Skip to main content
Log in

Generation of hydrogen peroxide on oxidation of NADH by hepatic plasma membranes

  • Research Papers
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10−6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrea, W. A. (1955).Nature (London),175 859–860.

    Google Scholar 

  • Badwey, J. A., and Karnovsky, M. L. (1979).J. Biol Chem. 254 11,530–11,537.

    Google Scholar 

  • Boveris, A., and Chance, B. (1973).Biochem. J. 134 707–716.

    Google Scholar 

  • Boveris, A., Martino, E., and Stoppani, A. O. M. (1977).Anal. Biochem. 80 145–158.

    Google Scholar 

  • Boveris, A., Oshino, N., and Chance, B. (1972).Biochem. J. 128 617–630.

    Google Scholar 

  • Briggs, R. T., Drath, D. B., Karnovsky, M. L., and Karnovsky, M. J. (1975).J. Cell Biol. 67 566–586.

    Google Scholar 

  • Crane, F. L., Goldberg, H., Morré, D. J., and Löw, H. (1979).Sub-Cell. Biochem. 6 345–379.

    Google Scholar 

  • Crane, F. L., and Löw, H. (1976).FEBS Lett. 68 153–156.

    Google Scholar 

  • Crane, F. L., MacKellar, W., Morré, D. J., Ramasarma, T., Goldenberg, H., Grebing, C., and Löw, H. (1980).Biochem. Biophys. Res. Commun. 93 746–754.

    Google Scholar 

  • Czech, M. P., Lawrence, J. C., Jr., and Lynn, W. S. (1974).J. Biol. Chem. 249 5421–5427.

    Google Scholar 

  • De Chatelet, L. R., Shirley, P. S., McPhail, L. C., Huntely, C. C., Muss, H. B., and Bass, D. (1977).Blood 50 525–535.

    Google Scholar 

  • Eckman, J. R., and Eaton, J. W. (1979).Nature (London) 278 754–756.

    Google Scholar 

  • Etkin, N., and Eaton J. (1975). InErythrocyte Structure and Function, Vol. 21, G. J. Brewer, ed., A. R. Liss, New York, pp. 9–232.

    Google Scholar 

  • Fee, J. A. (1980). InMetal Ion Activation of Dioxygen, T. G. Spiro, ed., Wiley, pp. 209–237.

  • Friedman, M. J. (1979).Nature (London) 286 245–247.

    Google Scholar 

  • Gayda, D. P., Crane, F. L., Morré, D. J., and Löw, H. (1977).Proc. Indiana Acad. Sci. 86 385–390.

    Google Scholar 

  • Gillette, J. R., Brodie, B. B. and La Du, B. N. (1957).J. Pharmacol. Exp. Ther. 119 532–540.

    Google Scholar 

  • Goldenberg, H., Crane, F. L., and Morré, D. J. (1979).J. Biol. Chem. 254 2491–2498.

    Google Scholar 

  • Goldenberg, H., Morré, D. J., and Crane, F. L. (1977).J. Cell Biol. 75, 209a.

    Google Scholar 

  • Goldstein, I. M., Cerqueira, M., Lind, S., and Kaplan, H. B. (1977).J. Clin. Invest. 59 249–254.

    Google Scholar 

  • Hildebrandt, A. G., and Roots, I. (1975).Arch. Biochem. Biophys. 171 385–397.

    Google Scholar 

  • Hidebrandt, A. G., Speck, M., and Roots, I. (1973).Biochem. Biophys. Res. Commun. 54 968–975.

    Google Scholar 

  • Kuthan, H., TsuJi, H., Graf, H., Ullrich, V., Werringloer, J., and Estabrook, R. W. (1978).FEBS Lett. 91 343–345.

    Google Scholar 

  • Loschen, G., Flohe, L., and Chance, B. (1971).FEBS Lett. 18 261–264.

    Google Scholar 

  • Löw, H., and Crane, F. L. (1978).Biochim. Biophys. Acta 515 141–161.

    Google Scholar 

  • May, J. M. and de Haen, C. (1979a).J. Biol. Chem. 254 9017–9021.

    Google Scholar 

  • May, J. M., and de Haen, C. (1979b).J. Biol. Chem. 254 2214–2220.

    Google Scholar 

  • McCord, J. M., and Fridovich, I. (1969).J. Biol. Chem. 6049–6055.

  • Menon, A. S., Meera Rau, Ramasarma, T., and Crane, F. L. (1980).FEBS Lett. 114 139–142.

    Google Scholar 

  • Morré, D. J. (1973). InMolecular Techniques and Approaches in Developmental Biology, M. J. Chripeels, ed., Wiley, New York, pp. 1–27.

    Google Scholar 

  • Mukherjee, S. P., and Lynn, W. S. (1977).Arch. Biochem. Biophys. 184 69–76.

    Google Scholar 

  • Ramasarma, T., MacKellar, W., and Crane, F. L. (1980).Indian J. Biochem. Biophys. 17 163–167.

    Google Scholar 

  • Segal, A. W., and Peters, T. J. (1976).Lancet 1 1363–1365.

    Google Scholar 

  • Swaroop, A., and Ramasarma, T. (1981).Biochem. J. 194 657–665.

    Google Scholar 

  • Thurman, R. G., Ley, H. G., and Scholz, R. (1972).Eur. J. Biochem. 25 420–430.

    Google Scholar 

  • Turrens, J. F., and Boveris, A. (1980).Biochem J. 191 421–427.

    Google Scholar 

  • Yunghans, W. N., and Morré, D. J. (1973).Prep. Biochem. 3 301–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasarma, T., Swaroop, A., MacKellar, W. et al. Generation of hydrogen peroxide on oxidation of NADH by hepatic plasma membranes. J Bioenerg Biomembr 13, 241–253 (1981). https://doi.org/10.1007/BF00743203

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743203

Key Words

Navigation