholar 

  • Löw, H., Sun, I.L., Navas, P., Grebing, C., Crane, F.L. and Morré, D.J. (1986) Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system, Biochem. Biophys. Res. Commun. 139, 1117–1123.

    Article  PubMed  Google Scholar 

  • Lüthje, S., Döring, O., Heuer, S., Lüthen, H. and Böttger M. (1997) Oxidoreduction in plant plasma membranes, Biochim. Biophys. Acta 1331, 81–102.

    Article  PubMed  Google Scholar 

  • Luwe, M.H.F., Takahama, U. and Heber, U. (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves, Plant Physiol. 101, 469–473.

    Google Scholar 

  • Martinus, R.D., Linnane, A.W. and Nagley, P. (1993) Growth of human p° human Namalwa cells lacking oxidative phosphorilation can be sustained by redox compounds potassium ferricianyde or coenzime Q10 putatively acting through the plasma membrane oxidase, Biochem. Mol. Biol. Int. 31, 997–1005.

    PubMed  CAS  Google Scholar 

  • McArdle, H.S. and Morgan, E.H. (1984) The effect of monoclonal antibodies to the human transferrin receptor on transferrin and iron uptake by rat and rabbit reticulocytes, J. Biol. Chem. 259, 1398–1400.

    PubMed  CAS  Google Scholar 

  • McCann, M.C. and Roberts, K. (1994) Changes in cell wall architecture during cell elongation, J. Exp. Bot. 45, 1683–1691.

    CAS  Google Scholar 

  • McQueen-Mason, S. and Cosgrove, D.J. (1995) Expansin mode of action on cell walls: analysis of wall hydrolysis, stress relaxation, and binding, Plant Physiol. 107, 87–100.

    PubMed  CAS  Google Scholar 

  • McQueen-Mason, S., Durachko, D.M. and Cosgrove, D.J. (1992) Two endogenous proteins that induce cell wall expansion in plants, Plant Cell 4, 1425–1433.

    PubMed  CAS  Google Scholar 

  • McQueen-Mason, S.J. (1995) Expansins and cell wall expansion, J Exp. Bot. 46, 1639–1650. Medina, M.A., Castillo-Olivares, A. and Schweigerer, L. (1992) Plasma membrane redox activity correlates with N-myc expression in neuroblastoma cells, FEBS Lett. 311, 99–101.

    Google Scholar 

  • Medina, M.A. and Schweigerer, L. (1993) A plasma membrane redox system in human retinoblastoma cells, Biochem. Mol. Biol. lnt. 29, 881–887.

    CAS  Google Scholar 

  • Morré, D.J. (1995) NADH oxidase activity of HeLa plasma membranes inhibited by the antitumor sulfonylurea N-(4-methylphenylsulphonyl)-N’-(4-chlorophenyl) urea (LY181984) at an external site, Biochim. Biophys. Acta 1240, 201–208.

    Article  PubMed  Google Scholar 

  • Morré, D.J. (1998) NADH oxidase: a multifunctional ectoprotein at the eukaryotic cell surface, in H. Asard, A. Bérczi and R.J. Caubergs (eds.), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Kluwer Academic Publishers, Dordrecht, pp. 121–156.

    Google Scholar 

  • Morré, D.J., Brightman, A.O., Wu, L.-Y., Barr, R., Leak, B. and Crane, F.L. (1988) Role of plasma membrane redox activities in elongation growth in plants, Physiol. Plant. 73, 187–193.

    Article  Google Scholar 

  • Morré, D.J., Brightman, A.O. and Crane, F.L. (1991) Oxidoreductase activities of the plant plasma membrane and the control of plant growth, in C. Penel and H. Greppin (eds.), Plant Signalling Plasma Membrane and Change of State, Université de Genéve, pp. 59–77.

    Google Scholar 

  • Morré, D.J., Wu, L.Y. and Morré, D.M. (1995) The antitumour sulfonylurea N-(4methylphenylsulphonyl)-N’-(4-chlorophenyl) urea (LY 181984) inhibits NADH oxidase activity of HeLa plasma membranes, Biochim. Biophys. Acta 1240, 11–17.

