Skip to main content
Log in

Plasmids in carboxydotrophic bacteria: physical and restriction analysis

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Twenty species and strains of aerobic CO-oxidizing bacteria were screened for the occurrence of plasmids. Six of them harbored plasmids between 45 and 558kb. Megaplasmids of 428 and 558 kb were resolved in Alcaligenes carboxydus. Restriction digest patterns of plasmids from different carboxydotrophic bacteria were dissimilar. However, the patterns obtained with the plasmids from the strains OM5, OM4 and OM2 of Pseudomonas carboxydovorans were very much the same. The nine cured mutants of P. carboxydovorans OM5, as well as the deletion mutant OM5-29, could not grow chemolithotrophically with CO or H2 plus CO2, as they were devoid of CO dehydrogenase, hydrogenase and ribulose bisphosphate carboxylase. The deletion mutant OM5-24 retained the ability to grow with CO. It could not grow with H2 plus CO2 and was devoid of H2ase. The data suggest the residence of structural and/or regulatory genes of CODH, H2ase and RuBPCx on plasmid pHCG3 of P. carboxydovorans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CODH:

carbon monoxide dehydrogenase

CRM:

cross reacting material

EMS:

ethyl methane sulfonate

H2ase:

hydrogenase

kb:

kilobase

NTG:

N-methyl-N′-nitro-N-nitrosoguanidine

RuBPCx:

ribulose bisphosphate carboxylase

SDS:

sodium dodecylsulfate

References

  • Aragno M (1978) Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiol Lett 3:13–15

    Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113

    Google Scholar 

  • Carlton BC, Brown BJ (1981) Gene mutation. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, USA, pp 222–242

    Google Scholar 

  • Casse F, Boucher C, Julliot JS, Michel M, Dénarié J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242

    Google Scholar 

  • Crosa JH, Falkow S (1981) Plasmids. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, USA, pp 269–270

    Google Scholar 

  • DePicker A, van Montagu M, Schell J (1977) Physical map of RP4. In: Bukhari AJ, Shapiro JA, Adhya SL (eds) DNA, insertion elements, plasmids and episomes. Cold Spring Harbor Laboratory, New York, USA, pp 678–679

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Google Scholar 

  • Eberhardt U (1969) On chemolithotrophy and hydrogenase of a Gram-positive Knallgas bacterium. Arch Mikrobiol 66:91–104

    Google Scholar 

  • Eckhardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588

    Google Scholar 

  • Friedrich B, Hogrefe C (1984) Genetics of lithoautotrophic metabolism in Alcaligenes eutrophus. In: Crawford RC, Hanson RS (eds) Microbial growth on C1-compounds. Am Soc Microbiol, Washington DC, USA, pp 244–247

    Google Scholar 

  • Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205

    Google Scholar 

  • Friedrich B, Kortlücke C, Hogrefe C, Eberz G, Silber B, Warrelmann J (1986) Genetics of hydrogenase from aerobic lithoautotrophic bacteria. Biochimie 68:133–145

    Google Scholar 

  • Gerstenberg C, Friedrich B, Schlegel HG (1982) Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Arch Microbiol 133:90–96

    Google Scholar 

  • Hegeman GD (1984) Oxidation of carbon monoxide by aerobic bacteria. In: Crawford RL, Hanson RS (eds) Microbial growth on C1-compounds. American Society for Microbiology, Washington DC, USA, pp 21–25

    Google Scholar 

  • Hogrefe C, Friedrich B (1984) Isolation and characterization of megaplasmid DNA from lithoautotrophic bacteria. Plasmid 12:161–169

    Google Scholar 

  • Hogrefe C, Römermann D, Friedrich B (1984) Alcaligenes eutrophus hydrogenase genes (hox). J Bacteriol 158:43–48

    Google Scholar 

  • Jacobitz S, Meyer O (1986) Reduced pyridine nucleotides in Pseudomonas carboxydovorans are formed by reverse electron transfer linked to proton motive force. Arch Microbiol 145:372–377

    Google Scholar 

  • Kado CI, Lio S-T (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373

    Google Scholar 

  • Kalnowski G (1980) Physiologische Untersuchung der Kohlenmonoxid-Oxidation und des chemolithoautotrophen Wachstums an zwei neu isolierten Carboxydobakterien. PhD thesis. Technische Univ, Braunschweig, FRG

    Google Scholar 

  • Kirkconnell S, Hegeman GD (1979) Properties of bacteria that oxidize carbon monoxide as sole source of energy. Abstract of the Annual Meeting of the American Society for Microbiology I 3, p 95

  • Krüger B, Meyer O (1984) Thermophilic Bacilli growing with carbon monoxide. Arch Microbiol 139:402–408

    Google Scholar 

  • Kwon MO, Kim YM (1985) Relationship between carbon monoxide dehydrogenase and a small plasmid of Pseudomonas carboxydovorans. FEMS Microbiol Lett 29:155–159

    Google Scholar 

  • Kwon MO, Chung IK, Kim YM (1986) Role of a small plasmid in the modification of carbon monoxide dehydrogenase in Pseudomonas carboxydovorans. FEMS Microbiol Lett 37: 113–116

    Google Scholar 

  • Lidstrom ME, Wopat AE (1984) Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis. Arch Microbiol 140:27–33

    Google Scholar 

  • Lyons CM, Justin P, Colby J, Williams E (1984) Isolation, characterization and autotrophic metabolism of a moderately thermophilic carboxydobacterium, Pseudomonas thermocarboxydovorans sp nov. J Gen Microbiol 130:1097–1105

    Google Scholar 

  • Mahony DE, Clark GA, Stringer MF, MacDonald MC, Duchesne DR, Mader JA (1986) Rapid extraction of plasmids from Clostridium perfringens. Appl Environ Microbiol 51:521–523

    Google Scholar 

  • Meyer O (1985) Metabolism of aerobic carbon monoxide-utilizing bacteria. In: Poole RK, Dow CS (eds) Microbial gas metabolism. Academic Press, London, pp 131–151

    Google Scholar 

  • Meyer O, Schlegel HG (1978) Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb nov. Arch Microbiol 118:35–43

    Google Scholar 

  • Meyer O, Schlegel HG (1979) Oxidation of carbon monoxide in cell extracts of Pseudomonas carboxydovorans. J Bacteriol 137:811–817

    Google Scholar 

  • Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Ann Rev Microbiol 37:277–310

    Google Scholar 

  • Meyer O, Jacobitz S, Krüger B (1986) Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev 39:161–179

    Google Scholar 

  • Novick RP (1980) Plasmids. Sci Am 243:77–90

    Google Scholar 

  • Nozhevnikova AN, Zavarzin GA (1974) On the taxonomy of CO-oxidizing Gram-negative bacteria. Izv Akad Nauk SSSR Ser Biol 3:436–440

    Google Scholar 

  • Park YI, Hegeman GD (1984) The oxidation of carbon monoxide by bacteria. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio State University Press. Columbus, USA, pp 211–218

    Google Scholar 

  • Rohde C, Johannssen W, Mayer F (1986) Electron microscopic localization of hydrogenase genes on the megaplasmid pHG1 in Alcaligenes eutrophus. Mol Gen Genet 202:476–480

    Google Scholar 

  • Rohde M, Mayer F, Meyer O (1984) Immunocytochemical localization of carbon monoxide oxidase in Pseudomonas carboxydovorans. J Biol Chem 259:14788–14792

    Google Scholar 

  • Rosenberg C, Casse-Delbart F, Dusha I, David M, Boucher C (1982) Megaplasmids in the plant-associated bacteria Rhizobium meliloti and Pseudomonas solanacearum. J Bacteriol 150:402–406

    Google Scholar 

  • Sanjieva EU, Zavarzin GA (1971) Oxidation of carbon monoxide by Seliberia carboxydohydrogena. Dokl Akad Nauk SSSR 196:956–958

    Google Scholar 

  • Schenk A, Aragno M (1979) Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol 115:333–341

    Google Scholar 

  • Willshaw GA, Smith HR, Anderson ES (1979) Application of agarose gel electrophoresis to the characterization of plasmid DNA in drug-resistant enterobacteria. J Gen Microbiol 114:15–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraut, M., Meyer, O. Plasmids in carboxydotrophic bacteria: physical and restriction analysis. Arch. Microbiol. 149, 540–546 (1988). https://doi.org/10.1007/BF00446758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446758

Key words

Navigation