Skip to main content

Abstract

Hydrogen is a major element of the cell, it plays a key role in the biological energy cycle and thus in the cycle of matter on earth. The ability to consume or to evolve molecular hydrogen (H2) is widespread among prokaryotes (Schlegel and Schneider 1985) but rare in eukaryotic cells like algae (Stuart and Gaffron 1972), protozoa (Lindmark and Müller 1973) or higher plants. Hydrogen is metabolized in aerobic, facultatively anaerobic, strictly anaerobic or phototrophic eubacteria (both Gram-negative or Gram-positive), or in archaebacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MW, Mortenson LE and Chen JS, 1981. Hydrogenase. Biochimica et Biophysica Acta, 594: 105–176.

    Google Scholar 

  • Andersen, K, Tait RC and King WR, 1981. Plasmids required for utilization of molecular hydrogen by Alcaligenes eutrophus. Archives of Microbiology 129: 384–390.

    Article  CAS  Google Scholar 

  • Andersen K and Wilke-Douglas M, 1984. Construction and use of a gene bank of Alcaligenes eutrophus in analysis of ribulose bisphosphate carboxylase genes. Journal of Bacteriology 159: 973–978.

    PubMed  CAS  Google Scholar 

  • Aragno M and Schlegel HG, 1978. Physiological characterization of the hydrogen bacterium Aquaspirillum autotrophicum. Archives of Microbiology 116: 221–229.

    Article  CAS  Google Scholar 

  • Aragno M and Schlegel HG, 1981. The hydrogen oxidizing bacteria, pp 875–912. In: Starr MP, Stolp H. Trüper HG, Balows A and Schlegel HG. The procaryotes. Springer Verlag Berlin.

    Google Scholar 

  • Arp DJ, 1985. Rhizobium japonicum hydrogenase: purification to homogeneity from soybean nodules, and molecular characterization. Archives of Biochemistry and Biophysics 237: 504–512.

    Article  PubMed  CAS  Google Scholar 

  • Arp DJ and Burris RH, 1979. Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules. Biochimica et Biophysica Acta 570: 221–230.

    PubMed  CAS  Google Scholar 

  • Arp DJ, McCollum LC and Seefeldt LC, 1985. Molecular and immunological comparison of membrane-bound, H2-oxidizing hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii. Journal of Bacteriology 163: 15–20.

    PubMed  CAS  Google Scholar 

  • Ausubel FM, 1984. Regulation of nitrogen fixation genes. Cell 37: 5–6.

    Article  PubMed  CAS  Google Scholar 

  • Baron SF, Brown DP and Ferry JG, 1987. Locations of the hydrogenases of Methanobacterium formicicum after subcellular fractionation of cell extract. Journal of Bacteriology 169: 3823–3825.

    PubMed  CAS  Google Scholar 

  • Barraquio WL and Knowles R, 1988. Effect of hydrogen, sucrose and oxygen on uptake hydrogenase in nitrogen-fixing and ammonia-grown Pseudomonas saccharophila ATCC 15946. Journal of General Microbiology 134: 893–901.

    CAS  Google Scholar 

  • Bartha R and Ordal EJ, 1965. Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains. Journal of Bacteriology 89: 1015–1019.

    PubMed  CAS  Google Scholar 

  • Behki RM, Selvaray G, and Iyer VN, 1983. Hydrogenase and ribulose-1,5 bisphosphate carboxylase activities of Alcaligenes eutrophus ATCC17706 associated with an indigenous plasmid. Canadian Journal of Microbiology 29: 767–774.

    Article  CAS  Google Scholar 

  • Belasco JG and Higgins CF, 1988. Mechanisms of mRNA decay in bacteria; a perspective. Gene 72: 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Birkmann A, Sawers RG and Böck A, 1987. Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli. Molecular and General Genetics 210: 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Bonjour F and Aragno M, 1986. Growth of thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source. FEMS Microbiology Letters 35: 11–15.

    Article  CAS  Google Scholar 

  • Boursier P, Hanus FJ, Papen H, Becker MM, Russell SA and Evans HJ, 1988. Selenium increases hydrogenase expression in autotrophically cultured Bradyrhizobium japonicum and is a constituent of the purified enzyme. Journal of Bacteriology 170: 5594–5600.

    PubMed  CAS  Google Scholar 

  • Bowien B, Friedrich B and Friedrich CG, 1984. Involvement of megaplasmids in heterotrophic derepression of the carbon-dioxide assimilating enzyme system in Alcaligenes spp. Archives of Microbiology 139: 305–310.

    Article  CAS  Google Scholar 

  • Bowien B and Schlegel HG, 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annual Reviews of Microbiology 35: 405–452.

    Article  CAS  Google Scholar 

  • Bott M and Thauer RK, 1989. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. European Journal of Biochemistry 179: 469–472.

    Article  PubMed  CAS  Google Scholar 

  • Braun K and Gottschalk G, 1981. Effect of molecular hydrogen and carbon dioxide on chemoorganotrophic growth of Acetobacterium woodii and Clostridium aceticum. Archives of Microbiology 128: 289–294.

    Google Scholar 

  • Brewin NJ, DeJong TM, Phillips DA and Johnston AWB, 1980. Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature 288: 77–79.

    Article  CAS  Google Scholar 

  • Campbell PM and Smith GC, 1986. Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica. Archives of Biochemistry and Biophysics 244: 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Cangelosi GA and Wheelis ML, 1984. Regulation by molecular oxygen and organic substrates of hydrogenase synthesis in Alcaligenes eutrophus. Journal of Bacteriology 159: 138–144.