    Article  PubMed  Google Scholar 

  • Morré, D.J., Sun, E., Geilen, C., Wu, L.Y., de Cabo. R., Krasagakis, K., Orfanos, C.E. and Morré, D.M. (1996) Capsaicin inhibits plasma membrane NADH oxidase and growth of human and mouse melanoma lines, Eur. J. Cancer 32A, 1995–2003.

    Article  Google Scholar 

  • Murphy, T.M., Asard, H. and Cross, A.R. (1998) Possible sources of reactive oxygen during the oxidative burst in plants, in H. Asard, A. Bérczi and R.J. Caubergs (eds.), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Kluwer Academic Publishers, Dordrecht, pp. 215–246.

    Google Scholar 

  • Navas, P. and Gomez-Diaz, C. (1994) Ascorbate free radical and its role in growth control, Protoplasma 184, 8–13.

    Article  Google Scholar 

  • Navas, P., Sun, I.L., Morré, D.J. and Crane, F.L. (1986) Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide, Biochem. Biophys. Res. Commun. 135, 110–115.

    Article  PubMed  CAS  Google Scholar 

  • Navas, P., Sun, I.L., Crane, F.L. and Morré, D.J. (1987) Changes in the pyridine nucleotide pools of HeLa cells in response to growth promoting agents, in J. Ramirez, (ed.), Redox Function of the Eukaryotic Plasma Membrane, CSIC Publications Office, Madrid, pp. 49–64.

    Google Scholar 

  • Navas, P., Estévez, A., Buron, M.I., Villalba, J.M. and Crane, F.L. (1988) Cell surface glycoconjugates control the activity of the NADH-ascorbate free radical reductase of rat liver plasma membrane, Biochem. Biophys. Res. Commun. 154, 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  • Navas, P. (1991) Ascorbate free radical (semidehydro-) reductase of plant plasma membrane, in F.L. Crane, D.J. Morré and H.E. Löw (eds.), Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport, Vol. II, CRC Press, Boca Raton, pp. 111–120.

    Google Scholar 

  • Navas, P. Villalba, J.M. and Cordoba, C. (1994) Ascorbate function at the plasma membrane, Biochim. Biophys. Acta 1197 1–13.

    Google Scholar 

  • Ohba, M., Shibnuma, M., Kuroki, T. and Nose, K. (1994) Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells, J. Cell Biol. 126, 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  • Oria, R., Alvarez-Hernandez, X., Liceaga, J. Broc, J.H. (1988) Uptake and handling of iron from transferrin, lactoferrin and immune complexes by a macrophage cell line, Biochem J. 252, 221–225.

    CAS  Google Scholar 

  • Ostergaard, J., Persiau, G., Davey, M.W., Bauw, G. and Montagu, M. (1997) Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeasts, J. Biol. Chem. 272, 30009–30016.

    Article  PubMed  CAS  Google Scholar 

  • Penel, C. and Castillo, F.J. (1991) Peroxidases in plant plasma membranes, apoplastic ascorbate, and relation of redox activities to plant pathology, in F.L. Crane, D.J. Morré and H.E. Löw (eds.), Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport, Vol. II, CRC Press, Boca Raton, pp. 121–147.

    Google Scholar 

  • Polle, A., Chakrabarti, K., Schürmann, W. and Rennenberg, H. (1990) Composition and properties of hydrogen peroxide decomposing system in extracellular and total extracts from needles of Norway spruce (Picea abies L., Karst), Plant Physiol. 94, 312–319.

    Article  PubMed  CAS  Google Scholar 

  • Ramasarma, T., Swaroop, A., MacKellar, W. and Crane, F.L. (1981) Generation of hydrogen peroxide on oxidation of NADH by hepatic plasma membranes, J. Bioenerg. Biomembr. 13, 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Roiron-Lagroux, D. and Figarella, C. (1990) Evidence for a different mechanism of lactoferrin and transferrin translocation on HT 29-D4 cells, Biochem. Biophys. Res. Commun. 170, 837–842.

    Article  PubMed  CAS  Google Scholar 

  • Roiron-Lagroux, D. and Figarella, C. (1994) Further evidence of different lactoferrin and transferrin binding sites on human HT29–D4 cells. Effects of lysozyme, fucose and cathepsin G. Comparison with transferrin, Biochim. Biophys. Acta. 1224, 441–444.

