Skip to main content
Log in

NADH-ascorbate free radical and -ferricyanide reductase activities represent different levels of plasma membrane electron transport

  • Original Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Plasma membranes isolated from rat liver by two-phase partition exhibited dehydrogenase activities for ascorbate free radical (AFR) and ferricyanide reduction in a ratio of specific activities of 1 : 40. NADH-AFR reductase could not be solubilized by detergents from plasma membrane fractions. NADH-AFR reductase was inhibited in both clathrin-depleted membrane and membranes incubated with anti-clathrin antiserum. This activity was reconstituted in plasma membranes in proportion to the amount of clathrin-enriched supernatant added. NADH ferricyanide reductase was unaffected by both clathrin-depletion and antibody incubation and was fully solubilized by detergents. Also, wheat germ agglutinin only inhibited NADH-AFR reductase. The findings suggest that NADH-AFR reductase and NADH-ferricyanide reductase activities of plasma membrane represent different levels of the electron transport chain. The inability of the NADH-AFR reductase to survive detergent solubilization might indicate the involvement of more than one protein in the electron transport from NADH to the AFR but not to ferricyanide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaín, F. J., Burón, M. I., Rodríguez-Aguilera, J. C., Villalba, J. M., and Navas, P. (1990).Cancer Res. 50, 5887–5891.

    Google Scholar 

  • Alcaín, F. J., Burón, M. I., Villalba, J. M., and Navas, P. (1991).Biochim. Biophys. Acta 1073, 380–385.

    Google Scholar 

  • Burón, M. I., Villalba, J. M., and Navas, P. (1987).Epithelia 1, 295–306.

    Google Scholar 

  • Coassin, M., Tomasi, A., Vannini, V., and Ursini, F. (1991).Arch. Biochem. Biophys. 290, 458–462.

    Google Scholar 

  • Crane, F. L., Sun, I. L., Clarck, M. G., Grebing, C., and Löw, H. (1985).Biochim. Biophys. Acta 811, 233–264.

    Google Scholar 

  • Dancis, A., Klausner, R. D., Hinnebusch, A. G., and Barriocanal, J. G. (1990).Mol. Cell. Biol. 10, 2294–2301.

    Google Scholar 

  • Ellem, K. A. O., and Kay, G. F. (1983).Biochim. Biophys. Res. Commun. 112, 183–190.

    Google Scholar 

  • Geiss, D., and Schulze, H. U. (1975).FEBS Lett. 60, 374–379.

    Google Scholar 

  • Goldenberg, H. (1982).Biochim. Biophys. Acta 694, 203–223.

    Google Scholar 

  • Goldenberg, H., Crane, F. L., and Morré, D. J. (1979).J. Biol. Chem. 254, 2491–2498.

    Google Scholar 

  • Goldenberg, H., Grebing, C., and Löw, H. (1983).Biochem. Int. 6, 1–10.

    Google Scholar 

  • González-Reyes, J. A., Döring, O., Navas, P., Obst, G., and Böttger, M. (1992).Biochim. Biophys. Acta 1098, 177–183.

    Google Scholar 

  • Hossain, M. H., and Asada, K. (1985).J. Biol. Chem. 260, 12920–12926.

    Google Scholar 

  • Kasiwamata, S., Goto, S., Semba, R., and Suzuki, F. (1979).J. Biol. Chem. 254, 4577–4584.

    Google Scholar 

  • Kobayashi, K., Harada, Y., and Hayashi, K. (1991).Biochemistry 30, 8310–8315.

    Google Scholar 

  • Landschulz, W., Thesleff, I., and Ekblom, P. (1984).J. Cell Biol. 98, 596–601.

    Google Scholar 

  • Lin, H. C., Moore, M. S., Sanan, D. A., and Anderson, R. G. W. (1991).J. Cell Biol. 114, 881–891.

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Luster, D. G., and Buckhout, T. J. (1989).Plant Physiol. 91, 1014–1019.

    Google Scholar 

  • Minnifield, N., and Morré, D. J. (1984).Cell Biol. Int. Rep. 8, 215–219.

    Google Scholar 

  • Morré, D. J., Virgil, E. L., Frantz, C., Goldenberg, H., and Crane, F. L. (1978).Cytobiologie 18, 213–230.

    Google Scholar 

  • Morré, D. J., Sun, I. L., and Crane, F. L. (1985). InVitamins and Cancer: Human Cancer Prevention by Vitamins and Micronutrients (Meyskins, F. L., and Prasad, K. N., eds.), Humana Press, New Jersey, pp. 83–92.

    Google Scholar 

  • Morré, D. J., Crane, F. L., Sun, I. L., and Navas, P. (1987).Ann. N. Y. Acad. Sci. 498, 153–171.

    Google Scholar 

  • Navas, P., and Burón, M. I. (1989). InOxidoreduction at the Cell Membranes: Relation to Growth and Transport. (Crane, F. L., Morré, D. J., and Löw, H., eds.). CRC Press, Boca Raton, pp. 225–236.

    Google Scholar 

  • Navas, P., Sun, I. L., Morré, D. J., and Crane, F. L. (1986).Biochem. Biophys. Res. Commun. 135, 110–115.

    Google Scholar 

  • Navas, P., Estévez, A., Burón, M. I., Villalba, J. M., and Crane, F. L. (1988).Biochem. Biophys. Res. Commun. 154, 1029–1033.

    Google Scholar 

  • Navas, P., Nowack, D. D., and Morré, D. J. (1989).Cancer Res. 49, 2147–2156.

    Google Scholar 

  • Navas, P., Alcaín, F. J., Burón, M. I., Rodríguez-Aguilera, J. C., Villalba, J. M., Morré, D. M., and Morré, D. J. (1992).FEBS Lett. 299, 223–226.

    Google Scholar 

  • Noodlie, R. C., and Arion, W. J. (1966). InMethods in Enzymology, Vol. 9 (Colowick, S. P., and Kaplan, N. O., eds.), Academy Press, New York, pp. 619–625.

    Google Scholar 

  • Palmiter, R. D. (1969).Biochim. Biophys. Acta 178, 35–46.

    Google Scholar 

  • Park, C. H. (1985).Cancer Res. 45, 3969–3973.

    Google Scholar 

  • Park, C. H., and Kimler, B. F. (1991).Am. J. Clin. Nutr. 54, 1241–1246.

    Google Scholar 

  • Park, C. H., Bergsagel, D. E., and McCulloch, E. A. (1971).Science 174, 720–722.

    Google Scholar 

  • Pennington, R. J. (1961).Biochem. J. 80, 649–654.

    Google Scholar 

  • Renswoude, J. V. and Kempf, C. (1984).Methods Enzymol. 104, 329–339.

    Google Scholar 

  • Schnaitman, C., Erwin, V. G., and Greenawalt, J. W. (1967).J. Cell Biol. 32, 719–735.

    Google Scholar 

  • Schook, W., Puszkin, S., Bloom, V., Ores, C., and Komura, S. (1979).Proc. Natl. Acad. Sci. USA 76, 116–121.

    Google Scholar 

  • Schulze, H. U., and Staudinger, H. (1971).Hoppe-Seyler's Z. Physiol. Chem. 352, 1659–1674.

    Google Scholar 

  • Schulze, H. U., Gallencamp, H., and Staudinger, H. (1970).Hoppe-Seyler's Z. Physiol. Chem. 351, 809–817.

    Google Scholar 

  • Sun, I. L., Morré, D. J., Crane, F. L., Safranski, K., and Croze, E. M. (1984).Biochim. Biophys. Acta 797, 266–275.

    Google Scholar 

  • Sun, I. L., Crane, F. L., Grebing, C., and Löw, H. (1985).Exp. Cell Res. 156, 528–536.

    Google Scholar 

  • Sun, I. L., Crane, F. L., and Morré, D. J. (1983).Biochem. Biophys. Res. Commun. 115, 952–957.

    Google Scholar 

  • Sun, I. L., Sun, E. E., Crane, F. L., Morré, D. J., Lindgren, A., and Löw, H. (1992).Proc. Natl. Acad. Sci. USA 89, 11126–11130.

    Google Scholar 

  • Wang, C. S., and Alaupovic, P. (1978).J. Supramol. Struct. 9, 1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalba, J.M., Canalejo, A., Rodríguez-Aguilera, J.C. et al. NADH-ascorbate free radical and -ferricyanide reductase activities represent different levels of plasma membrane electron transport. J Bioenerg Biomembr 25, 411–417 (1993). https://doi.org/10.1007/BF00762467

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762467

Key words

Navigation