    PubMed  CAS  Google Scholar 

  • Cantrell MA, Haugland RA and Evans HJ, 1983. Construction of a Rhizobium japonicum gene bank and use in isolation of a hydrogen uptake gene. Proceedings of the National Academy of Sciences USA 80: 181–185.

    Article  CAS  Google Scholar 

  • Casse F, Boucher C, Juliot JS, Michel M and Dénarié G, 1979. Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. Journal of General Microbiology 113: 229–242.

    CAS  Google Scholar 

  • Chaudhuri A and Krasna AI, 1987. Isolation of genes required for hydrogenase synthesis in Escherichia coli. Journal of General Microbiology 133: 3289–3298.

    PubMed  CAS  Google Scholar 

  • Colbeau A and Vignais PM, 1983. The membrane-bound hydrogenase of Rhodopseudomonas capsulata is inducible and contains nickel. Biochimica et Biophysica Acta 748: 128–138.

    Article  CAS  Google Scholar 

  • Colbeau A, Godfroy A and Vignais PM, 1986. Cloning of DNA fragments carrying hydrogenase genes of Rhodopseudomonas capsulata. Biochimie 68: 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Collins JJ, Roberts GP and Brill WJ, 1986. Post transcriptional control of Klebsiella pneumonia nif mRNA stability by the nifL product. Journal of Bacteriology 168: 173–178.

    PubMed  CAS  Google Scholar 

  • Conrad R and Seiler W, 1980. Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget. Journal of Geophysical Research 85: 5493–5498.

    Article  CAS  Google Scholar 

  • Conrad R and Seiler W, 1981. Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes. Soil Biology and Biochemistry. 13: 43–49.

    Article  CAS  Google Scholar 

  • Conrad R, Aragno M and Seiler W, 1983. The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen. FEBS Microbiology Letters 18: 207–210.

    Article  CAS  Google Scholar 

  • Conrad R, 1988. Biogeochemistry and Ecophysiology of atmospheric CO and H2. Advances in Microbial Ecology 10: 231–283.

    CAS  Google Scholar 

  • Ditta G, Schmidhauser T, Yakobson E, Lu P, Wang X-W, Finlay DR, Guiney D and Helinski DR, 1985. Plasmids related to the broad host range vector pRK290 useful for gene cloning and monitoring gene expression. Plasmid 13: 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin B and Helinski D, 1980. Broad host range cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proceedings of the National Academy of Sciences USA 77: 7347–7354.

    Article  CAS  Google Scholar 

  • Don RH and Pemberton JM, 1981. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. Journal of Bacteriology 145: 681–686.

    PubMed  CAS  Google Scholar 

  • Doyle C and Arp DJ, 1987. Regulation of H2 oxidation activity and hydrogenase protein levels by H2, O2, and carbon substrates in Alcaligenes latus. Journal of Bacteriology 169: 4463–4468.

    PubMed  CAS  Google Scholar 

  • Drummond M, Whitty P and Wootton JC, 1986. Sequence and domain relationship of ntrC and nifA from Klebsiella pneumoniae: homologies to other regulatory proteins. EMBO Journal 5: 441–447.

    PubMed  CAS  Google Scholar 

  • Drutschmann M and Klemme JH, 1985. Sulfide-repressed membrane-bound hydrogenase in the thermophilic facultative phototroph Chloroflexus aurantiacus. FEMS Microbiology Letters 28: 231–235.

    Article  CAS  Google Scholar 

  • Eberz G, Hogrefe C, Kortlüke C, Kamienski A and Friedrich B, 1986. Molecular cloning of structural and regulatory hydrogenase (hox) genes of Alcaligenes eutrophus H16. Journal of Bacteriology 168: 636–641.

    PubMed  CAS  Google Scholar 

  • Eberz G, Eitinger T, Friedrich B, 1989. Genetic determinants of a nickel-specific transport system are part of the plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus. Journal of Bacteriology 171: 1340–1345.

    PubMed  CAS  Google Scholar 

  • Ecker C, Reh M and Schlegel HG, 1986. Enzymes of the autotrophic pathway in mating partners and transconjugants of Nocardia opaca 1b and Rhodococcus erythropolis. Archives of Microbiology 145: 280–286.

    Article  CAS  Google Scholar 

  • Evans H J, Ruiz-Aragüeso T, Jennings N and Hanus J, 1977. Energy coupling efficiency of symbiotic nitrogen-fixation. In: Hollaender A. Genetic engineering for nitrogen fixation. Plenum, New York.

    Google Scholar 

  • Evans JH, Harker AR, Papen H, Russell SA, Hanus FJ, and Zuber M, 1987. Physiology, biochemistry and genetics of the uptake hydrogenase in rhizobia. Annual Reviews of Microbiology 41: 335–361.

    Article  CAS  Google Scholar 

  • Fauque G, Teixera M, Moura I, Lespinat PA, Xavier PA, DerVartanian DV, Peck HD, LeGall J and Moura JG, 1984. Purification, characterization and redox properties of the hydrogenase from Methanosarcina barkeri (DSM 800). European Journal of Biochemistry 142: 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Fauque G, Peck Jr HD, Moura JG, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I and LeGall J, 1988. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiology Reviews 54: 299–344.

    Article  CAS  Google Scholar 

  • Fiebig K and Friedrich B, 1989. Purification of the F420-reducing hydrogenase from Methanosarcina barkeri. European Journal of Biochemistry 184: 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Fischer HM, Buderer T and Hennecke H, 1988. Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acid Research 5: 2207–2224.

    Article  Google Scholar 

  • Fox JA, Livingston DJ, Orme-Johnson WH and Walsh CT, 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization. Biochemistry 26: 4219–4227.