    Article  PubMed  Google Scholar 

  • Rubinstein, B. and Luster, D.G. (1993) Plasma membrane redox activity: components and role in plant processes, Ann. Rev. Plant Physiol. Plant Mol. Biol. 44, 131–155.

    Article  CAS  Google Scholar 

  • Rubinstein, B. and Stem, A.I. (1991) Proton release and plasmalemma redox in plants, in F.L. Crane, D.J. Morré and H.E. Löw (eds.), Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport, Vol. II, CRC Press, Boca Raton, pp. 167–187.

    Google Scholar 

  • Sanchez, M., Revilla, G. and Zarra, 1. (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth, Ann. Bot. 75, 415–419.

    Article  CAS  Google Scholar 

  • Segal, A.W. (1987) Absence of both cytochrome b245 subunits from neutrophils in X-linked chronic granulomatous disease, Nature 326, 88–92.

    Article  PubMed  CAS  Google Scholar 

  • Segal, A.W. and Abo, A. (1993) The biochemical basis of the NADPH oxidase of phagocytes, Trends Biochem. Sci. 18, 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Segal, A.W., Wientjes, F., Stockley, R. and Dekker, L. (1998) Components and organisation of the NADPH oxidase of phagocytic cells, the paradime for an electron transport chain across the plasma membrane, in H. Asard, A. Bérczi and R.J. Caubergs (eds.), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Kluwer Academic Publishers, Dordrecht, pp. 69–101.

    Google Scholar 

  • Serrano, R. (1989) Structure and function of plasma membrane ATPases, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 61–94.

    Article  CAS  Google Scholar 

  • Shibanuma, M., Kuraki, T. and Nose, K. (1990) Stimulation by hydrogen peroxide of DNA synthesis, competence family gene expression and phosphorylation of a specific protein in quiescent Balb/3T3 cells, Oncogene 5, 1025–1032.

    PubMed  CAS  Google Scholar 

  • Shibanuma, M., Arata, S., Murata, M. and Nose, K. (1995) Activation and expression of the JE gene by catalase in mouse osteoblastic cells: possible involvement of hydrogen peroxide in negative growth regulation, Exp. Cell Res. 218, 132–136.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N. (1996) The function and metabolism of ascorbic acid in plants, Ann. Bot. 78, 661669.

    Google Scholar 

  • Stirpe, F., Higgins, T., Tazzari, P.L. and Rozengurt, E. (1991) Stimulation by xanthine oxidase of 3T3 Swiss fibroblasts and human lymphocytes, Exp. Cell Res. 192, 635–638.

    Article  PubMed  CAS  Google Scholar 

  • Stöhr, Ch. (1998) Plasma membrane-bound nitrate reductase in algae and higher plants, in H. Asard, A. Bérczi and R.J. Caubergs (eds.), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Kluwer Academic Publishers, Dordrecht, pp. 103–119.

    Google Scholar 

  • Sun, I.L., Crane, F.L., Low, H. and Grebing, C. (1984) Transplasma membrane redox stimulates HeLa cell growth, Biochem. Biophys. Res. Commun. 125, 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Sun, E.E., Crane, F.L., Grebing, C. and Löw, H. (1985) Transmembrane redox in control of cell growth. Stimulation of HeLa cell growth by ferricyanide and insulin, Exp. Cell Res. 156, 528–536.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Garcia-Carrero, R., Liu, W., Toole-Simms, X., Crane, F.L., Morré, D.J. and Löw, H. (1987a) Diferric transferrin reduction stimulates the Na+/H+ antiport of HeLa cells, Biochim. Biophys. Res. Commun. 145, 467–473.

    Google Scholar 

  • Sun, I.L., Navas, P., Crane, F.L., Morré, D.J. and Löw, H. (1987b) NADH diferric transferrin reductase in liver plasma membrane, J. Biol. Chem. 262, 15915–15921.

    PubMed  CAS  Google Scholar 

  • Sun, I.L., Navas, P., Crane, F.L., Morré, D.J. and Low, H. (1987c) Diferric transferrin reductase in the plasma membrane is inhibited by adriamycin, Biochem. Int. 14, 119–127.

