Skip to main content
Log in

Plasmids required for utilization of molecular hydrogen by Alcaligenes eutrophus

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Alcaligenes eutrophus and three other hydrogen bacteria exposed to plasmid-curing agents generated autotrophic-minus mutants at high frequency. These mutants were blocked in the metabolism of H2 as an energy source and had normal levels of enzymes involved in CO2 fixation. The loss of hydrogenase activity in A. eutrophus was accompanied by the loss or alteration of a plasmid that had molecular weight of approximately 200×106. Mobilization of this plasmid from wild-type A. eutrophus strains into cured hydrogenase-minus derivatives restored hydrogenase function. It is concluded that A. eutrophus contains a large plasmid required for hydrogen metabolism and thereby autotrophic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aut:

autotrophic

Hup:

hydrogen uptake

NTG:

N-methyl-N′-nitro-N-nitrosoguanidine

RuBP:

ribulose bisphosphate

RuMP:

ribulose monophosphate

Kan:

kanamycin

Nal:

nalidixic acid

Rif:

rifampicin

Tet:

tetracycline

References

  • Albrecht SL, Maier RJ Hanus FJ, Russel SA, Emerich DW, Evans HJ (1979) Hydrogenase in Rhizobium japonicum increases nitrogen fixation by nodulated soybeans. Science 203:1255–1257

    Google Scholar 

  • Andersen K (1979) Mutations altering the catalytic activity of a plant type ribulose bisphosphate carboxylase/oxygenase in Alcaligenes eutrophus. Biochim Biophys Acta 585:1–11

    PubMed  Google Scholar 

  • Andersen K, Shanmugam KT (1977) Energetics of biological nitrogen fixation: determination of the ratio of formation of H2 to NH4 + catalyzed by nitrogenase of Klebsiella pneumoniae in vivo. J Gen Microbiol 103:107–122

    PubMed  Google Scholar 

  • Aragno M, Schlegel HG (1977) Alcaligenes ruhlandii (Packer and Vishniac) comb.nov., a peritrichous hydrogen bacterium previously assigned to Pseudomonas. Int J Syst Bacteriol 27:279–281

    Google Scholar 

  • Aragno M, Walther-Mauruschat A, Mayer F, Schlegel HG (1977) Micromorphology of gram-negative hydrogen bacteria. I. Cell morphology and flagellation. Arch Mikrobiol 114:93–100

    Google Scholar 

  • Bolivar F, Rodriguez RL, Betlach MC, Boyer HW (1977) Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2:75–93

    Article  PubMed  Google Scholar 

  • Brewin NJ, Beynon JL, Johnston AWB (1981) The role of Rhizobium plasmids in host specificity. In: Lyons JM, Valentine RC, Phillips DA, Rains DW, Huffaker RC (eds) Genetic engineering of symbiotic nitrogen fixation and conservation of fixed nitrogen. Plenum, New York (in press)

    Google Scholar 

  • Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 19:374–390

    Google Scholar 

  • Davis DH, Stanier RY, Duodoroff M, Mandel M (1970) Taxonomic studies on some gram-negative polarly flagellated hydrogen bacteria and selected species. Arch Mikrobíol 70:1–13

    Google Scholar 

  • Drews G (1965) Untersuchungen zur Regulation der Bakteriochlorophyll-Synthese bei Rhodospirillum rubrum. Arch Mikrobiol 51:186–198

    Google Scholar 

  • Doudoroff M (1940) The oxidative assimilation of sugars and related substances by Pseudomonas saccharophila with a contribution to the problem of direct respiration of di- and polysaccharides. Enzymologia 9:52–72

    Google Scholar 

  • Friedrich CG, Bowien B, Friedrich B (1979) Formate and oxalate metabolism in Alcaligenes eutrophus. J Gen Microbiol 115:185–192

    Google Scholar 

  • Hanus FJ, Maier RJ, Evans HJ (1979) Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with H2 gas. Proc Natl Acad Sci USA 76:1788–1792

    PubMed  Google Scholar 

  • Holloway BW (1979) Plasmids that mobilize bacterial chromosome. Plasmid 2:1–19

    PubMed  Google Scholar 

  • Lim ST (1978) Determination of hydrogenase in free-living cultures of Rhizobium japonicum and energy efficiency of soybean nodules. Plant Physiol 62:609–611

    Google Scholar 

  • Lim ST, Andersen K, Tait R, Valentine RC (1980) Genetic engineering in agriculture: hydrogen uptake (hup) genes. Trends Biochem Sci 5:167–170

    Google Scholar 

  • McFadden BA (1978) Assimilation of one-carbon compounds. In: Ornston LN, Sokatch JR (eds) The bacteria, Vol 6, Academic Press, New York, pp 219–304

    Google Scholar 

  • Pfitzner J (1974) Ein Beitrag zum H2−O2 Oxidoreductasesystem von Hydrogenomonas eutropha Stamm H16: Hydrogenasedefekte Mutanen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1, Orig Reihe A 228:121–127

    Google Scholar 

  • Pootjes CF (1977) Evidence for plasmid coding of the ability to utilize hydrogen gas by Pseudomonas facilis. Biochem Biophys Res Comm 76:1002–1006

    PubMed  Google Scholar 

  • Pootjes CF, Mayhew RB, Korant BD (1966) Isolation and characterization of Hydrogenomonas facilis bacteriophages under heterotrophic growth conditions. J Bacteriol 92:1787–1791

    PubMed  Google Scholar 

  • Repaske R, Repaske AC (1976) Quantitative requirements for exponential growth of Alcaligenes eutrophus. Appl Environm Microbiol 32:585–591

    Google Scholar 

  • Reh M, Schlegel HG (1975) Chemolithoautotrophie als eine übertragbare, autonome Eigenschaft von Nocardia opaca 1b. Nachr Akad Wiss Göttingen. II. Math-Phys Kl 12:207–216

    Google Scholar 

  • Schink B, Schlegel HG (1978) Mutants of Alcaligenes eutrophus defective in autotrophic metabolism. Arch Microbiol 117:123–129

    PubMed  Google Scholar 

  • Schink B, Schlegel HG (1979) The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification, and biochemical properties. Biochim Biophys Acta 567:315–324

    PubMed  Google Scholar 

  • Schlegel HG (1976) The physiology of hydrogen bacteria. Antonie van Leeuwenhoek J Microbiol Serol 42:181–201

    Google Scholar 

  • Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim Biophys Acta 452:66–80

    PubMed  Google Scholar 

  • Schneider K, Schlegel HG (1977) Localization and stability of hydrogenases from aerobic hydrogen bacteria. Arch Microbiol 112:229–238

    PubMed  Google Scholar 

  • Schubert KR, Evans HJ (1976) Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci USA 73:1207–1211

    Google Scholar 

  • Tabita FR, Caruso P, Whitman W (1978) Facile assay of enzymes unique to the Calvin cycle in intact cells, with special reference to ribulose 1,5-bisphosphate carboxylase. Anal Biochem 84:462–472

    PubMed  Google Scholar 

  • Wittenberger CL, Repaske R (1961) Studies on hydrogen oxidation in cell-free extracts of Hydrogenomonas eutropha. Biochim Biophys Acta 47:542–552

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, K., Tait, R.C. & King, W.R. Plasmids required for utilization of molecular hydrogen by Alcaligenes eutrophus . Arch. Microbiol. 129, 384–390 (1981). https://doi.org/10.1007/BF00406468

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406468

Key words

Navigation