    Article  PubMed  CAS  Google Scholar 

  • Friedman AM, Long SR, Brown SE, Buikema WJ and Ausubel FM, 1982. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18: 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich B, 1989. Genetics of energy converting systems in aerobic chemolithotrophs, pp 415–436. In: Schlegel HG, and Bowien B. Autotrophic Bacteria. Brock/Springer Series in Contemporary Biosciences.

    Google Scholar 

  • Friedrich B, Friedrich CG, Meyer M and Schlegel HG, 1984a. Expression of hydrogenase in Alcaligenes spp. is altered by interspecific plasmid exchange. Journal of Bacteriology 158: 331–333.

    CAS  Google Scholar 

  • Friedrich B, Heine E, Finck A and Friedrich CG, 1981a. Nickel requirement for active hydrogenase formation in Acaligenes eutrophus. Journal of Bacteriology 145: 1144–1149.

    CAS  Google Scholar 

  • Friedrich B, Hogrefe C and Schlegel HG, 1981b. Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. Journal of Bacteriology 147: 198–205.

    CAS  Google Scholar 

  • Friedrich CG, 1982. Derepression of hydrogenase during limitation of electron donors and derepression of ribulosebisphosphate carboxylase during carbon limitation of Alcaligenes eutrophus. Journal of Bacteriology 149: 203–210.

    PubMed  CAS  Google Scholar 

  • Friedrich CG and Friedrich B, 1983. Regulation of hydrogenase formation is temperature sensitive and plasmid coded in Alcaligenes eutrophus. Journal of Bacteriology 153: 176–181.

    PubMed  CAS  Google Scholar 

  • Friedrich CG, Friedrich B and Bowien B, 1981c. Formation of enzymes of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus. Journal of General Microbiology 122: 69–78.

    CAS  Google Scholar 

  • Friedrich CG and Mitrenga G, 1981. Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiology Letters 10: 209–212.

    Article  CAS  Google Scholar 

  • Friedrich CG, Schneider K and Friedrich B, 1982. Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. Journal of Bacteriology 152: 42–48.

    PubMed  CAS  Google Scholar 

  • Friedrich CG, Suetin S and Lohmeyer M, 1984b. Nickel and iron incorporation into soluble hydrogenase of Alcaligenes eutrophus. Archives of Microbiology 140: 206–211.

    Article  CAS  Google Scholar 

  • Fuchs G, 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiology Reviews 39: 181–213.

    Article  CAS  Google Scholar 

  • Gerstenberg C, Friedrich B and Schlegel HG, 1982. Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Archives of Microbiology 133: 90–96.

    Article  CAS  Google Scholar 

  • Gogotov I, 1984. Hydrogenase of purple bacteria: properties and regulation of synthesis. Archives of Microbiology 140: 86–90.

    Article  CAS  Google Scholar 

  • Gogotov IN and Schlegel HG, 1984. N2 fixation by chemoautotrophic hydrogen bacteria. Archives of Microbiology 97: 359–362.

    Article  Google Scholar 

  • Gogotov IN, 1986. Hydrogenases of phototrophic microorganisms. Biochimie 68: 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk G, 1989. Bioenergetics of methanogenic and acetogenic bacteria, pp 383–396. In: Schlegel HG and Bowien B. Autotrophic bacteria. Brock/Springer Series in Contemporary Biosciences.

    Google Scholar 

  • Graham LA, Stults LW and Maier RJ, 1984. Nitrogenase, hydrogenase relationships in Rhizobium japonicum. Archives of Microbiology 140: 243–246.

    Article  CAS  Google Scholar 

  • Gray CT and Gest H, 1965. Biological formation of molecular hydrogen. Science 148: 186–191.

    Article  PubMed  CAS  Google Scholar 

  • Hanson JB and Olsen RH, 1978. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. Journal of Bacteriology 135: 227–328.

    Google Scholar 

  • Harker AR, Lambert GR, Hanus FJ and Evans HJ, 1985. Further evidence that two unique subunits are essential for expression of hydrogenase activity in Rhizobium japonicum. Journal of Bacteriology 164: 187–191.

    PubMed  CAS  Google Scholar 

  • Haugland RA, Cantrell MA, Beaty JS, Hanus FJ, Russell SA and Evans HJ, 1984. Characterization of Rhizobium japonicum hydrogen uptake genes. Journal of Bacteriology. 159: 1006–1012.

    PubMed  CAS  Google Scholar 

  • Hausinger RP 1987. Nickel utilization by microorganisms. Microbiological Reviews 51: 22–42.

    PubMed  CAS  Google Scholar 

  • Hennecke H, Fischer H-M, Gubler M, Thöny B, Anthamatten D, Kullik I, Ebeling S, Fritsche and Zürcher T, 1988. Regulation of nif and fix genes in Bradyrhizobium japonicum occurs by a cascade of two consecutive gene activation steps of which the second one is oxygen sensitive. pp 339–349. In: Bothe H, de Bruijn FJ and Newton WE. Nitrogen fixation, hundred years after. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Hennecke H and Shanmugan KT, 1979. Temperature control of nitrogen fixation in Klebsiella pneumoniae. Archives of Microbiology 123: 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Hirschmann J Wong PK, Sei K, Keener J and Kustu S, 1985. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. Proceedings of the National Academy of Sciences USA 82: 7525–7529.

    Article  Google Scholar 

  • Hogrefe C and Friedrich B, 1984. Isolation and characterization of megaplasmid DNA from lithoautotrophic bacteria. Plasmid 12: 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Hogrefe C, Römermann D and Friedrich B, 1984. Alcaligenes eutrophus hydrogenase genes (Hox). Journal of Bacteriology 158: 43–48.

    PubMed  CAS  Google Scholar 

  • Hom SM, Graham La and Maier RJ, 1985. Isolation of genes (nif/hup cosmids) involved in hydrogenase and nitrogenase activities in Rhizobium japonicum. Journal of Bacteriology 161: 882–887.

    PubMed  CAS  Google Scholar 

  • Hornhardt S, Schneider K, and Schlegel HG, 1986. Characterization of a native subunit of the NAD-linked hydrogenase isolated from a mutant of Alcaligenes eutrophus H16. Biochimie 68: 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Hunt TP and Magasanik B, 1985. Transcription of glnA by purified Escherichia coli components: Core RNA polymerase and the products of glnF, glnG and glnL. Proceedings of the National Academy of Sciences USA 82: 8453–8457.

    Article  CAS  Google Scholar 

  • Im DS and Friedrich CG, 1984. N-Hydroxides, aminotriazole, and cyanide activate ribulosebisphosphate carboxylase formation in Alcaligenes eutrophus. FEMS Microbiology Letters 25: 143–147.

    Article  CAS  Google Scholar 

  • Imhoff JF, Trüper HG and Pfennig N, 1984. Rearrangement of the species and genera of the phototrophic ‘purple nonsulfur bacteria’. International Journal of Systematic Bacteriology 34: 340–343.

    Article  Google Scholar 

  • Jarrel KF and Sprott GD, 1982. Nickel transport in Methanobacterium bryantii. Journal of Bacteriology 151: 1195–1203.

    Google Scholar 

  • Jones WJ, Nagle Jr DP and Whitman WB, 1987. Methanogens and the diversity of archaebacteria. Microbiological Reviews 51: 135–177.

    PubMed  CAS  Google Scholar 

  • Kado CI and Liu ST, 1981. Rapid procedure for detection and isolation of large and small plasmids. Journal of Bacteriology 145: 1365–1373.

    PubMed  CAS  Google Scholar 

  • Kärst U and Friedrich CG, 1987. Identification of new peptides synthesized under the hydrogenase control system of Alcaligenes eutrophus. Archives of Microbiology 147: 346–353.

    Article  Google Scholar 

  • Kärst U, Suetin S and Friedrich CG, 1987. Purification and properties of a protein linked to the soluble hydrogenase of hydrogen-oxidizing bacteria. Journal of Bacteriology 169: 2079–2085.

    PubMed  Google Scholar 

  • Kagan SA and Brewin NJ, 1985. Mutagenesis of a Rhizobium plasmid carrying hydrogenase determinants. Journal of General Microbiology 131: 1141–1147.

    CAS  Google Scholar 

  • Kaltwasser K and Frings W, 1980. Transport and metabolism of nickel in microorganism, pp 463–491. In: Nriagu JU. Nickel in the environment. John Wiley & Sons, New York.

    Google Scholar 

  • Kawasumi T, Igarashi Y, Kodama T and Minoda Y, 1984. Hydrogenobacter thermophilus gen. nov. sp. nov., an extremely thermophilic aerobic, hydrogen-oxidizing bacterium. International Journal of Systematic Bacteriology 34: 5–10.

    Article  CAS  Google Scholar 

  • Klintworth R, Husemann M, Salnikow J and Bowien B, 1985. Chromosomal and plasmid locations for phosphoribulokinase genes in Alcaligenes eutrophus. Journal of Bacteriology 164: 954–956.

    PubMed  CAS  Google Scholar 

  • Knauf VC and Nester EW, 1982. Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8: 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Knüttel K, Schneider K and Schlegel HG, 1989. The membrane-bound hydrogenase from Paracoccus denitrificans. Purification and molecular characterization. European Journal of Biochemistry 179: 101–108.

    Article  PubMed  Google Scholar 

  • Kojima N, Fox JA, Hausinger RP, Daniels L, Orme-Johnson WH and Walsh C, 1983. Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacerium thermoautotrophicum. Proceedings of the National Academy of Sciences USA 80: 378–382.

    Article  CAS  Google Scholar 

  • Kondratieva EN, 1989. Chemolithotrophy of phototrophic bacteria, pp 283–287. In: Autotrophic bacteria. Schlegel HG and Bowien B (eds.) Brock/Springer Series in Contemporary Biosciences.

    Google Scholar 

  • Kortlüke C, Hogrefe C, Eberz G, Pühler A and Friedrich B, 1987. Genes of lithoautotrophic metabolism are clustered on the megaplasmid pHG1 in Alcaligenes eutrophus. Molecular and General Genetics 210: 122–128.

    Article  Google Scholar 

  • Kraut M and Meyer O, 1988. Plasmids in carboxydotrophic bacteria: physical and restriction analysis. Archives of Microbiology 149: 540–546.

    Article  CAS  Google Scholar 

  • Kraut M, Hugendieck I, Herwig S and Meyer O, 1989. Homology and distribution of CO dehydrogenase structural genes in carboxydotrophic bacteria. Archives of Microbiology 152: 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Kwon MO and Kim YM, 1985. Relationship between carbon monoxide dehydrogenase and a small plasmid in Pseudomonas carboxydovorans. FEMS Microbiology Letters 29: 155–159.

    Article  CAS  Google Scholar 

  • Lambert GR, Hanus FJ, Harker AR, Cantrell MA, Russel, SA and Evans HJ, 1985. Intra- and interspecies transfer and expression of Rhizobium japonicum hydrogen uptake genes and autotrophic growth capability. Proceedings of the National Academy of Sciences USA 82: 3232–3236.