    PubMed  CAS  Google Scholar 

  • Sun, I.L., Toole-Simms, W., Crane, F.L., Golub, E.S., Diaz de Pagan, T., Morré, D.J. and Löw, H. (1987d) Retinoic acid inhibition of transplasmalemma diferric transferrin reductase, Biochem. Biophys. Res. Commun. 146, 976–982.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Toole-Simms, W., Crane, F.L., Morré, D.J., Löw H. and Chou, J.Y. (1988a) Transformation with SV40 virus prevents retinoic acid inhibition of plasma membrane NADH diferric transferrin reductase in rat liver cells, J. Bioenerg. Biomembr. 20, 383–391.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Toole-Simms, W., Crane, F.L., Morré, D.J., Löw, H. and Chou, J.Y. (1988b) Reduction of diferric transferrin by SV40 transformed pineal cells stimulates Na+/H+ antiport activity, Biochim. Biophys. Acta 938, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Sun, E.E., Crane, F.L. and Morré, D.J. (1990) Evidence for coenzyme Q function in transplasma membrane electron transport, Biochem. Biophys. Res. Commun. 172, 979–984.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Crane, F.L., Morré, D.J., Löw, H. and Faulk, W.P. (1991) Lactoferrin activates plasma membrane oxidase and Na+/H+ antiport activity, Biochem. Biophys. Res. Commun. 176, 498504.

    Google Scholar 

  • Sun, I.L., Sun, E.E., Crane, F.L., Morré, D.J. and Faulk, W.C. (1992a) Inhibition of transplasma membrane electron transport by transferrin-adriamycin conjugates, Biochim. Biophys. Acta 1105, 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Sun, E.E., Crane, F.L., Morré, D.J., Lindgren, A. and Löw, H. (1992b) Requirement for coenzyme Q in plasma membrane electron transport, Proc. Natl. Acad. Sci. USA 89, 1112611130.

    Google Scholar 

  • Sun, I.L., Sun, E.E. and Crane, F.L. (1992c) Stimulation of serum-free cell proliferation by coenzyme Q, Biochem. Biophys. Res. Commun. 189, 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Crane, F.L. and Löw, H. (1994) Bombesin stimulates transplasma-membrane electron transport by Swiss 3T3 cells, Biochim. Biophys. Acta 1221, 206–210.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Sun, E.E. and Crane, F.L. (1995) Comparison of growth stimulation of HeLa cells, HL-60 cells and mouse fibroblast by coenzyme Q, Protoplasma 184, 214–219.

    Article  CAS  Google Scholar 

  • Szatrowski, T. and Nathan, C.F. (1991) Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res. 51, 794–798.

    PubMed  CAS  Google Scholar 

  • Taetle, R., Castagnola, J. and Mendelsohn, J. (1986) Mechanisms of growth inhibition by antitransferrin receptor monoclonal antibodies, Cancer Res. 46: 1759–1763.

    PubMed  CAS  Google Scholar 

  • Taiz, L. (1984) Plant cell expansion: regulation of cell wall mechanical properties, Annu. Rev. Plant Physiol. 35, 585–657.

    Article  CAS  Google Scholar 

  • Takahama, U. (1994) Redox state of ascorbic acid in the apoplast of stems of Kalanchoe daigremontiana, Physiol. Plant 89, 791–798.

    Article  Google Scholar 

  • Takahama, U. and Oniki, T. (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate, Plant Cell Physiol. 33, 379–387.

    CAS  Google Scholar 

  • Thomas, D., Ritz, M.F., Malviya, A.N. and Gaillard, S. (1996) Intracellular acidification mediates the proliferative response of PC12 cells induced by potassium ferricyanide and involves MAP kinase activation, Int. J. Cancer 68, 547–552.

    Article  PubMed  CAS  Google Scholar 

  • Toole-Simms, W., Sun, I.L., Faulk, W.P., Löw, H., Lindgren, A., Crane, F.L. and Morré, D.J. (1991) Inhibition of transplasma membrane electron transport by monoclonal antibodies to the transferrin receptor, Biochem. Biophys. Res. Commun. 176, 1437–1442.

    Article  PubMed  CAS  Google Scholar 

  • Vaillant, F., Larm, J.A., McMullen, G.L., Wolvetang, E.J. and Lawen, A. (1996) Effectors of the mammalian plasma membrane NADH-oxidoreductase system. Short-chain ubiquinone analogues as potent stimulators, J. Bioenerg. Biomembr. 28, 531–540.

    Article  PubMed  CAS  Google Scholar 

  • Villalba, J.M., Canalejo, A., Buron, M.I., Cordoba, F. and Navas, P. (1993a) Thiol groups are involved in NADH-ascorbate free radical reductase activity of rat liver plasma membrane, Biochem. Biophys. Res. Commun.. 192, 707–713

    Article  PubMed  CAS  Google Scholar 

  • Villalba, J.M., Canalejo, A., Rodriguez-Aguilera, J.C., Buron, M.I., Morré, D.J. and Navas, P. (1993b) NADH-ascorbate free radical and ferricyanide reductase activities represent different levels of plasma membrane electron transport, J. Bioenerg. Biomembr. 25, 411–417.

    Article  PubMed  CAS  Google Scholar 

  • Villalba, J.M., Navarro, F., Cordoba, F., Serrano, A., Arroyo, A., Crane, F.L. and Navas, P. (1995) Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma membrane electron transport, Proc. Natl. Acad. Sci. USA 92, 4887–4891.

    Article  PubMed  CAS  Google Scholar 

  • Villalba, J.M., Gomez Diaz, C., Navarro, F. and Navas, P. (1996a) Role of transplasma membrane redox system in cell protection against oxidative stress, Trends Comp. Biochem. Physiol. 2, 6572.

    Google Scholar 

  • Villalba, J.M., Cordoba, F. and Navas, P. (1996b) Ascorbate and the plasma membrane. A new view of cell growth control, in J.R. Harris (ed.), Subcellular Biochemistry, Vol. 25, Ascorbic Acid: Biochemistry and Biomedical Cell Biology, Plenum Press, New York, pp. 57–81.

    Google Scholar 

  • Villalba, J.M., Navarro, C., Gomez-Diaz, C., Arroyo. A., Bello, R.I. and Navas, P. (1997) Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane, Molec. Aspects Med. 18, (supplement): s7 - s13.

    Article  CAS  Google Scholar 

  • Wheeler, G.L., Jones, M.A. and Smirnoff, N. (1998) The biosynthetic pathway of vitamin C in higher plants, Nature 393, 365–369.

    Article  PubMed  CAS  Google Scholar 

  • White, S., Taetle, R., Seligman, P.A., Rutherford, M. and Trowbridge, I.S. (1990) Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects, Cancer Res. 50, 6295–6301.

    PubMed  CAS  Google Scholar 

  • Yamaoka, T., Tsukada, K., Takahashi, H. and Yamauchi, N. (1983) Purification of a cell wall-bound pectin-galatinizing factor and examination of its identity with pectin methylesterase, Bot. Mag. Tokyo 96, 139–144.

    Article  CAS  Google Scholar 

  • Yamashoji, S. (1998) Characterization of extracellular menadion-catalyzed H202 production by NIH/3T3 cells, Biochem. Mol. Biol. Int. 44, 555–563.

    PubMed  CAS  Google Scholar 

  • Zemkova, H., Teisuger, J. and Vyslocil, F. (1984) Hyperpolarization of mouse skeletal muscle plasma membrane induced by extracellular NADH, Biochim. Biophys. Acta 775, 64–70.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X. and van Huystee, R.B. (1992) Anionic peroxidase catalysed ascorbic acid and IAA oxidation in the presence of hydrogen peroxide: a defence against peroxidative stress in peanut plant, Phytochemistry 31, 1895–1898.

    Article  CAS  Google Scholar 

  • Zulueta, J.J., Yu, F.S., Hertig, I.A., Thannickal, V.J. and Hassoun, P.M. (1995) Release of hydrogen peroxide in responde to hypoxia-reoxigenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane, Am. J. Respir. Cell. Mol. Biol. 12, 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Zwiller, J., Basset, R., Ulrich, G. and Mandel, P. (1982) Guanylate cyclase activators hemin and sodium nitroprusside stimulate cell growth in serum-free medium, Exp. Cell Res. 141, 445449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

González-Reyes, J.A., Córdoba, F., Navas, P. (1998). Involvement of Plasma Membrane Redox Systems in Growth Control of Animal and Plant Cells. In: Asard, H., Bérczi, A., Caubergs, R.J. (eds) Plasma Membrane Redox Systems and their Role in Biological Stress and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2695-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2695-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5134-9

  • Online ISBN: 978-94-017-2695-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics