Skip to main content

Niches and Adaptations of Polyextremotolerant Black Fungi

  • Chapter
  • First Online:
Polyextremophiles

Abstract

Environmental changes such as increased levels of carbon dioxide and UV radiation are usually perceived as a threat to living organisms and associated with shrinking populations and extinction. We frequently forget that some species cope really well with a range of extreme and rapidly changing conditions and may actually benefit from such changes. Black meristematic fungi, for example, are well adapted to high doses of radiation and survive long periods of desiccation. They seem not only robust under moderate stress conditions but seem to adapt and diversify, in agreement with the so-called concept of antifragility. We hypothesise that this behaviour is mediated by the polymer melanin in the cell walls; yet, other protective molecules and phenotypic plasticity play an important role as well. Evolution of these fungi is thought to have originated in the harsh oligotrophic habitats on the surface and subsurface of rocks, but their potentials are much wider than that. Their polyextremotolerance helps them to colonise numerous habitats in which competition with other fungi is low due to stressful conditions. This includes a range of anthropogenic environments and in some cases also animal bodies. Some of these fungi also undergo lichen-like associations with photoautotrophs or benefit from growing on lichens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews JH, Spear RN, Nordheim EV (2002) Population biology of Aureobasidium pullulans on apple leaf surfaces. Can J Microbiol 48:500–513

    Article  PubMed  CAS  Google Scholar 

  • Badali H, Prenafeta-Boldu FX, Guarro J, Klaassen CH, Meis JF, De Hoog GS (2011) Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in the bioremediation of volatile aromatic hydrocarbons. Fungal Biol 115:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Bar-Even A, Noor E, Milo R (2012) A survey of carbon fixation pathways through a quantitative lens. J Exp Bot 63:2325–2342

    Article  PubMed  CAS  Google Scholar 

  • Beumer RR, Kusumaningrum H (2003) Kitchen hygiene in daily life. Int Biodeterior Biodegrad 51:299–302

    Article  Google Scholar 

  • Bevilacqua A, Corbo MR, Sinigaglia M (2012) Selection of yeasts as starter cultures for table olives: a step-by-step procedure. Front Microbiol 3:194

    Article  PubMed  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  PubMed  CAS  Google Scholar 

  • Boustie J, Tomasi S, Grube M (2011) Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev 10:287–307

    Article  CAS  Google Scholar 

  • Brunauer G, Blaha J, Hager A, Turk R, Stocker-Worgotter E, Grube M (2007) An isolated lichenicolous fungus forms lichenoid structures when co-cultured with various coccoid algae. Symbiosis 44:127–136

    CAS  Google Scholar 

  • Bryan R, Jiang ZW, Friedman M, Dadachova E (2011) The effects of gamma radiation, UV and visible light on ATP levels in yeast cells depend on cellular melanization. Fungal Biol 115:945–949

    Article  PubMed  CAS  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    Article  CAS  Google Scholar 

  • Cappitelli F, Sorlini C (2008) Microorganisms attack synthetic polymers in items representing our cultural heritage. Appl Environ Microbiol 74:564–569

    Article  PubMed  CAS  Google Scholar 

  • Casadevall A (2007) Determinants of virulence in the pathogenic fungi. Fungal Biol Rev 21:130–132

    Article  PubMed  Google Scholar 

  • Chan GF, Puad MSA, Chin CF, Rashid NAA (2011) Emergence of Aureobasidium pullulans as human fungal pathogen and molecular assay for future medical diagnosis. Folia Microbiol (Praha) 56:459–467

    Article  CAS  Google Scholar 

  • Chi Z, Wang F, Yue L, Liu G, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82:793–804

    Article  PubMed  CAS  Google Scholar 

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531

    Article  PubMed  CAS  Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2:e457

    Article  PubMed  Google Scholar 

  • Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11:12–21

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Kiang JG, Fukumoto R, Lee DY, Wehr NB, Viteri GA, Berlett BS, Levine RL (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 5:e12570

    Article  PubMed  Google Scholar 

  • Danchin A, Binder P, Noria S (2011) Antifragility and tinkering in biology (and in business): flexibility provides an efficient epigenetic way to manage risk. Genes 2011:998–1016

    Article  Google Scholar 

  • de Felice DV, Solfrizzo M, De Curtis F, Lima G, Visconti A, Castoria R (2008) Strains of Aureobasidium pullulans can lower ochratoxin A contamination in wine grapes. Phytopathology 98:1261–1270

    Article  PubMed  Google Scholar 

  • de Hoog GS, Guarro J, Gené F, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures/Universitat Rovira i Virgili, Utrecht/Reus, 1126 pp

    Google Scholar 

  • de Hoog GS, Zalar P, Gerrits van den Ende AHG, Gunde-Cimerman N (2005) Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 371–395

    Chapter  Google Scholar 

  • de Hoog GS, Zeng JS, Harrak MJ, Sutton DA (2006) Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie van Leeuwenhoek 90:257–268

    Article  PubMed  Google Scholar 

  • Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR (2009) Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 106:16393–16398

    Article  PubMed  CAS  Google Scholar 

  • Friedl T, Büdel B (2008) Photobionts. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 9–26

    Chapter  Google Scholar 

  • Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658

    Article  PubMed  CAS  Google Scholar 

  • Fürst HM (2000) Ökologie des Hyphenpilzes Hormoconis resinae und Eigenschaften seines n-Alkan-induzierten P450-Monooxygenasesystems. Dissertation, Technische Universität Berlin, 124 pp. ISBN: 3-89825-042-3

    Google Scholar 

  • Gadd GM, Derome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29:610–617

    Article  CAS  Google Scholar 

  • Gorbushina AA, Broughton WJ (2009) Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annu Rev Microbiol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges J (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock dwelling microcolonial fungi. Can J Bot 2:131–138

    Article  Google Scholar 

  • Gorbushina AA, Beck A, Schulte A (2005) Microcolonial rock inhabiting fungi and lichen photo­bionts: evidence for mutualistic interactions. Mycol Res 109:1288–1296

    Article  PubMed  Google Scholar 

  • Gostinčar C, Grube M, de Hoog GS, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  Google Scholar 

  • Gostinčar C, Grube M, Gunde-Cimerman N (2011) Evolution of fungal pathogens in domestic environments? Fungal Biol 115:1008–1018

    Article  PubMed  Google Scholar 

  • Grube M, Schmid F, Berg G (2011) Black fungi and associated bacterial communities in the phyllosphere of grapevine. Fungal Biol 115:978–986

    Article  PubMed  Google Scholar 

  • Gueidan C, Villasenor CR, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    Article  PubMed  CAS  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

    Article  PubMed  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Harutyunyan S, Muggia L, Grube M (2008) Black fungi in lichens from seasonally arid habitats. Stud Mycol 61:83–90

    Article  PubMed  CAS  Google Scholar 

  • Hawkes M, Rennie R, Sand C, Vaudry W (2005) Aureobasidium pullulans infection: fungemia in an infant and a review of human cases. Diagn Microbiol Infect Dis 51:209–213

    Article  PubMed  Google Scholar 

  • Henssen A (1987) Lichenothelia, a genus of microfungi on rocks. Biblioth Lichenol 25:257–293

    Google Scholar 

  • Huang YT, Liao CH, Huang YT, Liaw SJ, Yang JL, Lai DM, Lee YC, Hsueh PR (2008) Catheter-related septicemia due to Aureobasidium pullulans. Int J Infect Dis 12:E137–E139

    Article  PubMed  Google Scholar 

  • Ivarson KC, Morita H (1982) Single-cell protein-production by the acid-tolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper. Appl Environ Microbiol 43:643–647

    PubMed  CAS  Google Scholar 

  • Jürgensen CW, Jacobsen NR, Emri T, Eriksen SH, Pocsi I (2001) Glutathione metabolism and dimorphism in Aureobasidium pullulans. J Basic Microbiol 41:131–137

    Article  PubMed  Google Scholar 

  • Kaarakainen P, Rintala H, Vepsalainen A, Hyvarinen A, Nevalainen A, Meklin T (2009) Microbial content of house dust samples determined with qPCR. Sci Total Environ 407:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Hawksworth DL, Volkmann-Kohlmeyer B (2004) Observations on two “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. Mycol Prog 3:51–56

    Article  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A 102:3141–3146

    Article  PubMed  CAS  Google Scholar 

  • Lapinskas PJ, Cunningham KW, Liu XF, Fink GR, Culotta C (1995) Mutations in Pmr1 suppress oxidative damage in yeast-cells lacking superoxide-dismutase. Mol Cell Biol 15:1382–1388

    PubMed  CAS  Google Scholar 

  • Lian X, de Hoog GS (2010) Indoor wet cells harbour melanized agents of cutaneous infection. Med Mycol 48:622–628

    Article  PubMed  CAS  Google Scholar 

  • Madhour A, Anke H, Mucci A, Davoli P, Weber RWS (2005) Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry 66:2617–2626

    Article  PubMed  CAS  Google Scholar 

  • Martin-Sanchez PM, Novakova A, Bastian F, Alabouvette C, Saiz-Jimeneza C (2012) Two new species of the genus Ochroconis, O. lascauxensis and O. anomala isolated from black stains in Lascaux Cave, France. Fungal Biol 116:574–589

    Article  PubMed  Google Scholar 

  • Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M (2008) The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res 112:50–56

    Article  PubMed  CAS  Google Scholar 

  • Nelsen MP, Lucking R, Grube M, Mbatchou JS, Muggia L, Plata ER, Lumbsch HT (2009) Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Stud Mycol 64:135–144

    Article  PubMed  CAS  Google Scholar 

  • Nevo E (2001) Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci U S A 98:6233–6240

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi Y, Tamaru A, Kitada S, Taguri T, Matsumoto S, Tateishi Y, Yoshimura M, Ozeki Y, Matsumura N, Ogura H, Maekura R (2009) Mycobacterium avium complex organisms predominantly colonize in the bathtub inlets of patients’ bathrooms. Jpn J Infect Dis 62:182–186

    PubMed  CAS  Google Scholar 

  • Nisiotou AA, Chorianopoulos N, Nychas GJE, Panagou EZ (2010) Yeast heterogeneity during spontaneous fermentation of black Conservolea olives in different brine solutions. J Appl Microbiol 108:396–405

    Article  PubMed  CAS  Google Scholar 

  • Ojima M, Toshima Y, Koya E, Ara K, Tokuda H, Kawai S, Kasuga F, Ueda N (2002) Hygiene measures considering actual distributions of microorganisms in Japanese households. J Appl Microbiol 93:800–809

    Article  PubMed  CAS  Google Scholar 

  • Olstorpe M, Schnurer J, Passoth V (2010) Microbial changes during storage of moist crimped cereal barley grain under Swedish farm conditions. Anim Feed Sci Technol 156:37–46

    Article  CAS  Google Scholar 

  • Onofri S, Seltimann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:1657–1664

    Article  Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109

    Article  PubMed  CAS  Google Scholar 

  • Orell A, Navarro CA, Rivero M, Aguilar JS, Jerez CA (2012) Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles 16:573–583

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  PubMed  CAS  Google Scholar 

  • Palmer RJ Jr, Friedmann EI (1988) Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi. Polarforschung 58:189–191

    PubMed  Google Scholar 

  • Prenafeta-Boldu FX, Summerbell R, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Article  PubMed  CAS  Google Scholar 

  • Prenafeta-Boldu FX, Guivernau M, Gallastegui G, Vinas M, de Hoog GS, Elias A (2012) Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, ethylbenzene and p-xylene) in gas biofilters operated under xerophilic conditions. FEMS Microbiol Ecol 80:722–734

    Article  PubMed  CAS  Google Scholar 

  • Rauch ME, Graef HW, Rozenzhak SM, Jones SE, Bleckmann CA, Kruger RL, Naik RR, Stone MO (2006) Characterization of microbial contamination in United States Air Force aviation fuel tanks. J Ind Microbiol Biotechnol 33:29–36

    Article  PubMed  CAS  Google Scholar 

  • Robert V, Stegehuis G, Stalpers J (2005) The MycoBank engine and related databases. http://www.mycobank.org

  • Robiglio A, Sosa MC, Lutz MC, Lopes CA, Sangorrin MP (2011) Yeast biocontrol of fungal spoilage of pears stored at low temperature. Int J Food Microbiol 147:211–216

    Article  PubMed  Google Scholar 

  • Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133

    Article  PubMed  CAS  Google Scholar 

  • Sailer MF, van Nieuwenhuijzen EJ, Knol W (2010) Forming of a functional biofilm on wood surfaces. Ecol Eng 36:163–167

    Article  Google Scholar 

  • Schlichting CD (2008) Hidden reaction norms, cryptic genetic variation, and evolvability. Ann N Y Acad Sci 1133:187–203

    Article  PubMed  Google Scholar 

  • Scott JA, Untereiner WA, Ewaze JO, Wong B, Doyle D (2007) Baudoinia, a new genus to accommodate Torula compniacensis. Mycologia 99:592–601

    Article  PubMed  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, van den Ende AHGG, Ruibal C, De Leo F, Urzi C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  PubMed  CAS  Google Scholar 

  • Seyedmousavi S, Badali H, Chlebicki A, Zhao JJ, Prenafeta-Boldu FX, De Hoog GS (2011) Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biol 115:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  PubMed  CAS  Google Scholar 

  • Shima J, Takagi H (2009) Stress-tolerance of baker’s-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol Appl Biochem 53:155–164

    Article  PubMed  CAS  Google Scholar 

  • Slepecky RA, Starmer WT (2009) Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia 101:823–832

    Article  PubMed  Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462

    Article  Google Scholar 

  • Su HJ, Rotnitzky A, Burge HA, Spengler JD (1992) Examination of fungi in domestic interiors by using factor-analysis – correlations and associations with home factors. Appl Environ Microbiol 58:181–186

    PubMed  CAS  Google Scholar 

  • Summerbell RC, Staib F, Dales R, Nolard N, Kane J, Zwanenburg H, Burnett R, Krajden S, Fung D, Leong D (1992) Ecology of fungi in human dwellings. J Med Vet Mycol 30:279–285

    Article  PubMed  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223

    Article  PubMed  CAS  Google Scholar 

  • Taleb NN (2011) Antifragility – or – the property of disorder-loving systems. Edge. Available online: http://www.edge.org/q2011/q11_3.html#taleb. Accessed on 2 Aug 2012

  • Turick CE, Ekechukwu AA, Milliken CE, Casadevall A, Dadachova E (2011) Gamma radiation interacts with melanin to alter its oxidation-reduction potential and results in electric current production. Bioelectrochemistry 82:69–73

    Article  PubMed  CAS  Google Scholar 

  • Vadkertiova R, Slavikova E (1995) Killer activity of yeasts isolated from the water environment. Can J Microbiol 41:759–766

    Article  PubMed  CAS  Google Scholar 

  • Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66:3194–3200

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A 102:6543–6549

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, de Hoog GS, Schroers HJ, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Novak M, De Hoog GS, Gunde-Cimerman N (2011) Dishwashers – a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol 115:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Zhao JJ, Zeng JS, de Hoog GS, Attili-Angelis D, Prenafeta-Boldu FX (2010) Isolation and identification of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol 60:149–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

LM and MG are grateful to the Austrian Science Foundation for financial support (FWF P24114). CG acknowledges the support of the project ‘Centre of excellence for integrated approaches in chemistry and biology of proteins’ number OP13.1.1.2.02.0005, financed by the European regional development fund (85 % share of financing) and by the Slovenian Ministry of Higher Education, Science and Technology (15 % share of financing) and of the Slovenian state budget through the Slovenian Research Agency (Infrastructural Centre Mycosmo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grube, M., Muggia, L., Gostinčar, C. (2013). Niches and Adaptations of Polyextremotolerant Black Fungi. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_25

Download citation

Publish with us

Policies and ethics