    Article  CAS  Google Scholar 

  • Leclerc M, Colbeau A, Cauvin B and Vignais PM, 1988. Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase hup of Rhodobacter capsulatus. Molecular and General Genetics 214: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Corrected, 1989. Molecular and General Genetics 215: 368.

    Article  Google Scholar 

  • Lehmicke LG and Lidström ME, 1985. Organization of genes necessary for growth of the hydrogen-methanol autotroph Xanthobacter sp. strain H4–14 on hydrogen and carbon dioxide. Journal of Bacteriology 162: 1244–1249.

    PubMed  CAS  Google Scholar 

  • Lepo JE, Hickok MM, Cantrell A, Russell SA and Evans HJ, 1981. Revertible hydrogen uptake-deficient mutants of Rhizobium japonicum. Journal of Bacteriology 146: 614–620.

    PubMed  CAS  Google Scholar 

  • Leyva A, Palacios JM, Mozo T and Ruiz-Argüeso T, 1987. Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum. Journal of Bacteriology 169: 4929–4934.

    PubMed  CAS  Google Scholar 

  • Li C, Peck Jr HD, LeGall J and Przybyla AE, 1987. Cloning, characterization and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFe) hydrogenase of Desulfovibrio gigas. DNA 6: 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Lim ST, Andersen K, Tait R and Valentine RC, 1980. Genetic engineering in agriculture; hydrogen uptake (hup) genes. Trends in Biochemical Sciences 5: 167–170.

    Article  CAS  Google Scholar 

  • Lindmark DG and Müller M, 1973. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. Journal of Biological Chemistry 248: 7724–7728.

    PubMed  CAS  Google Scholar 

  • Livingston DJ, Fox JA, Orme-Johnson WH and Walsh CT, 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 2. Kinetic and hydrogen-transfer studies. Biochemistry 26: 4228–4237.

    Article  PubMed  CAS  Google Scholar 

  • Lohmeyer M and Friedrich CG, 1987. Nickel transport in Alcaligenes eutrophus. Archives of Microbiology 149: 130–135.

    Article  CAS  Google Scholar 

  • Madigan MT and Gest H, 1979. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. Journal ofBacteriology 137: 524–530.

    CAS  Google Scholar 

  • Maier RJ, 1986. Biochemistry, regulation, and genetics of hydrogen oxidation in Rhizobium. CRC Critical Reviews in Biotechnology 3: 17–38; CRC Press, Incorporation.

    Google Scholar 

  • Maier RJ, Campbell NER, Hanus FJ, Simpson FB, Simpson SA and Evans HJ, 1978. Expression of hydrogenase in free-living Rhizobium japonicum. Proceedings of the National Academy of Sciences USA 75: 3258–3262.

    Article  CAS  Google Scholar 

  • Malik KA and Schlegel HG, 1981. Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiology Letters 11: 63–67.

    Article  CAS  Google Scholar 

  • Menon NK, Peck Jr HD, Le Gall J and Przybyla AE, 1987. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus. Journal of Bacteriology 169: 5401–5407.

    PubMed  CAS  Google Scholar 

  • Corrected 1988, Journal of Bacteriology 170:4429.

    Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P and van Gijsegem F, 1985. Alcaligenes eutrophus CH34 is a facultative chemolithoautotroph with plasmid-bound resistance to heavy metals. Journal of Bacteriology 162: 328–334.

    PubMed  CAS  Google Scholar 

  • Merrick M, Gibbins J and Toukdarian A, 1987. The nucleotide sequence of the sigma factor ntrA (rpoN) of Azotobacter vinelandii: Analysis of conserved sequences in NtrA proteins. Molecularand General Genetics 210: 323–330.

    Article  CAS  Google Scholar 

  • Meyer O, 1989. Aerobic carbon monoxide oxidizing bacteria, pp. 331–350. In: Schlegel HG and Bowien B. Autotrophic bacteria. Brock/Springer Series of Contemporary Biosciences.

    Google Scholar 

  • Morris JG, 1979. Nature of oxygen toxicity in anaerobic microorganisms, pp. 149–162. In: LifeScience Report 13. Bernhard S and Shilo M. Strategies for microbial life in extreme environments. Verlag Chemie Weinheim.

    Google Scholar 

  • Moshiri FM, Stults F, Novak P, Maier RJ, 1983. NifHup mutants of Rhizobium japonicum.Journal of Bacteriology 155: 926–929.

    PubMed  CAS  Google Scholar 

  • Muth E, 1988. Localization of the F420-reducing hydrogenase in Methanococcus voltae cells by immunogold technique. Archives of Microbiology 150: 205–207.

    Article  CAS  Google Scholar 

  • Muth E, Moerschel E and Klein A, 1987. Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae. European Journal of Biochemistry 169: 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Nies D, Mergeay M, Friedrich B and Schlegel HG, 1987. Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. Journal of Bacteriology 169: 4865–4868.

    PubMed  CAS  Google Scholar 

  • Nokhal TH and Schlegel HG, 1980. The regulation of hydrogenase formation as a differentiating character of strains of Paracoccus denitrificans. Antonie van Leeuvenhoek Journal of Microbiology and Serology 46: 143–155.

    Article  CAS  Google Scholar 

  • Novak PD and Maier RJ, 1987. Inhibition of hydrogenase synthesis by DNA gyrase inhibitors in Bradyrhizobium japonicum. Journal of Bacteriology 169: 2708–2712.

    PubMed  CAS  Google Scholar 

  • Ohi K, Takada N, Komemushi S, Okazaki M and Miura Y, 1979. A new species of hydrogen-utilizing bacterium. Journal of General and Applied Microbiology 25: 53–58.

    Article  CAS  Google Scholar 

  • Okura I, 1986. Application of hydrogenase for photoinduced hydrogen evolution. Biochimie 68: 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Palleroni NJ, Kunisawa R, Contopoulou R and Doudoroff M, 1973. Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology 23: 333–339.

    Article  CAS  Google Scholar 

  • Petrov RR, Utkin IB and Popov VO, 1989. Effect of redox potential on the activation of the NAD-dependent hydrogenase from Alcaligenes eutrophus Z1. Archives of Biochemistry and Biophysics 268: 287–297.

    Article  PubMed  CAS  Google Scholar 

  • Pinkwart M, Schneider K and Schlegel HG, 1983. Purification and properties of the membrane-bound hydrogenase from N2-fixing Alcaligenes latus. Biochimica et Biophysica Acta 745: 267–268.

    Article  PubMed  CAS  Google Scholar 

  • Pinkwart M, Schneider K and Schlegel HG, 1983. The hydrogenase of a thermophilic hydrogen-oxidizing bacterium. FEMS Microbiology Letters 17: 137–141.

    Article  CAS  Google Scholar 

  • Podzuweit HG, Arp DJ, Schlegel HG and Schneider K, 1986. Investigation of the H2-oxidizing activities of Alcaligenes eutrophus H16 membranes with artificial electron acceptors, respiratory inhibitors and redox-spectroscopic procedures. Biochimie 68: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Podzuweit HG, Schneider K and Schlegel HG, 1983. Autotrophic growth and hydrogenase activity of Pseudomonas saccharophila. FEMS Microbiology Letters 19: 169–173.

    Article  CAS  Google Scholar 

  • Pootjes CF, 1977. Evidence for plasmid coding of the ability to utilize hydrogen gas by Pseudomonas facilis. Biochemical and Biophysical Research Communications 76: 1002–1006.

    Article  PubMed  CAS  Google Scholar 

  • Prickril BC, Czechowski MH, Przybyla AE, Peck Jr HD and LeGall J, 1986. Putative signal peptide on the small subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris. Journal of Bacteriology 167: 722–725.

    PubMed  CAS  Google Scholar 

  • Ragsdale SW and Ljungdahl LG, 1984. Hydrogenae from Acetobacterium woodii. Archives of Microbiology 139: 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN, Beckler GS, Cram DS, Hamilton PT, Brown JW, Krzycki JA, Kolodziej AF, Alex L, Orme-Johnson WH and Walsh CT, 1989. A hydrogenase linked gene in Methanobacterium thermoautotrophicum DH encodes a poly-ferredoxin. Proceedings of the National Academy of Sciences USA 86: 3031–3035.

    Article  CAS  Google Scholar 

  • Reh M and Schlegel HG, 1975. Chemolithoautotrophie als eine übertragbare, autonome Eigenschaft von Nocardia opaca 1b. Nachrichten der Akademie der Wissenschaften in Göttingen II. Mathematisch-Physikalische Klasse 12: 207–216.

    Google Scholar 

  • Reh M and Schlegel HG, 1981. Hydrogen autotrophy as a transferable genetic character of Nocardia opaca 1b. Journal of General Microbiology 126: 327–336.

    CAS  Google Scholar 

  • Römermann D and Friedrich B, 1985. Denitrification by Alcaligenes eutrophus is plasmid dependent. Journal of Bacteriology 162: 852–854.

    PubMed  Google Scholar 

  • Römermann D, Lohmeyer M, Friedrich CG and Friedrich B, 1988. Pleiotropic mutants from Alcaligenes eutrophus defective in the metabolism of hydrogen, nitrate, urea and fumerate. Archives of Microbiology 149: 471–475.

    Article  Google Scholar 

  • Römermann D, Warrelmann J, Bender RA, Friedrich B, 1989. An rpoN like gene of Alcaligenes eutrophus and Pseudomonas facilis controls the expression of diverse metabolic pathways, including hydrogen oxidation. Journal of Bacteriology 171: 1093–1099.

    PubMed  Google Scholar 

  • Rohde C, Johannssen W and Mayer F, 1986a. Electron microscopic localization of hydrogenase genes on the megaplasmid pHG1 in Alcaligenes eutrophus. Molecular and General Genetics 202: 476–480.

    Article  CAS  Google Scholar 

  • Rhode M, Johannssen W and Mayer F, 1986b. Immunochemical localization of the soluble NAD-dependent hydrogenase in cells of Alcaligenes eutrophus. FEMS Microbiology Letters 36: 83–86.

    Article  Google Scholar 

  • Ronson CW, Nixon BT, Albright LM and Ausubel FM, 1987. The Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. Journal of Bacteriology 169: 2424–2431.

    PubMed  CAS  Google Scholar 

  • Sankar P and Shanmugam KT, 1988. Biochemical and genetic analysis of hydrogen metabolism in Escherichia coli: the hydB Gene. Journal of Bacteriology 170: 5433–5439.

    PubMed  CAS  Google Scholar 

  • Sayavedra-Soto LA, Powell GK, Evans HJ and Morris RO, 1988. Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proceedings of the National Academy of Sciences USA 85: 8395–8399.

    Article  CAS  Google Scholar 

  • Schink B and Probst I, 1980. Competitive inhibition of the membrane-bound hyrogenase of Alcaligenes eutrophus by molecular oxygen. Biochemical and Biophysical Research Communicational 95: 1563–1569.

    Article  CAS  Google Scholar 

  • Schink B and Schlegel HG, 1979. The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification, and biochemical properties. Biochimica et Biophysica Acta 567: 315–324.

    PubMed  CAS  Google Scholar 

  • Schlegel HG and Friedrich CG, 1985. Key enzymes of autotrophic metabolism in hydrogen-oxidizing bacteria: regulation of their formation. FEMS Symposium 23: 199–206.

    CAS  Google Scholar 

  • Schlegel HG and Schneider K, 1978. Introductory report: distribution and physiological role of hydrogenases in microorganisms, pp 15–44. In: Schlegel HG and Schneider K. Hydrogenases: Their catalytic activity, structure and function. Goltze KG, Göttingen.

    Google Scholar 

  • Schlegel HG and Schneider K, 1985. Microbial metabolism of hydrogen, pp. 439–457. In: Moo-Young M. Comprehensive Biotechnology 1. Pergamon Press, Oxford.

    Google Scholar 

  • Schlesier M and Friedrich B, 1981. In vivo inactivation of soluble hydrogenase of Alcaligenes eutrophus. Archives of Microbiology 129: 150–153.

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Cammack R, Schlegel HG and Hall DO, 1979. The iron-sulphur centers of soluble hydrogenase from Alcaligenes eutrophus. Biochimica et Biophysica Acta 578: 445–461.

    PubMed  CAS  Google Scholar 

  • Schneider K, Cammack R and Schlegel JG, 1984a. Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1b. European Journal of Biochemistry 142: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Schlegel HG and Jochim K, 1984b. Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1b. European Journal of Biochemistry 138: 533–541.

    Article  PubMed  CAS  Google Scholar 

  • Schneider B, Nies A and Friedrich B, 1988. Transfer and expression of lithoautotrophy and denitrification in a host lacking these abilities. Applied and Environmental Microbiology 54: 3173–3176.

    PubMed  CAS  Google Scholar 

  • Schneider K, Patil DS and Cammack R, 1983. ESR properties of membrane-bound hydrogenases from aerobic hydrogen bacteria. Biochimica et Biophysica Acta 748: 353–361.

    Article  CAS  Google Scholar 

  • Schneider K and Piechulla B, 1986. Isolation and immunological characterization of the four non-identical subunits of the soluble NAD-linked hydrogenase from Alcaligenes eutrophus H16. Biochimie 68: 5–13.

    Article  PubMed  CAS  Google Scholar 

  • Schneider K and Schlegel HG, 1981. Production of superoxide radicals by soluble hydrogenase of Alcaligenes eutrophus H16. Biochemical Journal 193: 99–107.

    PubMed  CAS  Google Scholar 

  • Schuler S and Conrad R, Soils contain two different activities for oxidation of hydrogen. FEMS Microbial Ecology, in press.

    Google Scholar 

  • Seefeldt LG, McCollum LC, Doyle Cm and Arp DJ, 1987. Immunological and molecular evidence for membrane-bound dimeric hydrogenase in Rhodopseudomonas capsulata. Biochimica et Biophysica Acta 914: 299–303.

    Article  Google Scholar 

  • Sensfuss C, Reh M and Schlegel HG, 1986. No correlation exists between the conjugative transfer of the autotrophic character and that of plasmids in Nocardia opaca strains. Journal of General Microbiology 132: 997–1007.

    PubMed  CAS  Google Scholar 

  • Serebryakova LT, Zorin NA and Gogotov IN, 1987. Hydrogenase from the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Biokhimiya 52: 908–914.

    CAS  Google Scholar 

  • Shiba H, Kawasumi T, Igarashi Y, Kodama T and Minoda Y, 1985. The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus. Archives of Microbiology 141: 198–203.

    Article  CAS  Google Scholar 

  • Siefert E and Pfennig N, 1979. Chemoautotrophic growth of Rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate. Archives of Microbiology 122: 177–182.

    Article  CAS  Google Scholar 

  • Sim E and Sim RB, 1979. Hydrogenase parameters of the detergent-solubilized hydrogenase from Paracoccus denitrificans. European Journal of Biochemistry 97: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Priefer U and Pühler A, 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1: 784–791.

    Article  CAS  Google Scholar 

  • Sprott GD, Shaw KM and Beveridge TJ, 1987. Properties of the particulate enzyme F420-reducing hydrogenase isolated from Methanospirillum hungatei. Canadian Journal of Microbiology 33: 896–904.

    Article  CAS  Google Scholar 

  • Stoker K, Oltmann LF and Stouthamer AH, 1989. Randomly induced Escherichia coli K-12 Tn5 insertion mutants defective in hydrogenase activity. Journal of Bacteriology 171: 831–836.

    PubMed  CAS  Google Scholar 

  • Stuart TS and Gaffron H, 1972. The mechanism of hydrogen photoproduction by several algae. II. The contribution of photosystem II. Planta (Berlin) 106: 101–112.

    Article  CAS  Google Scholar 

  • Stults LW, Mallick S and Maier RJ, 1987. Nickel uptake in Bradyrhizobium japonicum. Journal of Bacteriology 169: 1398–1402.

    PubMed  CAS  Google Scholar 

  • Stults LW, Sray WA and Maier RJ, 1986. Regulation of hydrogenase synthesis by nickel in Bradyrhizobium japonicum. Archives of Microbiology 146: 280–283.

    Article  CAS  Google Scholar 

  • Tabillion R and Kaltwasser H, 1977. Energieabhängige 63Ni-Aufnahme bei Alcaligenes eutrophus Stamm H1 und H16. Archives of Microbiology 113: 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR, 1988. Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiological Reviews 52: 155–189.

    PubMed  CAS  Google Scholar 

  • Takakuwa S, 1987. Nickel uptake in Rhodopseudomonas capsulata. Archives of Microbiology 149: 57–61.

    Article  CAS  Google Scholar 

  • Terlesky KC and Ferry JG, 1988. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. Journal of Biological Chemistry 263: 4075–4079.

    PubMed  CAS  Google Scholar 

  • Thauer RK, 1989. Energy metabolism of sulfate reducing bacteria, pp 397–413. In: Schlegel HG and Bowien B. Autotrophic bacteria. Brock/Springer Series of Contemporary Biosciences.

    Google Scholar 

  • Timotius K and Schlegel HG, 1987. Aus Abwässern isolierte nickel-resistente Bakterien. Nachrichten der Akademie der Wissenschaften in Göttingen, II. Mathematisch-Physikalische Klasse Nr. 3: 1–9.

    Google Scholar 

  • Trüper HG, 1989. Physiology and biochemistry of phototrophic bacteria, pp 267–281. In: Schlegel HG and Bowien B. Autotrophic Bacteria. Brock/Springer Series of Contemporary Biosciences.

    Google Scholar 

  • Uffen RL, 1983. Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: Cell growth and properties of the oxidation system. Journal of Bacteriology 155: 956–965.

    PubMed  CAS  Google Scholar 

  • Umeda F, Min H, Urushira M, Okazaki M and Miura Y, 1986. Conjugal transfer of hydrogen-oxidizing ability of Alcaligenes hydrogenophilus to Pseudomonas oxalaticus. Biochemical and Biophysical Research Communications 137: 108–113.

    Article  PubMed  CAS  Google Scholar 

  • van Berkum D, 1987. Expression of uptake hydrogenase and hydrogen oxidation during heterotrophic growth of Bradyrhizobium japonicum. Journal of Bacteriology 169: 4565–4569.

    PubMed  Google Scholar 

  • van Dongen W, Hagen W, van den Berg W and Veeger C, 1988. Evidence for an unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough). European Journal of Biochemistry 148: 515–520.

    Google Scholar 

  • Walsh CT and Orme-Johnson WH, 1987. Nickel enzymes. Biochemistry 26: 4901–4906.

    Article  CAS  Google Scholar 

  • Warrelmann J and Friedrich B, 1986. Mutants of Pseudomonas facilis defective in lithoautotrophy. Journal of General Microbiology 132: 91–96.

    CAS  Google Scholar 

  • Warrelmann J and Friedrich B, 1989. Genetic transfer of lithoautotrophy mediated by a plasmid-cointegrate from Pseudomonas facilis. Archives Microbiology 151: 359–364.

    Article  CAS  Google Scholar 

  • Waugh R and Boxer DH, 1986. Pleiotropic hydrogenase mutants of Escherichia coli K-12: growth in the presence of nickel can restore hydrogenase activity. Biochimie 68: 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Weihs V, Schmidt K, Schneider B and Friedrich B, 1989. The formation of an oxygen-binding flavohemoprotein in Alcaligenes eutrophus is plasmid-determined. Archives of Microbiology, 151: 546–550.

    Article  CAS  Google Scholar 

  • Widdel F, 1988. Microbial ecology of sulfate and sulfur reducing bacteria, pp. 465–584. In: Zehnder AJB. Biology of Anaerobic Microorganisms; John Wiley & Sons, New York.

    Google Scholar 

  • Wilde E and Schlegel HG, 1982. Oxygen tolerance of strictly aerobic hydrogen-oxidizing bacteria. Antonie van Leeuwenhoek Journal of Microbiology and Serology 48: 131–143.

    Article  CAS  Google Scholar 

  • Wilke D, 1980. Conjugational gene transfer in Xanthobacter autotrophicus GZ29. Journal of General Microbiology 117: 431–436.

    Google Scholar 

  • Wilke D and Schlegel HG, 1979. A defective generalized transducing bacteriophage in Xanthobacter autotrophicus GZ29. Journal of General Microbiology 115: 403–410.

    Google Scholar 

  • Wu LF and Mandrand-Berthelot MA, 1986. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity. Biochimie 68: 167–179.

    Article  PubMed  CAS  Google Scholar 

  • Xu HW, Love J, Borghese R and Wall JD, 1989. Identification and isolation of genes essential for H2-oxidation in Rhodobacter capsulatus. Journal of Bacteriology 171: 714–721.

    PubMed  CAS  Google Scholar 

  • Yagi K, Min H, Urushihara M, Manabe Y, Umeda F and Miura Y, 1986. Isolation of hydrogen-oxidation gene from Alcaligenes hydrogenophilus and its expression in Pseudomonas oxalaticus. Biochemical and Biophysical Research Communications 137: 114–119.

    Article  PubMed  CAS  Google Scholar 

  • Zinoni F, Birkmann A, Stadtman TC and Bock A, 1986. Nucleotide sequence and expression of the selenocysteine containing polypeptide of formate dehydrogenase (formate-hydrogenlyase-linked) from Escherichia coli. Proceedings of the National Academy of Sciences USA 83: 4650–4654.

    Article  CAS  Google Scholar 

  • Zuber M, Harker AR, Sultana MA and Evans HJ, 1986. Cloning and expression of Bradyrhizobium japonicum uptake hydrogenase structural genes in Escherichia coli. Proceedings of the National Academy of Sciences USA 83: 7668–7672.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Friedrich, B., Friedrich, C.G. (1990). Hydrogenases in Lithoautotrophic Bacteria. In: Codd, G.A., Dijkhuizen, L., Tabita, F.R. (eds) Autotrophic Microbiology and One-Carbon Metabolism. Advances in Autotrophic Microbiology and One-Carbon Metabolism, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1978-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1978-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7384-4

  • Online ISBN: 978-94-009-1978-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics