Skip to main content
Log in

Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Agarose gel electrophoresis of crude lysates from 23 species of autotrophic bacteria revealed plasmids of various sizes in 12 species. The plasmid pattern varied considerably. While the majority of the plasmid-bearing species harbored one or two plasmids, one species, Alcaligenes latus, exhibited more than six ccc-DNA bands. With one exception the molecular masses of the plasmids were 50×106 or higher. In Achromobacter carboxydus, Alcaligenes latus, Derxia gummosa and three strains of Paracoccus denitrificans large plasmids of molecular masses higher than 300×106 were resolved. The examination of Thiobacillus A2 resulted in the discovery of two plasmids while Pseudomonas oxalaticus was apparently free of resident plasmid DNA. So far these plasmids can only be characterized as cryptic. Future studies may allow to correlate them with specific metabolic activities of their hosts such as the ability to grow on carbon monoxide or thiosulfate, to fix molecular nitrogen and to form soluble NAD-reducing and/or membrane-bound hydrogenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen K, Tait RC, King WR (1981) Plasmids required for utilization of molecular hydrogen by Alcaligenes eutrophus. Arch Microbiol 129:384–390

    Google Scholar 

  • Aragno M, Schlegel HG (1977) Alcaligenes ruhlandii (Packer and Vishniac) comb. nov., a peritrichous hydrogen bacterium previously assigned to Pseudomonas. Int J Syst Bacteriol 27:279–281

    Google Scholar 

  • Aragno M, Schlegel HG (1978) Aquaspirillum autotrophicum, a new species of hydrogen-oxidizing, facultatively autotrophic bacteria. Int J Syst Bacteriol 28:112–116

    Google Scholar 

  • Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, a handbook on habitats, isolation, and identification of bacteria. Springer, Berlin Heidelberg New York, pp 865–893

    Google Scholar 

  • Brewin NJ, De Jong TM, Phillips DA, Johnston AWB (1980) Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature 288:77–79

    Google Scholar 

  • Cantrell MA, Hickok RE, Evans HJ (1982) Identification and characterization of plasmids in hydrogen uptake positive and hydrogen uptake negative strains of Rhizobium japonicum. Arch Microbiol 131:102–106

    Google Scholar 

  • Casse F, Boucher C, Julliot JS, Michel M, Dénarié J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242

    Google Scholar 

  • Datta N, Hedges RW, Shaw EJ, Sykes RB, Richmond MH (1971) Properties of an R-factor from Pseudomonas aeruginosa. J Bacteriol 108:1244–1249

    Google Scholar 

  • Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int J Syst Bacteriol 19:375–390

    Google Scholar 

  • Eberhardt U (1969) On chemolithotrophy and hydrogenase of a Grampositive Knallgas bacterium. Arch Mikrobiol 66:91–104

    Google Scholar 

  • Ert M Van, Staley JT (1971) Gas-vacuolated strains of Microcyclus aquaticus. J Bacteriol 108:236–240

    Google Scholar 

  • Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205

    Google Scholar 

  • Hombrecher G, Brewin NJ, Johnston AWB (1981) Linkage of genes for nitrogenase and nodulation ability on plasmids in Rhizobium leguminosarum and R. phaseoli. Mol Gen Genet 182:133–136

    Google Scholar 

  • Malik KA, Claus D (1979) Xanthobacter flavus, a new species of nitrogenfixing hydrogen bacteria. Int J Syst Bacteriol 29:283–287

    Google Scholar 

  • Malik KA, Jung C, Claus D, Schlegel HG (1981) Nitrogen fixation by the hydrogen-oxidizing bacterium Alcaligenes latus. Arch Microbiol 129:254–256

    Google Scholar 

  • Malik KA, Schlegel HG (1981) Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11:63–67

    Google Scholar 

  • Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, and zinc ions: evidence from curing in a Pseudomonas. Arch Int Physiol Biochem 86: 440–441

    Google Scholar 

  • Meyer O, Lalucat J, Schlegel HG (1980) Pseudomonas carboxydohydrogena (Sanjieva and Zavarzin) comb. nov., a monotrichous, nonbudding, strictly aerobic, carbon monoxide-utilizing hydrogen bacterium previously assigned to Seliberia. Int J Syst Bacteriol 30:189–195

    Google Scholar 

  • Meyers JA, Sanchez D, Elwell LP, Falkow S (1976) Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol 127:1529–1537

    Google Scholar 

  • Meyer O, Schlegel HG (1978) Reisolation of the carbon monoxideutilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Arch Microbiol 118:35–43

    Google Scholar 

  • Nikitin DI (1971) A new soil microorganism Renobacter vacuolatum gen et sp. n. Dokl Akad Nauk SSSR 198:447–448

    Google Scholar 

  • Nokhal TH, Schlegel HG (1980) The regulation of hydrogenase formation as a differentiating character of strains of Paracoccus denitrificans. Antonie van Leeuwenhoek J Microbiol Serol 46:143–155

    Google Scholar 

  • Nozhevnikova AN, Zavarzin GA (1974) On the taxonomy of CO oxidizing Gram-negative bacteria. Izv Akad Nauk SSSR Ser Biol 3:436–439

    Google Scholar 

  • Palleroni NJ, Palleroni AV (1978) Alcaligenes latus, a new species of hydrogen-utilizing bacteria. Int J Syst Bacteriol 28:416–424

    Google Scholar 

  • Pedrosa FO, Döbereiner J, Yates MG (1980) Hydrogen-dependent growth and autotrophic carbon dioxide fixation in Derxia. J Gen Microbiol 119:547–551

    Google Scholar 

  • Pootjes CF (1977) Evidence for plasmid coding of the ability to utilize hydrogen gas by Pseudomonas facilis. Biochem Biophys Res Commun 76:1002–1006

    Google Scholar 

  • Quayle JR, Keech DB (1958) Carbon dioxide and formate utilization by formate-grown Pseudomonas oxalaticus. Biochim Biophys Acta 29:223–225

    Google Scholar 

  • Reh M, Schlegel HG (1975) Chemolithoautotrophie als eine übertragbare, autonome Eigenschaft von Nocardia opaca 1b. Nachr Akad Wiss Göttingen, II. Math-Physik Kl 12:207–216

    Google Scholar 

  • Reh M, Schlegel HG (1981) Hydrogen autotrophy as a transferable genetic character of Nocardia opaca 1b. J Gen Microbiol 126:327–336

    Google Scholar 

  • Sanjieva EU, Zavarzin GA (1971) Oxidation of carbon monoxide by Seliberia carboxydohydrogena. Dokl Akad Nauk SSSR 196:956–958

    Google Scholar 

  • Schneider K, Schlegel HG (1977) Localization and stability of hydrogenase from aerobic hydrogen bacteria. Arch Microbiol 112:229–238

    Google Scholar 

  • Spitzbarth M, Pühler A, Heumann W (1979) Characterization of plasmids isolated from Rhizobium meliloti. Arch Microbiol 121:1–7

    Google Scholar 

  • Taylor BF, Hoare DS (1969) New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. J Bacteriol 100:487–497

    Google Scholar 

  • Wheatcroft R, Williams PA (1981) Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J Gen Microbiol 124:433–437

    Google Scholar 

  • Wiegel J, Wilke D, Baumgarten J, Opitz R, Schlegel HG (1978) Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. Int J Syst Bacteriol 28:573–581

    Google Scholar 

  • Wilke D, Schlegel HG (1979) A defective generalized transducing bacteriophage in Xanthobacter autotrophicus GZ29. J Gen Microbiol 115:403–410

    Google Scholar 

  • Wilke D (1980) Conjugational gene transfer in Xanthobacter autotrophicus GZ29. J Gen Microbiol 117:431–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstenberg, C., Friedrich, B. & Schlegel, H.G. Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Arch. Microbiol. 133, 90–96 (1982). https://doi.org/10.1007/BF00413517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413517

Key words

Navigation